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Stationary Poisson Hyperplane Mosaic in R?

n Poisson Hyperplane Process of intensity measure O
¢ directional distribution (even measure on $971)

O(-) = /Sdl /OOO 1{H(u,t) € -} dt p(du)
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typical cell
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IP(/Z has n facets)

typical cell

23 3-topes 23/67 = 0.34... ~ P(Z has 3 facets)
27 4-topes 27/67 = 0.40... ~ P(Z has 4 facets)
11 5-topes 11/67 = 0.16... ~ P(Z has 5 facets)
6 6-topes 6/67 =0.09... ~P(Z has 6 facets)
0/67 =0 ~IP(Z has 7 or more facets)




IP(/Z has n facets)

d = 2 , isotropy

typical cell
P(Z has 3 facets) =2 — 72/6 = 0.36...  [Miles 1964]
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, Isotropy

typical cell
P(Z has 3 facets) =2 — 72/6 = 0.36...  [Miles 1964]

P(Z has 4 facets) = m2log2 — & — L% — £((3) = 0.38...
[Tanner 1983]




IP(/Z has n facets) P —

typical cell
P(Z has 3 facets) =2 — 72/6 = 0.36...  [Miles 1964]

P(Z has 4 facets) = m2log2 — & — L% — £((3) = 0.38...
[Tanner 1983]

Approximation by Monte Carlo simulation for n =5, ..., 12
[Crain and Miles 1976] [George 1987] [Michel and Paroux 2007]
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In a specific case it is already known:

Theorem [Calka and Hilhorst 2008]

In the 2-dimensional isotropic case we have that
P(Z has n facets) ~ aB8"n~"2"n"3/2 when n — o

with o = 2/(37°/2) and 8 = w2e?
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typical cell

In a specific case it is already known:

Theorem [Calka and Hilhorst 2008]

In the 2-dimensional isotropic case we have that
P(Z has n facets) ~ aB8"n~"2"n"3/2 when n — o

with o = 2/(37°/2) and 8 = w2e?

We generalize this to any dimension and nice directional distribution:

Main Theorem

There exist constants ¢; and ¢y depending on d and ¢ such that for n big
enough we have

¢'n =2/ @=1) « P(Z has n facets) < ¢in =27/ (4=
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P(Z has n facets) =y 'E X (P, 10.1])

b
number of n-topes of X with center in [0, 1]¢
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typical cell
P(Z has n facets) =y 'E X (P, 10.1])

_J/
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b
number of n-topes of X with center in [0, 1]¢

vP(Z has n facets) = /73 1 (c(P) €[0,1]%) exp (=@ (P)) ©,,(dP)

©®,, measure on P,

On(t-+x) =t"0,(-)

d:P — (0,00)
P(nN P =0) = exp(—(P))
O(tP + ) = tO(P)




Complementary Theorem

Complementary Theorem (Miles 1971)

If we condition the typical cell Z to have n facets, then
o $(Z) and s(Z) are independent
e ®(Z) is Gamma distributed with parameter n — d

[Mgller and Zuyev 1996]

[Mgller 1999]

[Cowan 2006]

[Baumstark and Last 2009]



P(Z has n facets) = simple n-fold integral

P(Z has n facets) X(Pn.j0.114)
/ / / et 1dcdt@1 (dP)
Pr,e 7 (0,00) 10,117 center X a shape
Size
(n—d~1)10} (P},

—esgenf. € [0, 1)1 (2(P) < 1)1 (P € P,)) oas,)--o()
H™ E{:I:l}”



Lower Bound

e — 1),IP’(Z has n facets)

/ 1 (c(P) €[0,1])1(®(P) < 1)L (P € Pp) ©(dH,)--6(dHy)
H" eE{:l:l}”

> n/ / (Hy € 51)---1(H, € S,) ©(dH,)---6(dH,)

— n'@ Sl)
> n' (Cn (d 1)/(d+1))

Ncnn—Zn/(d—l)

Stirling

Theorem: Lower bound

There exists a constant c; depending
on d and ¢ such that for n big enough
we have

P(Z has n facets) > ¢f'n—27/(d=1)




roximation by Deleting One Facet

.
~~a s
P~
’ .
’
-,
’
-,
~
~
~
~
~
~
~
~



roximation by Deleting One Facet




roximation by Deleting One Facet




roximation by Deleting One Facet




Approximation by Deleting One Facet

There exists a constant ¢g such that:

Theorem

Let P = N;_,H, be a simple polytope with n big enough.

