Features selection for modelling the intensity of spatial point processes

Achmad Choiruddin Advisors : Jean-françois Coeurjolly and Frédérique Letué

Laboratory Jean Kuntzmann, Univ. Grenoble Aples, France

4th Stochastic Geometry Days Poitiers, August 24th-28th, 2015

- Spatial Point Processes
	- **Brief** introduction
	- Interests in spatial point processes
- Variable(s) Selection
	- Brief introduction
	- Penalty functions
- Variable(s) Selection for Spatial Point Processes
	- Recent studies
	- Interests of this study
	- Main results
- **•** Simulation Study
- **Conclusion**

Spatial Point Processes

- Analysis of spatial point pattern data : modelling of random locations of point (or objects) observed on a continuous space
	- Example of tropical rainforest datasets : Location of Beishmiedia pendula trees (R Package spatstat), 1000×500 m in Barro Colorado island
	- 3604 locations of trees observed with two spatial covariates (the elevation and gradient of the elevation).

- One of interest : Modelling the intensity function.
- When the intensity function is assumed to be a parametric function of covariates : what is the appropriate procedure to select the "right covariates"?
- \bullet Let X be a spatial point process
- Suppose $\mathbf{x} = \{x_1, x_2, \ldots, x_m\}$ denotes a realization of a spatial point process X observed within a bounded region D
- \bullet If X is a Poisson point process, then the log-likehood function is $\ell(\beta) = \sum_{u \in X \cup D} log \rho(u; \beta) - \int_D \rho(u; \beta) du$
- $\rho(u; \beta)$ is the intensity function parameterized by a vector $\beta \in \mathbb{R}^p$
- Assume $\rho(u;\beta)=exp(\beta^\top z(u))$, where $z(u) = \{z_1(u), z_2(u), \cdots, z_n(u)\}\$ are spatial covariates
- β can be estimated by maximizing the log-likelihood $\ell(\beta)$
- By Campbell Theorems, it is ensured that the score function $\ell^{(1)}(\beta)$ is unbiased estimating equation

何 ▶ マヨ ▶ マヨ ▶

Variable(s) Selection

Variable(s) selection via maximizing the penalized likelihood :

$$
Q(\beta) = \ell(\beta) - n \sum_{j=1}^{p} p_{\lambda_j}(|\beta_j|)
$$

• Variable(s) selection for spatial point processes

$$
Q(\beta) = \ell(\beta) - |D| \sum_{j=1}^{p} p_{\lambda_j}(|\beta_j|)
$$

where :

- \bullet $\ell(\beta)$ is Poisson log-likelihood function
- $\ell(w,\beta) = \sum_{u\in X\cap D} w(u)log\rho(u;\beta) \int_D w(u)\rho(u;\beta)du$ (Guan and Shen, 2010)
- for any $\lambda_j>0$, we say that $p_{\lambda_j}(\theta)$ is a penalty function

母 ▶ ヨ ヨ ▶ ヨ ヨ

 \leftarrow

- b a <唐) <唐)

 $\,$

活

Variable(s) Selection for Spatial Point Processes

Recent studies :

S. Thurman, A. L and Zhu, J. (2014) Employed an adaptive Lasso penalty to select variables for Poisson point processes model

Thurman, A. L; Fu, R; Guan, Y; and Zhu, J. (2015)

Extended to clustered spatial point processes

Interests of this study :

- Extend the theoritical part of Thurman et al., (2015) by considering more general penalty functions
- **•** Propose a more accurate estimator of the asymptotic covariance matrix

A & Y B & Y B

Notations

- $\boldsymbol{\beta_0} = (\boldsymbol{\beta_{10}^T}, \boldsymbol{\beta_{20}^T})^{\text{T}}$ denote a p -dimensional vector of true coefficient values
- θ_{10} is the s-dimensional vector of nonzero coefficients and $\beta_{20} = 0$ is (p-s)-dimensional
- z_1 and z_2 denote the respective s and (p-s) vectors of covariates

