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Why face analysis?

• Identity recognition

• Morphing/VFX

• Aging simulation

• Fatigue monitoring (road safety)

• Behavior analysis (reactions, emotions…)

• Virtual mirror (online shopping: makeup, glasses…)

• Visio-conference, videos games…
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A challenging task…

Pose

Illumination 

Expression

Resolution



9 8/27/2015

Summary

• Introduction

• Early works

• A deformable face model

• Model fitting and data representation

• Conclusion

Statistical models for face analysis



Matching a reference image (template)

Object tracking associates image objects in consecutive video frames
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Matching a reference image (template)

Image alignment associates target objects from a reference
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Early works: object tracking/image alignment
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Both problems are traditionally solved using optical flow estimation

• Common assumption: flow is constant within the image object I(x,y)

• Example: least mean squares method (Lucas-Kanade)
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Early works: object tracking/image alignment
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Lucas-Kanade tracker
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A constant flow within the image object?
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Matthews-Baker ICIA tracker
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Early works: object tracking/image alignment
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A constant flow within the image object?

Rigid objects : 3D-to-2D projections

Non-rigid objects : a deformable model is needed!
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From rigid to deformable models

We want to enhance a previously static alignment model (i.e. template image) to

take into account changes of identity, expression or luminosity. In computer

vision, these changes are seen as local variations of shape and/or texture
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A deformable face model

8/27/2015



Active Appearance Models (Cootes et al.)

are able to jointly synthesize an image (texture) and the shape it relates to. An

AAM model is built through principal component analysis (PCA) of aligned texture

and shape data from a (manually annotated) image database
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Active Appearance Models (Cootes et al.)

are able to jointly synthesize an image (texture) and the shape it relates to. An

AAM model is built through principal component analysis (PCA) of aligned texture

and shape data from a (manually annotated) image database
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Face synthesis from an AAM model
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Fitting a model to new data

• Original AAM (Cootes) : generating shape samples from the database

with random noise and learning a regression model which minimizes the

error between observed and synthesized textures

• Gradient-descent method (Matthews-Baker) : a least mean squares-

based approach inspired by Lucas-Kanade, where AAM parameters are

estimated together with global transform parameters
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Fitting a model to new data
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Model fitting and data representation
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Further data analysis from estimated AAM parameters

Motion capture and animation
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Model fitting and data representation
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Further data analysis from estimated AAM parameters

Emotion analysis (e.g. online learning)
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Conclusion

• A statistical face model learned from observed data

• Compacts relevant information into just a few parameters

• Applications in the field of information retrieval

• Current work : polynomial representation of texture model 

and applications in animation and e-learning

• Next : force semantic information into PCA analysis i.e. 

individual muscle activity parameters (local constraints)

Statistical models for face analysis
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Thank you ! 

Applications in alignment, tracking and landmarking


