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Introduction

Why face analysis?

» ldentity recognition

* Morphing/VFX

« Aging simulation

« Fatigue monitoring (road safety)

» Behavior analysis (reactions, emotions...)

« Virtual mirror (online shopping: makeup, glasses...)
» Visio-conference, videos games...
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Introduction

A challenging task...
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Early works: object tracking/image alignment

Matching a reference image (template)

Object tracking associates image objects in consecutive video frames

(X', y, t+ot)=1(x,y,t) (X,y)eQ
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Early works: object tracking/image alignment

Matching a reference image (template)

Random
Crop

| subject i 1mage set X;

Image alighment associates target objects from a reference

(X, y)=T(xy) (xy)eQ
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Early works: object tracking/image alignment

Both problems are traditionally solved using optical flow estimation

« Common assumption: flow is constant within the image object I(x,y)

VX
(X, y,t)=1(x+Vx,y+Vy,t+4t) v :{V }
y

= —1.(X,y,t) = VI' (X, y,t)v

« Example: least mean squares method (Lucas-Kanade)

)= YLy -vIToytef 250

(X,y)eQ oV
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Early works: object tracking/image alignment

Lucas-Kanade tracker

it=2, error=0.173

100

200
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Early works: object tracking/image alighment

A constant flow within the image object?

frame 1 frame 2 frame 3
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Early works: object tracking/image alighment

A constant flow within the image object?

object

Virtual objects
(3D models)

Viewport
(Computer screen)

View frustum

object point

feature point

camera
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Field of view
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Early works: object tracking/image alignment

Matthews-Baker ICIA tracker

it=2, error=0.219
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Early works: object tracking/image alignment

A constant flow within the image object?

Rigid objects : 3D-to-2D projections
Non-rigid objects : a deformable model is needed!
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A deformable face model

From rigid to deformable models

We want to enhance a previously static alignment model (i.e. template image) to

take into account changes of identity, expression or luminosity. In computer
vision, these changes are seen as local variations of shape and/or texture

Expression
Non-rigid

Taller Older

Motion,pose,occlusions,... Emotions,speech
, yons

Gender,hair,age,... More

More
Female

Younger Shorter
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A deformable face model

Active Appearance Models (Cootes et al.)

are able to jointly synthesize an image (texture) and the shape it relates to. An
AAM model is built through principal component analysis (PCA) of aligned texture
and shape data from a (manually annotated) image database
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A deformable face model

Face synthesis from an AAM model
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Model fitting and data representation

Fitting a model to new data

« Original AAM (Cootes) : generating shape samples from the database
with random noise and learning a regression model which minimizes the
error between observed and synthesized textures

« Gradient-descent method (Matthews-Baker) : a least mean squares-
based approach inspired by Lucas-Kanade, where AAM parameters are
estimated together with global transform parameters

S(¥.p. @)= > | A Y W)= 1| WX yip, @)

(x,y)eQ

~
template warp

(‘I’, (I)) : AAM parameters P : global (e.g. affine) transform parameters

W : image warping function, computed from all geometry-related parameters

25 8/27/2015



Model fitting and data representation

Fitting a model to new data
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Model fitting and data representation

Further data analysis from estimated AAM parameters
Motion capture and animation
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Model fitting and data representation

Further data analysis from estimated AAM parameters
Emotion analysis (e.g. online learning)

Stress 1 20%
cullté : 40%
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Statistical models for face analysis

Conclusion

A statistical face model learned from observed data
Compacts relevant information into just a few parameters
Applications in the field of information retrieval

Current work : polynomial representation of texture model
and applications in animation and e-learning

Next : force semantic information into PCA analysis i.e.
individual muscle activity parameters (local constraints)
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Applications in alignment, tracking and landmarking

Thank you ! ©
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