We then define

$$
a_n = \max_{j} \{ p'_{\lambda_{n,j}}(|\beta_{j0}|) : \beta_{j0} \neq 0 \}
$$

\n
$$
b_n = \min_{j} \{ p'_{\lambda_{n,j}}(|\beta_{j0}|) : \beta_{j0} = 0 \}
$$

\n
$$
c_n = \max_{j} \{ p''_{\lambda_{n,j}}(|\beta_{j0}|) : \beta_{j0} \neq 0 \}
$$

\n
$$
\Pi = |D| diag(p''_{\lambda_{n,j}}(|\beta_{10}|), \cdots, p''_{\lambda_{n,j}}(|\beta_{s0}|))
$$

つへへ

Consider the following regularity conditions $(C.1)-(C.6)$, where o denotes the origin of \mathbb{R}^d :

- $(C.1)$ For every $n \geq 1, D_n = nA = \{na : a \in A\}$, where $A \subset \mathbb{R}^d$ is convex, compact, and contains o in its interior.
- $\big(\mathsf{C}.2\big)$ For any $w(u)$ and $z(u)$, $\sup\,|w(u)| < \infty$ and $\sup\, \|z(u)\| < \infty.$ $u \in \mathbb{D}d$ $u\in\mathbb{D}d$
- (C.3) There exists an integer $\delta \geq 1$ such that for $k = 1, \ldots, 2 + \delta$, the product density $\rho^{(k)}$ exists and $\rho^{(k)}\leq K$, where $K\leq\infty$ is a constant.
- (C.4) For the strong mixing coefficients (see, e.g., Politis, Paparoditis, and Romano (1998)), we assume that there exists some $t > d(2 + \delta)/\delta$ such that $\alpha_{2,\infty}(m) = O(m^{-t}).$
- (C.5) The second order product density $\rho^{(2)}$ exists, there exists a $p \times p$ positive definite matrix I_0 such that for all sufficiently large $n, |D_n|^{-1} \{B_n(w, \beta) + C_n(w, \beta)\} \ge I_0.$
- (C.6) For every nonnegative penalty function $p_{\lambda}(\theta)$, its second derivative $p_\lambda^{\prime\prime}(\theta)$ exists.

Inspired by : Coeurjolly and Møller (2014), Waagepetersen and Guan (2007), Karacsony (2006). イロン イ何ン イヨン イヨン

つくへ

Theorem 1

Assume the conditions (C.1)-(C.6) hold. If $a_n = O(|D_n|^{-1/2})$ and $c_n \to 0$, then there exists a local maximizer $\hat{\boldsymbol{\beta}}$ of $Q(\beta)$ such that $\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\| = O_p(|D_n|^{-1/2} + a_n).$

Lemma 1. Assume the conditions $(C.1)-(C.6)$ hold. If $a_n=O(|D_n|^{-1/2})$ and $|D_n|^{1/2}b_n\to\infty$ as $n\to\infty$, then with probability tending to 1, for any β_1 satisfying $\|\boldsymbol{\beta_1}-\boldsymbol{\beta_{10}}\|=O_p(|D_n|^{-1/2})$, for some constants C ,

$$
Q\begin{pmatrix}\boldsymbol{\beta_1}\\ \mathbf{0}\end{pmatrix}=\max_{\|\boldsymbol{\beta_2}\|\leq C|D_n|^{-1/2}}Q\begin{pmatrix}\boldsymbol{\beta_1}\\ \boldsymbol{\beta_2}\end{pmatrix}.
$$

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

Theorem 2

Assume the conditions (C.1)-(C.6) hold. If $a_n=o(|D_n|^{-1/2})$ and $|D_n|^{1/2} b_n \to \infty$ as $n \to \infty$, then with probability tending to 1 , the root- $|D_n|$ consistent local maximizers $\boldsymbol{\hat{\beta}} = (\boldsymbol{\hat{\beta}}^\text{T}_1$ $_{\mathbf{1}}^{\mathbf{T}},\mathbf{\hat{\beta}}_{\mathbf{2}}^{\mathbf{T}}$ $\frac{1}{2}$)^T in Theorem 1 satisfies : (i) Sparsity: $\hat{\beta_2}=0$ (ii) Asymptotic Normality: $|D_n|^{1/2} \Sigma_n(w, \beta_{10})^{-1/2} (\hat{\beta}_1 - \beta_{10}) \stackrel{d}{\to} N(0, I_{sxs})$

