The Poisson-Voronoi cell around an isolated nucleus

Nathanaël Enriquez joint work with P. Calka and Y. Demichel

Approximation of a convex body from the inside

• K is a given smooth convex body in the plane \mathbb{R}^2

Approximation of a convex body from the inside

- K is a given smooth convex body in the plane \mathbb{R}^2
- Poisson Point Process Φ with intensity λ inside K

Approximation of a convex body from the inside

- K is a given smooth convex body in the plane \mathbb{R}^2
- Poisson Point Process Φ with intensity λ inside K
- $K_{\lambda} = \text{convex hull of the points of } \Phi$

Approximation of a convex body from the inside

- K is a given smooth convex body in the plane \mathbb{R}^2
- Poisson Point Process Φ with intensity λ inside K
- $K_{\lambda} = \text{convex hull of the points of } \Phi$

Question : limit when $\lambda \to \infty$ for

- $\mathcal{A}(K_{\lambda}) = \text{Area of } K_{\lambda}$
- $\mathcal{U}(K_{\lambda}) = \text{Perimeter of } K_{\lambda}$
- $\mathcal{N}(K_{\lambda}) =$ Number of vertices of K_{λ}

Approximation of a convex body from the inside

Theorem [Rényi, Sulanke, 1963-64] When the intensity $\lambda \to \infty$, • $\mathcal{A}(K) - \mathbb{E}(\mathcal{A}(K_{\lambda})) \sim \lambda^{-\frac{2}{3}} \left(\frac{2}{3}\right)^{\frac{1}{3}} \Gamma(\frac{5}{3}) \int_{\partial K} r_s^{-\frac{1}{3}} \mathrm{d}s$ • $\mathcal{U}(K) - \mathbb{E}(\mathcal{U}(K_{\lambda})) \sim \lambda^{-\frac{2}{3}} \frac{3^{\frac{2}{3}}}{2^{\frac{5}{3}}} \Gamma(\frac{5}{3}) \int_{\partial K} r_s^{-\frac{4}{3}} \mathrm{d}s$ • $\mathbb{E}(\mathcal{N}(K_{\lambda})) \sim \lambda^{\frac{1}{3}} \left(\frac{2}{3}\right)^{\frac{1}{3}} \Gamma(\frac{5}{3}) \int_{\partial K} r_s^{-\frac{1}{3}} \mathrm{d}s$ where r_s stands for the radius of curvature of ∂K at point s.

• K is a given smooth convex body in the plane \mathbb{R}^2

- K is a given smooth convex body in the plane \mathbb{R}^2
- An origin o is chosen inside K (non intrinsic!)

• 0

- K is a given smooth convex body in the plane \mathbb{R}^2
- An origin o is chosen inside K (non intrinsic!)
- Consider a Poisson Point Process Φ with intensity λ with the condition that the Poisson Voronoi tessellation associated with $\Phi \cup \{o\}$ does not intersect K

- K is a given smooth convex body in the plane \mathbb{R}^2
- An origin o is chosen inside K (non intrinsic!)
- Consider a Poisson Point Process Φ with intensity λ with the condition that the Poisson Voronoi tessellation associated with $\Phi \cup \{o\}$ does not intersect K

- K is a given smooth convex body in the plane \mathbb{R}^2
- An origin o is chosen inside K (non intrinsic!)
- Consider a Poisson Point Process Φ with intensity λ with the condition that the Poisson Voronoi tessellation associated with $\Phi \cup \{o\}$ does not intersect K

Question : limit of the geometric characteristics of the cell $K_{\lambda} \supset K$ when $\lambda \rightarrow \infty$?