There exists a subset J C [n] of cardinality at least n/4 such that for any j € J
we have

d (P, Piny—;) < con 2" (P)

and

@ (Pinj—;) < exp (con ™' 72/=D) o(P).




Upper Bound

y(n_"zl!_D!IP’(Z has n facets)
[ S (P) € 0N (@(P) < V(P € P,) oram-oam

ec{x1}n
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Upper Bound

|

P(Z has n facets)

(n r?l 1)'

€ [0, ] 1 (®(P) < 1)1 (P € Pn)
H" E{:I:l}”

(dH (P, Ppy1)) < con™ /(=)
1 (<I> (P[n_l]) < exp (con_l_z/(d_l))) ©(dH,)---O(dH;)



Upper Bound

I __—P(Z has n facets)

(n Zl 1)'
c [0, 1 (2(P) < )1 (P € Py)

A

H" E{il}n

(dH (P, Ppy1)) < con™ /(=)
1 (<I> (P[n_l]) < exp (con_l_z/(d_l))) ©(dH,)---©(dH)

</ n—1]) € [O,Q]d)]l (cI) (P_1)) < exp (Con—l—Q/(d—l)))

1 E{il}n 1

]I(Pn 1 Gpn 1)

(/ > 1 dH (P, Py_1)) < con™ /14~ 1>) O(dH, )>@(dH1) O(dH,)
H e,==+1



Upper Bound

V(n—?zl—l P(Z has n facets)

_ /an S 1 (¢(Pp_y) €[0,2)9)1 (‘1’ (Pin—1]) < exp (CO”_1_2/(d_1)))

_166{:|:1}n_1

L (Pp-1) € Pn1)

( Z 1 (dH (Pv P[n—l]) < COn_2/(d_1)) @(dHn)>@(dHn1)'”@(dH1)



Upper Bound

y(n_"zl!_D,IP’(Z has n facets)

< .. 1 (C(P[n 17) € [0,2] )]1 (CP (P[n_1]) < exp (Con—1—2/(d—1)))

Hn_lee{:l:l}n_l

L (Pp-1) € Pn1)

( Z 1 (dH (Pv P[n—l]) < COn_2/(d_1)) @(dHn)>@(dHn1)"'@(dH1)
H

en,=+11

eXp Con—l 2/(d— 1))” - 1 n—2/(d=1)

/ [ E 1eReb 1955 () < 18 Ry € P

O(dH,_1)--O(dH1)



Upper Bound

y(n_"zl!_D,IP’(Z has n facets)

1 (c(P[n_u) e |0, Q]d)]l ((I) (P[n—l]) < exp (Con_1_2/(d_1)))

- / y
Hn_leé{:l:l}n—l
1

Z 1 (dH (Pv P[n—l]) < Con_2/(d_1)) @(dHn)>@(dH”1)m@(dH1)
H e,=+1

n—d—1
eXp Con—l 2/(d— 1)) con—2/(@=1)
/ / B (¢(Pr—1)) €[0,2]H 1 (@ (Py,—q7) < 1)L (Pp_1] € Prn-1)
e{ﬂ}n ! ©(dH,_1)--©(dH1)
n—d—1
<2%exp ( —1-2/(d- 1)) con 2/(d=D -1 P(7Z has n — 1 facets)

(n—d—2)!



Upper Bound
v —2—-=P(Z has n facets)

1 (c(P[n_1]) e [0, Q]d)]l ((I) (P[n—l]) < exp (Con_l_Z/(d_l)))

- / y
Hn_leé{:l:l}"—l
1

Z 1 (dH (Pv P[n—l]) < Con_Q/(d_l)) @(dHn)>@(dHn1)m@(dH1)
H e,=+1

eXp Con—1 2/(d— 1))”_d_160n—2/(d—1)

/ / (¢(Pr_qy) €0, 1]d)]1 (@ (Pr-1)) < 1)L (Pp_1) € Pp-1)
n- 1€{i1}n 1

O(dHn_1)---O(dH:)
n—d—1
<2%exp ( —1-2/(d- 1)) con 2/(d=D -1 P(7Z has n — 1 facets)

(n—d—2)!

Theorem: Upper bound

There exists a constant c2 depending on d and ¢ such that for n big
enough we have P(Z has n facets) < cin—2"/(d=1)
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