Main Results

where
$$
\Sigma_n(w, \beta_{10}) =
$$

\n
$$
|D_n| \{A_n(w, \beta_{10}) + \Pi\}^{-1} \{B_n(w, \beta_{10}) + C_n(w, \beta_{10})\} \{A_n(w, \beta_{10}) + \Pi\}^{-1}, \text{ and}
$$
\n
$$
A_n(w, \beta_{10}) = \int_{D_n} w(u) z_1(u) z_1(u)^T \rho(u; \beta_{10}) du
$$
\n
$$
B_n(w, \beta_{10}) = \int_{D_n} w(u)^2 z_1(u) z_1(u)^T \rho(u; \beta_{10}) du
$$
\n
$$
C_n(w, \beta_{10}) = \int_{D_n} w(u) z_1(u) \rho(u) \left[\int_{D_n} w(v) z_1(v)^T \rho(v) \{g(v-u) - 1\} dv \right] du
$$

Remark. The estimator of covariance matrix is also influenced by the second derivative of the selected penalty function. For family of ℓ_1 penalty, $\Pi = 0$. In contrary, Π exists when considering Ridge, SCAD and elastic net, and adaptive elastic net penalty.

母 トマミト マミト

 $2Q$

- Requiring $a_n = O(|D_n|^{-1/2})$ and $|D_n|^{1/2}b_n \to \infty$ as $n \to \infty$ simultaneously
- Requiring $a_n=O(|D_n|^{-1/2})$: to ensure that penalized log-likelihood estimation is root- $|D_n|$ consistent
- Requiring $|D_n|^{1/2}b_n\to\infty$ as $n\to\infty$: to ensure that all zero coefficients are exclude from model
- However, if $C_1a_n = C_2b_n$, those two assumptions cannot be satisfied simultaneously

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

メロメ メ御 メメ きょくきょう

重し 299

- Use real dataset *bei* (R package Spatstat)
- Use two covariates (elevation and gradient) centered and scaled
- Generate 18 artificial covariates, where each covariate was normally-distributed with mean zero and variance one
- Employ : ridge, lasso, scad, elastic net, adaptive lasso, and adaptive elastic net penalty
- 300 times simulation

Table: Selection percentage

 \Box

目

Έ

Simulation Study

$$
SSE_j = \sum_{k=1}^{300} (\hat{\beta}_{jk} - \beta_{j0k})^2
$$
, for $j = 1, \dots, 20$

17/19 Achmad Choiruddin [Features selection for spatial point process](#page-0-0)

Ε

Έ

Conclusion :

- **•** Employing ridge penalty, select all variables
- Employing lasso and elastic net, they perform variable selection and parameter estimation simultaneously but they seems to not have oracle property
- It looks that SCAD, adaptive lasso, and adaptive elastic net confirm the oracle property

Perspective :

- Design more complex simulation studies (exp. : consider high multicolinearity among the covariates)
- Apply to Gibbs point processes
- **Consider when the number of parameters increase**

CALCE IN THE

References I

- 暈
- Guan, Y and Shen Y. (2010). A weighted estimating equation approach for inhomogeneous spatial point process, Biometrika, 97, 867-880.
- F Møller, J. and Waagepetersen, R. P. (2004). Statistical inference and simulaion for spatial point processes, Chapman and Hall/crc.
- 螶 Thurman, A. L and Zhu, J. (2014). Variable selection for spatial Poisson point processes via a regularization method, Statistical Methodology, 17, 113-125.
- 晶

Thurman, A. L; Fu, R; Guan, Y; and Zhu, J. (2015). Regularized estimating equations for model selection of clustered spatial point process, forthcoming.

Yue, Y and Loh J. M. (2015). Variable selection for inhomogeneous spatial point process models, The Canadian Journal of Statistics, 43, 288-305.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