
Cells With Many Facets in a

Hyperplane Mosaic

Gilles Bonnet,
joint work with Matthias Reitzner and Pierre Calka

4th Stochastic Geometry Days
Poitiers, Friday 28th August 2015



Stationary Poisson Hyperplane Mosaic in Rd

η Poisson Hyperplane Process of intensity measure Θ
ϕ directional distribution (even measure on Sd−1)

Θ(·) =

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt ϕ(du)

u

t

H(u, t)

o



Stationary Poisson Hyperplane Mosaic in Rd

η Poisson Hyperplane Process of intensity measure Θ
ϕ directional distribution (even measure on Sd−1)

Θ(·) =

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt ϕ(du)

o



Stationary Poisson Hyperplane Mosaic in Rd

η Poisson Hyperplane Process of intensity measure Θ
ϕ directional distribution (even measure on Sd−1)

Θ(·) =

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt ϕ(du)



Stationary Poisson Hyperplane Mosaic in Rd

η Poisson Hyperplane Process of intensity measure Θ
ϕ directional distribution (even measure on Sd−1)

Θ(·) =

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt ϕ(du)



P(Z has n facets)

typical cell



P(Z has n facets)

typical cell



P(Z has n facets)

3-topes (Triangles)

23 3-topes

typical cell



P(Z has n facets)

4-topes (Quadrilaterals)

23
27 4-topes

3-topes

typical cell



P(Z has n facets)

5-topes (Pentagons)

23
27
11 5-topes

4-topes
3-topes

typical cell



P(Z has n facets)

6-topes (Hexagons)

23
27
11
6 6-topes

5-topes
4-topes
3-topes

typical cell



P(Z has n facets)

23
27
11
6 6-topes

5-topes
4-topes
3-topes

67 cells with center in the window

typical cell



P(Z has n facets)

23
27
11
6 6-topes

5-topes
4-topes
3-topes

67 cells with center in the window

23/67 = 0.34...
27/67 = 0.40...
11/67 = 0.16...
6/67 = 0.09...

typical cell

' P(Z has 3 facets)
' P(Z has 4 facets)
' P(Z has 5 facets)
' P(Z has 6 facets)



P(Z has n facets)

23
27
11
6 6-topes

5-topes
4-topes
3-topes 23/67 = 0.34...

27/67 = 0.40...
11/67 = 0.16...
6/67 = 0.09...

typical cell

' P(Z has 3 facets)
' P(Z has 4 facets)
' P(Z has 5 facets)
' P(Z has 6 facets)

0/67 = 0 ' P(Z has 7 or more facets)
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typical cell

P(Z has 3 facets) = 2− π2/6 = 0.36... [Miles 1964]

P(Z has 4 facets) = π2 log 2− 1
3 −

7
36π

2 − 7
2ζ(3) = 0.38...

[Tanner 1983]

Approximation by Monte Carlo simulation for n = 5, ..., 12
[Crain and Miles 1976] [George 1987] [Michel and Paroux 2007]

d = 2 , isotropy
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Goal

P(Z has n facets)?
typical cell

There exist constants c1 and c2 depending on d and ϕ such that for n big
enough we have

cn1n
−2n/(d−1) < P(Z has n facets) < cn2n

−2n/(d−1)

In the 2-dimensional isotropic case we have that

P(Z has n facets) ∼ αβnn−2nn−3/2 when n→∞

with α = 2/(3π5/2) and β = π2e2

Theorem [Calka and Hilhorst 2008]

Main Theorem

when n→∞

In a specific case it is already known:

We generalize this to any dimension and nice directional distribution:
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P(Z has n facets)

P Φ : P → (0,∞)
P(η ∩ P = ∅) = exp(−Φ(P ))

Φ(tP + x) = tΦ(P )

P(Z has n facets) = γ−1EX(Pn,[0,1]d)︸ ︷︷ ︸
number of n-topes of X with center in [0, 1]d

Θn measure on Pn
Θn(t ·+x) = tnΘn(·)

typical cell

γP(Z has n facets) =

∫
Pn

1
(
c(P ) ∈ [0, 1]d

)
exp (−Φ (P )) Θn(dP )



Complementary Theorem

Complementary Theorem (Miles 1971)

If we condition the typical cell Z to have n facets, then

• Φ(Z) and s(Z) are independent

• Φ(Z) is Gamma distributed with parameter n− d

[Møller and Zuyev 1996]

[Møller 1999]

[Møller and Zuyev 1996]

[Baumstark and Last 2009]

[Cowan 2006]



P(Z has n facets) = simple n-fold integral

γP(Z has n facets) = EX(Pn,[0,1]d)

= (n− d− 1)!Θ1
n,c(P1

n,c)

=

∫
P1

n,c

∫
(0,∞)

∫
[0,1]d

e−ttn−d−1dcdtΘ1
n,c(dP )

=(n−d−1)!
n!

∫
· · ·
∫
Hn

∑
ε∈{±1}n

1
(
c(P ) ∈ [0, 1]d

)
1 (Φ(P ) < 1)1 (P ∈ Pn) Θ(dHn)···Θ(dH1)

center

size

shape



Lower Bound

S1

S2

S3

S4

S5S6

S7

S8

S9

S10

γ n!
(n−d−1)!P(Z has n facets)

=

∫
· · ·
∫
Hn

∑
ε∈{±1}n

1
(
c(P ) ∈ [0, 1]d

)
1 (Φ(P ) < 1)1 (P ∈ Pn) Θ(dHn)···Θ(dH1)

> n!

∫
· · ·
∫
Hn

1(H1 ∈ S1) · · ·1(Hn ∈ Sn) Θ(dHn)···Θ(dH1)

= n!Θ(S1)n

> n!
(
cn−(d−1)/(d+1)

)n
∼cnn−2n/(d−1)

Stirling

Theorem: Lower bound
There exists a constant c1 depending
on d and ϕ such that for n big enough
we have

P(Z has n facets) > cn1n
−2n/(d−1)
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Approximation by Deleting One Facet

Theorem
Let P = ∩n

i=1H
−
i be a simple polytope with n big enough.

There exists a subset J ⊂ [n] of cardinality at least n/4 such that for any j ∈ J
we have
dH

(
P, P[n]−j

)
< c0n

−2/(d−1)Φ (P )
and

Φ
(
P[n]−j

)
< exp

(
c0n

−1−2/(d−1)
)

Φ(P ).

There exists a constant c0 such that:
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γ
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n!
(n−d−1)!P(Z has n facets)
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∫
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∫
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(
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Theorem: Upper bound

There exists a constant c2 depending on d and ϕ such that for n big
enough we have P(Z has n facets) < cn2n

−2n/(d−1)
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