Admissible point for the Poisson Point Process Φ

Forbidden point for the Poisson Point Process $\boldsymbol{\Phi}$

Critical position for a point of the Poisson Point Process $\boldsymbol{\Phi}$

The Poisson point Process Φ is thrown outside a 'security zone' which is twice the Voronoi-flower w.r.t. o defined as :

$$\mathcal{F}_o(K) = \bigcup_{s \in K} B(\frac{1}{2}s, \frac{1}{2} \|s\|)$$

The boundary of the Voronoi-flower coincides with the set of projections of o onto the tangent lines of ∂K which is the pedal curve of K

3. Main results

Theorem [Calka, Demichel, E.] When the intensity $\lambda \to \infty$, • $\mathbb{E}(\mathcal{A}(K_{\lambda})) - \mathcal{A}(K) \sim \lambda^{-\frac{2}{3}} \frac{3^{\frac{2}{3}}}{2^{3}} \Gamma(\frac{5}{3}) \int_{\partial K} r_{s}^{\frac{1}{3}} \langle s, n_{s} \rangle^{-\frac{2}{3}} ds$ • $\mathbb{E}(\mathcal{U}(K_{\lambda})) - \mathcal{U}(K) \sim \lambda^{-\frac{2}{3}} \frac{1}{2 \cdot 3^{\frac{1}{3}}} \Gamma(\frac{5}{3}) \int_{\partial K} (\|s\|^{2} - \langle s, n_{s} \rangle^{2}) \frac{r_{s}^{-\frac{2}{3}}}{\langle s, n_{s} \rangle^{\frac{8}{3}}} ds$ • $\mathbb{E}(\mathcal{N}(K_{\lambda})) \sim \lambda^{\frac{1}{3}} \frac{2}{3^{\frac{1}{3}}} \Gamma(\frac{5}{3}) \int_{\partial K} r_{s}^{-\frac{2}{3}} \langle s, n_{s} \rangle^{\frac{1}{3}} ds$ where r_{s} and n_{s} stand respectively for the radius of curvature and normal

where r_s and n_s stand respectively for the radius of curvature and normal vector of ∂K at point s.

 Let s ∈ ∂K. The strategy of the proof relies on the estimation of the distribution of the distance δ_s between s and ∂K_λ ∩ s + ℝ⁺n_s :

$$\mathbb{P}(\delta_s > h) = \exp\left(-4\lambda \mathcal{A}\left(\mathcal{F}_o(K \cup \{s + hn_s\}) - \mathcal{F}_o(K)\right)\right)$$

• The asymptotic expected area is obtained by integrating the expectation of this distance along ∂K :

$$\mathbb{E}(\mathcal{A}(K_{\lambda})) - \mathcal{A}(K) = \int_{\partial K} \int_{0}^{\infty} \mathbb{P}(\delta_{s} > h) \mathrm{d}h \mathrm{d}s$$

• For all h > 0 :

$$\mathcal{A}\big(\mathcal{F}_o(K \cup \{s+hn_s\}) - \mathcal{F}_o(K)\big) \underset{h \to 0}{=} \frac{4\sqrt{2}}{3}h^{\frac{3}{2}}r_s^{-\frac{1}{2}}\langle s, n_s \rangle + \mathcal{O}(h^2)$$

z(s) is the projection of o onto the tangent line of ∂K at s and belongs to the circle with diameter [o,s]

Adding a point $s + hn_s$ in a neighbourhood of s outside K implies an increase of the Voronoi-flower at point z(s)

Idealized picture of the increase of the flower at point z(s)

5. Application to two natural problems 5.1. More intrinsic problem

Consider the same problem but with no extra point o: a Poisson Voronoi tessellation is conditioned to have a cell K_{λ} containing a fixed smooth convex body K.

What happens when the intensity $\lambda \to \infty$?

- $\rightarrow\,$ Observe that the germ of K_{λ} converges to the Steiner point of K
- \rightarrow Apply the previous results with o = the Steiner point of K

5. Application to two natural problems 5.2. Reverse question

Given a large planar region \mathcal{R} with an origin $o \in \mathcal{R}$, consider a Poisson Point Process outside \mathcal{R} and the associated Poisson Voronoi tessellation.

What is the geometry of the cell containing o when the intensity $\lambda \to \infty$?

- \to Consider the maximal flower ${\mathcal F}$ included in ${\mathcal R}$ and the unique convex body K included in ${\mathcal R}$ and whose flower is ${\mathcal F}$
- $\rightarrow\,$ Apply the previous results with K and o

6. Perspectives

6. Perspectives

6. Perspectives

