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Nathanaël Enriquez
joint work with P. Calka and Y. Demichel

1/26



1. Historical result

Approximation of a convex body from the inside

• K is a given smooth convex body in the plane R2

• Poisson Point Process Φ with intensity λ inside K

• Kλ = convex hull of the points of Φ

Question : limit when λ→∞ for

• A(Kλ) = Area of Kλ

• U(Kλ) = Perimeter of Kλ

• N (Kλ) = Number of vertices of Kλ
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1. Historical result
Approximation of a convex body from the inside

Theorem [Rényi, Sulanke, 1963-64]
When the intensity λ→∞,

• A(K)− E(A(Kλ)) ∼ λ− 2
3
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where rs stands for the radius of curvature of ∂K at point s.
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2. Approximation of a convex body from the outside

2.1. General issue

• K is a given smooth convex body in the plane R2

• An origin o is chosen inside K (non intrinsic !)
• Consider a Poisson Point Process Φ with intensity λ with the

condition that the Poisson Voronoi tessellation associated with
Φ ∪ {o} does not intersect K

Question : limit of the geometric characteristics of the cell Kλ ⊃ K
when λ→∞ ?
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2. Approximation of a convex body from the outside

2.2. Description of the conditioning

o

K

Admissible point for the Poisson Point Process Φ

12/26



2. Approximation of a convex body from the outside

2.2. Description of the conditioning

o

K

Forbidden point for the Poisson Point Process Φ
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Critical position for a point of the Poisson Point Process Φ
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2. Approximation of a convex body from the outside

2.2. Description of the conditioning

o

K

s

1
2s

The Poisson point Process Φ is thrown outside a ‘security zone’ which is
twice the Voronoi-flower w.r.t. o defined as :

Fo(K) =
⋃
s∈K

B( 1
2s,

1
2‖s‖)

The boundary of the Voronoi-flower coincides with the set of projections
of o onto the tangent lines of ∂K which is the pedal curve of K
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3. Main results

Theorem [Calka, Demichel, E.]
When the intensity λ→∞,

• E(A(Kλ))−A(K) ∼ λ− 2
3
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• E(U(Kλ))−U(K) ∼ λ− 2
3
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• E(N (Kλ)) ∼ λ 1
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where rs and ns stand respectively for the radius of curvature and normal
vector of ∂K at point s.
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4. Computation of the exceeding area

• Let s ∈ ∂K. The strategy of the proof relies on the estimation of
the distribution of the distance δs between s and ∂Kλ ∩ s+ R+ns :

P(δs > h) = exp
(
−4λA

(
Fo(K ∪ {s+ hns})−Fo(K)

))
• The asymptotic expected area is obtained by integrating the

expectation of this distance along ∂K :

E(A(Kλ))−A(K) =

∫
∂K

∫ ∞
0

P(δs > h)dhds

• For all h > 0 :

A
(
Fo(K ∪ {s+ hns})−Fo(K)

)
=
h→0

4
√

2

3
h

3
2 r
− 1

2
s 〈s, ns〉+ O(h2)
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4. Computation of the exceeding area

∂K

o

s

z(s)

ns

1
2s

ns

pedal curve ∂Fo(K)

z(s) is the projection of o onto the tangent line of ∂K at s and belongs
to the circle with diameter [o, s]
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4. Computation of the exceeding area

∂K

o

s

αs

z(s)

z′(s) z′′(s)

ns

1
2s

1
2(s+ hns)

s+ hns

αs

αs

ns

osculating circle of ∂Fo(K)

pedal curve ∂Fo(K)

ρz(s) =
‖s‖2

2‖s‖−rs cosαs h

h

Adding a point s+ hns in a neighbourhood of s outside K implies an
increase of the Voronoi-flower at point z(s)
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4. Computation of the exceeding area

z(s) z′(s)

osculating circle of ∂Fo(K)

ρz(s) =
‖s‖2

2‖s‖−rs cosαs
ρz′(s) =

1
2‖s‖

h cosαs

Idealized picture of the increase of the flower at point z(s)
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5. Application to two natural problems

5.1. More intrinsic problem

Consider the same problem but with no extra point o : a Poisson Voronoi
tessellation is conditioned to have a cell Kλ containing a fixed smooth
convex body K.

What happens when the intensity λ→∞ ?

→ Observe that the germ of Kλ converges to the Steiner point of K

→ Apply the previous results with o = the Steiner point of K
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5. Application to two natural problems

5.2. Reverse question

Given a large planar region R with an origin o ∈ R, consider a Poisson
Point Process outside R and the associated Poisson Voronoi tessellation.

What is the geometry of the cell containing o when the intensity λ→∞ ?

→ Consider the maximal flower F included in R and the unique convex
body K included in R and whose flower is F

→ Apply the previous results with K and o

K

R

o

maximal flower F
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6. Perspectives
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