

Stationary Poisson Hyperplane Mosaic in \mathbb{R}^d

 η Poisson Hyperplane Process of **intensity measure** Θ φ **directional distribution** (even measure on \mathbb{S}^{d-1})

$$\Theta(\cdot) = \int_{\mathbb{S}^{d-1}} \int_0^\infty \mathbb{1}\{H(\boldsymbol{u},t) \in \cdot\} \, \mathrm{d}t \, \varphi(\mathrm{d}\boldsymbol{u})$$

23 3-topes

- 23 3-topes
- 27 4-topes

- 23 3-topes
- 27 4-topes
- 11 5-topes

- 23 3-topes
- 27 4-topes
- 11 5-topes
- 6 6-topes

- 23 3-topes
- 27 4-topes
- 11 5-topes
- 6 6-topes
- 67 cells with center in the window

- 23 3-topes $23/67 = 0.34... \simeq \mathbb{P}(Z \text{ has } 3 \text{ facets})$
- 27 4-topes $27/67 = 0.40... \simeq \mathbb{P}(Z \text{ has } 4 \text{ facets})$
- 11 5-topes $11/67 = 0.16... \simeq \mathbb{P}(Z \text{ has } 5 \text{ facets})$
- 6 6-topes $6/67 = 0.09... \simeq \mathbb{P}(Z \text{ has } 6 \text{ facets})$
- 67 $\,$ cells with center in the window $\,$

- 23 3-topes $23/67 = 0.34... \simeq \mathbb{P}(Z \text{ has } 3 \text{ facets})$
- 27 4-topes $27/67 = 0.40... \simeq \mathbb{P}(Z \text{ has } 4 \text{ facets})$
- 11 5-topes $11/67 = 0.16... \simeq \mathbb{P}(Z \text{ has } 5 \text{ facets})$
- 6 6-topes $6/67 = 0.09... \simeq \mathbb{P}(Z \text{ has } 6 \text{ facets})$

 $0/67 = 0 \simeq \mathbb{P}(Z \text{ has } 7 \text{ or more facets})$

$\mathbb{P}(Z \text{ has } n \text{ facets}) \qquad d = 2 \text{ , isotropy}$ typical cell $\mathbb{P}(Z \text{ has } 3 \text{ facets}) = 2 - \pi^2/6 = 0.36... \quad [\text{Miles 1964}]$

$\mathbb{P}(Z \text{ has } n \text{ facets}) \qquad d = 2 \text{ , isotropy}$ $\mathbb{P}(Z \text{ has } 3 \text{ facets}) = 2 - \pi^2/6 = 0.36... \quad [\text{Miles 1964}]$ $\mathbb{P}(Z \text{ has } 4 \text{ facets}) = \pi^2 \log 2 - \frac{1}{3} - \frac{7}{36}\pi^2 - \frac{7}{2}\zeta(3) = 0.38...$ [Tanner 1983]

$$\mathbb{P}(Z \text{ has } n \text{ facets}) \qquad d = 2 \text{ , isotropy}$$

$$\mathbb{P}(Z \text{ has } 3 \text{ facets}) = 2 - \pi^2/6 = 0.36... \quad [\text{Miles 1964}]$$

$$\mathbb{P}(Z \text{ has } 4 \text{ facets}) = \pi^2 \log 2 - \frac{1}{3} - \frac{7}{36}\pi^2 - \frac{7}{2}\zeta(3) = 0.38...$$

$$[\text{Tanner 1983}]$$

Approximation by Monte Carlo simulation for n = 5, ..., 12[Crain and Miles 1976] [George 1987] [Michel and Paroux 2007]

Goal

$$\mathbb{P}(Z \text{ has } n \text{ facets})? \text{ when } n \to \infty$$

In a specific case it is already known:

Theorem [Calka and Hilhorst 2008]

In the 2-dimensional isotropic case we have that

 $\mathbb{P}(Z \text{ has } n \text{ facets}) \sim \alpha \beta^n n^{-2n} n^{-3/2}$ when $n \to \infty$

with $\alpha = 2/(3\pi^{5/2})$ and $\beta = \pi^2 e^2$

Goal

$$\mathbb{P}(Z \text{ has } n \text{ facets})? \text{ when } n \to \infty$$

In a specific case it is already known:

Theorem [Calka and Hilhorst 2008]

In the 2-dimensional isotropic case we have that

 $\mathbb{P}(Z \text{ has } n \text{ facets}) \sim \alpha \beta^n n^{-2n} n^{-3/2} \text{ when } n \to \infty$

with $\alpha=2/(3\pi^{5/2})$ and $\beta=\pi^2 e^2$

We generalize this to any dimension and nice directional distribution:

Main Theorem

There exist constants c_1 and c_2 depending on d and φ such that for n big enough we have

 $c_1^n n^{-2n/(d-1)} < \mathbb{P}(Z \text{ has } n \text{ facets}) < c_2^n n^{-2n/(d-1)}$

$\mathbb{P}(Z \text{ has } n \text{ facets})$ $\mathbb{P}(Z \text{ has } n \text{ facets}) = \gamma^{-1} \mathbb{E} X(\mathcal{P}_{n,[0,1]^d})$

number of *n*-topes of X with center in $[0,1]^d$

$$\mathbb{P}(Z \text{ has } n \text{ facets})$$

$$\mathbb{P}(Z \text{ has } n \text{ facets}) = \gamma^{-1} \mathbb{E} \underbrace{X(\mathcal{P}_{n,[0,1]^d})}_{\text{number of } n\text{-topes of } X \text{ with center in } [0,1]^d}$$

$$\gamma \mathbb{P}(Z \text{ has } n \text{ facets}) = \int_{\mathcal{P}_n} \mathbf{1}\left(\mathfrak{c}(P) \in [0,1]^d\right) \exp\left(-\Phi\left(P\right)\right) \Theta_n(\mathrm{d}P)$$

 $\begin{aligned} \Theta_n \text{ measure on } \mathcal{P}_n \\ \Theta_n(t \cdot + x) &= t^n \Theta_n(\cdot) \end{aligned}$

$$\Phi: \mathcal{P} \to (0, \infty)$$
$$\mathbb{P}(\eta \cap P = \emptyset) = \exp(-\Phi(P))$$
$$\Phi(tP + x) = t\Phi(P)$$

Complementary Theorem

Complementary Theorem (Miles 1971)

If we condition the typical cell Z to have n facets, then

- $\Phi(Z)$ and $\mathfrak{s}(Z)$ are independent
- $\Phi(Z)$ is Gamma distributed with parameter n-d

[Møller and Zuyev 1996]

[Møller 1999]

[Cowan 2006]

[Baumstark and Last 2009]

$\mathbb{P}(Z \text{ has } n \text{ facets}) = \text{simple } n \text{-fold integral}$

$$= (n - d - 1)! \Theta_{n,\mathfrak{c}}^{1}(\mathcal{P}_{n,\mathfrak{c}}^{1})$$
$$= \underbrace{(n - d - 1)!}_{n!} \int \cdots \int_{\mathcal{H}^{n}} \sum_{\epsilon \in \{\pm 1\}^{n}} (\mathfrak{c}(P) \in [0, 1]^{d}) \mathbb{1} (\Phi(P) < 1) \mathbb{1} (P \in \mathcal{P}_{n}) \Theta(\mathrm{d}H_{n}) \cdots \Theta(\mathrm{d}H_{1})$$

Lower Bound

There exists a constant c_0 such that:

Theorem
Let
$$P = \bigcap_{i=1}^{n} H_i^-$$
 be a simple polytope with n big enough.
There exists a subset $J \subset [n]$ of cardinality at least $n/4$ such that for any $j \in J$
we have
 $d_H \left(P, P_{[n]-j}\right) < c_0 n^{-2/(d-1)} \Phi \left(P\right)$
and
 $\Phi \left(P_{[n]-j}\right) < \exp \left(c_0 n^{-1-2/(d-1)}\right) \Phi(P).$

 $\gamma \frac{n!}{(n-d-1)!} \mathbb{P}(Z \text{ has } n \text{ facets})$ = $\int \cdots \int_{\mathcal{H}^n} \sum_{\epsilon \in \{\pm 1\}^n} \mathbb{1} \left(\mathfrak{c}(P) \in [0,1]^d \right) \mathbb{1} \left(\Phi(P) < 1 \right) \mathbb{1} \left(P \in \mathcal{P}_n \right) \Theta(\mathrm{d}H_n) \cdots \Theta(\mathrm{d}H_1)$

$$\gamma \frac{n!}{(n-d-1)!} \mathbb{P}(Z \text{ has } n \text{ facets})$$

$$< \int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \prod \left(\mathfrak{c}(P_{[n-1]}) \in [0,2]^d \right) \mathbb{1} \left(\Phi \left(P_{[n-1]} \right) < \exp \left(c_0 n^{-1-2/(d-1)} \right) \right)$$

$$\mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1} \right)$$

$$\left(\int_{\mathcal{H}} \sum_{\epsilon_n = \pm 1} \mathbb{1} \left(d_H \left(P, P_{[n-1]} \right) < c_0 n^{-2/(d-1)} \right) \Theta(\mathrm{d}H_n) \right) \Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1)$$

