
Geometric clustering of a random graph

Antoine Channarond, Jean-Jacques Daudin, Stéphane Robin
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Introduction: from interaction networks to random graphs Interaction networks

Interaction networks

Figure: Friendship network (Source: griffsgraphs.com)

Channarond, Daudin, Robin Geometric clustering of a random graph 3/29



Introduction: from interaction networks to random graphs Random graph models

Random graphs

Graph:

n nodes (individuals)

edges (interactions)

Xij = 1 if nodes i and j interact.
Xij = 0 if not.

undirected edges: Xij = Xji

X = (Xij) symmetric adjacency matrix.

Erdős-Rényi model:

Xij i.i.d. ∼ B(p)

•

••

•

• •

n = 6

; p = 0.5
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Introduction: from interaction networks to random graphs Random graph models

Paradigm: interactions induced by (unobserved) closeness

Embedding of the individuals in a metric space; here the euclidean space R2

Probability of connection decreasing with respect to the euclidean distance

Positions/distances are not observed.
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Introduction: from interaction networks to random graphs Random graph models

Latent Position Models

Latent Positions Latent space S = Rd

Zi : random position of node i
(Zi ) i.i.d. ∼ f (unknown density)

Observed Graph (Xij) independent conditionally on Z and:

Xij |Zi ,Zj ∼ B (kn (‖Zi − Zj‖))

with kn : R+ → [0, 1] decreasing w.r.t. norm ‖· ‖.

Properties:

Homophily

Transitivity
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Discussion about clustering

Outline

1 Introduction: from interaction networks to random graphs

2 Discussion about clustering

3 Fast count of the number of clusters in a non-parametric clustering setting
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Discussion about clustering Main questions

Two ideas of clustering

Latent positions (Zi )i∈[n] i.i.d. ∼ f

Parametric clustering

Gaussian Mixture with Q components: f =
Q∑

q=1

πqNd(µq, σ
2
qId).

Clusters defined by components of the mixture.

Non-parametric clustering

f just assumed to be nice (regular).

Clusters defined using level sets of f :

Figure: Level lines of a gaussian mixture
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Discussion about clustering Main questions

Statistical questions

How to get clustering information on the latent variables Z and their distribution,
from the observed graph X only ?

Test Is the distribution of Z clustered ?

Model choice How many clusters are there ?

Classification Which nodes are in which cluster ?

Estimation What are the characteristics of each cluster ?
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Discussion about clustering Parametric setting

Latent Position Cluster Model (Handcock et al, 2007)

Positions Latent space Rd . Parametric Gaussian mixture:

(Zi )i∈[n] i.i.d. ∼ f =
Q∑

q=1

πqNd(µq, σ
2
qId)

Graph Logistic regression for the connection probability:

log-odds(Xij = 1 | Zi ,Zj) = −β‖Zi − Zj‖ (β > 0)

Statistics Clustering structure defined by mixture components
Unsupervised classification of the nodes:

1 ML-Estimation of the distances (‖Zi − Zj‖)i,j∈[n],
2 Multidimensional scaling: estimating (Zi )i∈[n] up to isometries,
3 EM-algorithm: estimating mixture parameters αq, µq, σq and

constructing a classification rule.

(Estimation of the mixture parameters)
Model selection for Q.
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Discussion about clustering Non-parametric setting

From parametric to non-parametric setting
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Discussion about clustering Non-parametric setting

Definition of clustering in a non-parametric setting

Definition

Let t > 0 and L(t) = {f ≥ t} be the t-level set of a function f . A connected
component of L(t) is called t-cluster (Hartigan, 1975). Q(t) denotes the number
of t-clusters.

Clusters: connected regions of “high”
density, i.e. higher than some level t

Estimation of Q(t), number of such
regions

Figure: Level lines of a gaussian mixture
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Discussion about clustering Non-parametric setting
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Fast count of the number of clusters in a non-parametric clustering setting

Outline

1 Introduction: from interaction networks to random graphs

2 Discussion about clustering

3 Fast count of the number of clusters in a non-parametric clustering setting
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Fast count of the number of clusters in a non-parametric clustering setting Model

Non-parametric latent position model

Latent Positions Z = (Zi ) i.i.d. ∼ f non-parametric density

Observed Graph (Xij) independent conditionally on Z and:

Xij |Zi ,Zj ∼ B
(
k

(
Zi − Zj

hn

))
with k : Rd → [0, 1] isotropic and decreasing w.r.t. ‖· ‖, with
support B(0, 1), and hn > 0 (connection radius).

Graph properties:

Homophily

Transitivity

Sparsity: ζn =
2

n(n − 1)

∑
1≤i,j≤n

Xij

E(ζn) ∼hn→0 h
d
n

∫
Rd

f 2(z)dz
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Fast count of the number of clusters in a non-parametric clustering setting Algorithm

Counting the t-clusters with a covering graph

Find a graph X̂ covering L(t) to make a link between clusters of L(t) and

connected components of the graph X̂ : Biau, Cadre, Pelletier (2007).

Extract X̂ from X by removing low degree nodes.

nhdn -normalized degrees : T hn
i =

Di

nhdn

Algorithm

1 Compute nhdn -normalized
degrees

2 Find the set Ĵn(t) of nodes i
such that T hn

i ≥ t

3 Remove other nodes from X

4 Count the number Q̂n(t) of
connected components of the
graph X̂ = XĴn(t)

with DFS

(linear)

Figure: —: t = 0.06 —: t = 0.05
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Fast count of the number of clusters in a non-parametric clustering setting Algorithm

Biau, Cadre, Pelletier (2007)

Model X is deterministic w.r.t. Z : k(x) = 1‖x‖≤1

Context not latent, positions Z are observed

Estimator of the density at the node positions f̂n(Zi ), with a kernel estimator:

f̂n(z) =
1

nhdn

n∑
i=1

K

(
z − Zi

hn

)
where K is a kernel function

Generalization

Model k is a kernel function with support in the unit ball

Context latent, positions Z are not observed

Estimator of the density at the node positions, nhdn -normalized degrees of X :

T hn
i =

1

nhdn

n∑
i=1

Xij

Proposition: E
(
T hn
i |Z

)
= f̂n(Zi ) where f̂n(z) =

1

nhdn

n∑
j=1

k

(
z − Zj

hn

)
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Fast count of the number of clusters in a non-parametric clustering setting Algorithm

Hypotheses and result (article to be submitted)

f uniformly continuous and of class C1 on the neighborhood of {f = t}.
df 6= 0 on {f = t}.

hn small enough and
nhdn
ln n
−−−→
n→∞

+∞

Theorem

Non-underestimation Q̂n(t)=number of connected components of XĴn(t)
. For

some εn, hn small enough:

P
(
Q̂n(t) < Q(t)

)
≤ 3n exp

(
−K0ε

2
nnh

d
n

)
Non-overestimation Jn(t) set of the nodes i such that f (Zi ) ≥ t. Q̃n(t) is the

number of connected components of XJn(t). For hn small enough:

P
(
Q̃n(t) > Q(t)

)
≤ K1n exp(−K2nh

d
n )
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Fast count of the number of clusters in a non-parametric clustering setting Sketch of proof

Non-underestimation of Q(t)

On the event

{
sup
i∈[n]
|T hn

i − f (Zi )| ≤ εn

}
with εn > 0

T hn
i ≥ t ⇒ Zi ∈ L(t − εn)

δt = distance between two t-clusters.

hn < δt−εn

No connection between distinct clusters.

L(t)

L(t)

Concentration inequality (Bernstein):

P

(
sup
i∈[n]
|T hn

i − f (Zi )| > εn | Zi

)
≤ 2n exp(−K3ε

2
nnh

d
n )
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Non-overestimation of Q(t)

Connectivity of the subgraph induced by each cluster:

Cover of each cluster with hypercubes of side hn/2

Local connectivity:

In hypercubes of side hn, any two nodes can be connected
Comparison to Erdős-Rényi. Let C be one hypercube of the cover:

P(XC is connected) ≥ P(ER is connected)

From local to global connectivity:

Filling of the hypercubes

• •
•
• •

•
• •

••
•
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Classification

Two kinds of error controlled in the
theorems :

support error (thresholding error)

classification error
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Simulation design

Ri ∼ 0.15N (0, 1) + 0.85N (5, 1)

θi ∼ U([0, 2π])

k Epanechnikov kernel

hn = h = 1

t = 0.005

300 graphs drawn
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Figure: Isolines of the density
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Illustration of the consistency of Q̂n(t)
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Figure: —: Estimator Q̂n(t) as a function of n (averaged over 300 graphs); —: Objective
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Under- and overestimation frequency
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—: Underestimation frequency of

Q̂n(t) as a function of n
—: Overestimation frequency of Q̂n(t)
as a function of n.

—: Overestimation frequency of Q̃n(t).
- - -: Theoretical bound.
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Clustering profile: a practical implementation

Invariance under similarity transformations of the latent space

If R is a similarity transformation of Rd with scale factor λ:

Zi −→ Z ′i = R(Zi )

hn −→ λhn

P(Xij = 1 | Z ′i ,Z ′j ) = k

(
‖R(Zi )− R(Zj)‖

λhn

)
= k

(
‖Zi − Zj‖

hn

)

Practical algorithm

Compute n-normalized degrees: Ti = Di

n . (threshold: u = thdn )

Sort (Ti ) without ex-aequo values −→ (T(k))k∈[m]

Run the algorithm: remove nodes i such that Ti ≥ u = T(k) for each k

Plot Q̂n(u) as a function of u.
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Clustering profile: simulation
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Figure: Clustering profiles (Q̂n(u) as a function of u) of 30 graphs with h = 1, n = 5000
and n = 10000
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Conclusion

Conclusions and perspectives

Conclusions

No likelihood-based strategy

Behaviour of the degree distribution of the graph model

Fast algorithm, able to process large graphs

Theoretical guarantees: consistency proof

Perspectives

Application to real-world networks

Complete consistency of Q̂n(t)

Statistical properties of clustering profiles

Robustness: small components filtering and theoretical arguments

First step to test “ latent distribution clustered” vs. “not clustered”
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Conclusion

•

•• •

HANKS !
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