$$\begin{split} &\gamma \frac{n!}{(n-d-1)!} \mathbb{P}(Z \text{ has } n \text{ facets}) \\ < &\int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \sum_{i=1}^{n-1} (\mathfrak{c}(P_{[n-1]}) \in [0,2]^d) \mathbb{1} \left(\Phi\left(P_{[n-1]}\right) < \exp\left(c_0 n^{-1-2/(d-1)}\right) \right) \\ &\mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1} \right) \\ &\left(\int_{\mathcal{H}} \sum_{\epsilon_n = \pm 1} \mathbb{1} \left(d_H\left(P, P_{[n-1]}\right) < c_0 n^{-2/(d-1)} \right) \Theta(\mathrm{d}H_n) \right) \Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1) \\ < &2^d \exp\left(c_0 n^{-1-2/(d-1)}\right)^{n-d-1} c_0 n^{-2/(d-1)} \\ &\int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \sum_{i=1}^{n-1} \mathbb{1} \left(\mathfrak{c}(P_{[n-1]}) \in [0,1]^d \right) \mathbb{1} \left(\Phi\left(P_{[n-1]}\right) < 1 \right) \mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1}\right) \\ & \Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1) \end{split}$$

$$\begin{split} &\gamma \frac{n!}{(n-d-1)!} \mathbb{P}(Z \text{ has } n \text{ facets}) \\ < &\int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \mathbb{1} \left(\mathfrak{c}(P_{[n-1]}) \in [0,2]^d \right) \mathbb{1} \left(\Phi \left(P_{[n-1]} \right) < \exp \left(c_0 n^{-1-2/(d-1)} \right) \right) \\ &\mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1} \right) \\ &\left(\int_{\mathcal{H}} \sum_{\epsilon_n = \pm 1} \mathbb{1} \left(d_H \left(P, P_{[n-1]} \right) < c_0 n^{-2/(d-1)} \right) \Theta(\mathrm{d}H_n) \right) \Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1) \\ < 2^d \exp \left(c_0 n^{-1-2/(d-1)} \right)^{n-d-1} c_0 n^{-2/(d-1)} \\ &\int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \mathbb{1} \left(\mathfrak{c}(P_{[n-1]}) \in [0,1]^d \right) \mathbb{1} \left(\Phi \left(P_{[n-1]} \right) < 1 \right) \mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1} \right) \\ &\Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1) \\ < 2^d \exp \left(c_0 n^{-1-2/(d-1)} \right)^{n-d-1} c_0 n^{-2/(d-1)} \gamma \frac{(n-1)!}{(n-d-2)!} \mathbb{P}(Z \text{ has } n-1 \text{ facets}) \end{split}$$

$$\begin{split} &\gamma \frac{n!}{(n-d-1)!} \mathbb{P}(Z \text{ has } n \text{ facets}) \\ < &\int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \mathbb{1} \left(\mathfrak{c}(P_{[n-1]}) \in [0,2]^d \right) \mathbb{1} \left(\Phi \left(P_{[n-1]} \right) < \exp \left(c_0 n^{-1-2/(d-1)} \right) \right) \\ &\mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1} \right) \\ &\left(\int_{\mathcal{H}} \sum_{c_n = \pm 1} \mathbb{1} \left(d_H \left(P, P_{[n-1]} \right) < c_0 n^{-2/(d-1)} \right) \Theta(\mathrm{d}H_n) \right) \Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1) \\ < 2^d \exp \left(c_0 n^{-1-2/(d-1)} \right)^{n-d-1} c_0 n^{-2/(d-1)} \\ &\int \cdots \int_{\mathcal{H}^{n-1} \epsilon \in \{\pm 1\}^{n-1}} \mathbb{1} \left(\mathfrak{c}(P_{[n-1]}) \in [0,1]^d \right) \mathbb{1} \left(\Phi \left(P_{[n-1]} \right) < 1 \right) \mathbb{1} \left(P_{[n-1]} \in \mathcal{P}_{n-1} \right) \\ & \Theta(\mathrm{d}H_{n-1}) \cdots \Theta(\mathrm{d}H_1) \\ < 2^d \exp \left(c_0 n^{-1-2/(d-1)} \right)^{n-d-1} c_0 n^{-2/(d-1)} \gamma_{\frac{(n-1)!}{(n-d-2)!}} \mathbb{P}(Z \text{ has } n-1 \text{ facets}) \\ & \text{Theorem: Upper bound} \\ \end{split}$$

THANK YOU!