Static clusters in cellular Networks. The Nearest Neighbor Model.

Luis David Álvarez Corrales with Anastasios Giovanidis & Laurent Decreusefond.

Télécom ParisTech, France.

4th Stochastic Geometry Days, 27.08.2015.

Introduction

 In recent years, it became popular to model the irregularity of the network base station (BS) locations within the framework of Stochastic Geometry.

Introduction

- In recent years, it became popular to model the irregularity of the network base station (BS) locations within the framework of Stochastic Geometry.
- Cooperation in Cellular Networks: Very important subject of study. Why? Two or more BSs exchange user information to offer stronger signal with reduced interference.
 - Coverage improvement.
 - Better service to cell-edge users (inter-cell interference).

Introduction

Benefit depends on:

- Cooperation type.
- Information exchange.
- Mumber and position of cooperating nodes!

Literature

Stochastic Geometry (PPP) models:

- Andrews, Baccelli & Ganti (TCOM 2011): Tractable Approach
- Dhillon, Ganti, Baccelli & Andrews (JSAC 2012): K-tier HetNets
- Akoum & Heath (TSP 2013): Random layered clustering and cooperation.
- Baccelli & Giovanidis (Asilomar 2013 TWC 2015): Cooperation between base station pairs.
- Nigam, Minero & Haenggi (TCOM 2014): Cooperation in groups of more than two.
- Tanbourgi, Singh, Andrews & Jondral (TWC 2014): Circle of fixed radius around user.
- Keeler, Błaszczyszyn & Karray (ISIT 2013, arXiv 2014): k-coverage, factorial moment measures.

Dynamic clusters: User-Driven

Every user (black dots) is served by its four closest BSs (blue dots).

Static Vs Dynamic

Problems with Dynamic Clusters:

- ► Each user can ask any set of BSs to cooperate → overburdens the backhaul/control channel with intensive communication.
- Time- (or more general Resource-) sharing between clusters.

Static Vs Dynamic

Problems with Dynamic Clusters:

- ► Each user can ask any set of BSs to cooperate → overburdens the backhaul/control channel with intensive communication.
- Time- (or more general Resource-) sharing between clusters.

Could static cooperation groups be more realistic? YES!

- Reasonable information exchange between BSs.
- No resource-sharing.
- One controller per cluster: Better to program and coordinate.

Static Clusters: Randomized & Hierarchical

Clusters are formed by those BSs (blue dots) inside each square.

Static Clusters: Proximity

- Define a-priori static groups by means of proximity.
- ⊿ Why?
 - Strong signal.
 - Weak interference (avoid first-order).
 - Fast coordination.
 - BSs share a planar area of common interest.

Here: Singles and Pairs

The maximum group size constraint is K = 2:

- single BSs operating individually,
- pairs of BSs providing service cooperatively.

Here: Singles and Pairs

The maximum group size constraint is K = 2:

- single BSs operating individually,
- pairs of BSs providing service cooperatively.

Why?

- To be avoided: big number of BSs serving only one user.
- Easier to derive first results.

Mutually Nearest Neighbour Pair

Single

The point processes $\Phi^{(1)}$ and $\Phi^{(2)}$

Definition Fixed a realisation ϕ ,

$$\phi^{(1)} = \{ x \in \phi \quad \& \quad x \text{ is single } \},$$

$$\phi^{(2)} = \{ x \in \phi \quad \& \quad x \text{ cooperates with another element of } \phi \}.$$

Given a stationary point process $\Phi = \{\phi\}$ we define the point process $\Phi^{(1)}$ and $\Phi^{(2)}$ by means of the dependent thinning defined above:

$$\Phi^{(1)} = \{\phi^{(1)}\}\$$
$$\Phi^{(2)} = \{\phi^{(2)}\}.$$

The point processes $\Phi^{(1)}$ and $\Phi^{(2)}$

Some results.

If Φ is an homogeneus PPP,

- 62% of points are pairs, and 38% are single points (it is impossible for $\Phi^{(1)}$ and $\Phi^{(2)}$ to be PPP).
- A representations for the Palm measures of $\Phi^{(1)}$ and $\Phi^{(2)}$.
- A closed formula for the NN function of $\Phi^{(2)}$.

Some numerical results:

- Repulsion between the process of singles, and attraction between the process of pairs.
- Tight bounds for the ES functions of $\Phi^{(1)}$ and $\Phi^{(2)}$.
- Average Voronoi surface proportions.

Interference field

Interference field generated by $\Phi^{(1)}$ and $\Phi^{(2)}$:

$$\begin{split} \mathcal{I}^{(1)} &= \sum_{x \in \Phi^{(1)}} f(x), \\ \mathcal{I}^{(2)} &= \sum_{x \in \Phi^{(2)}} \sum_{y \in \Phi^{(2)}} \frac{1}{2} g(x, y) \mathbf{1}_{\left\{x \stackrel{\Phi}{\leftrightarrow} y\right\}}. \end{split}$$

Expected Interference

Theorem

The expected value of the interference fields has the analytical representation

$$\mathbb{E}\left[\mathcal{I}^{(1)}\right] = \int_{\mathbb{R}^2} \mathbb{E}[f(x)](1-p^*)\lambda dx,$$

$$\mathbb{E}\left[\mathcal{I}^{(2)}\right] = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{1}{2} \mathbb{E}[g(x,y)] e^{-\lambda|x-y|^2(2\pi-\gamma)}\lambda dy\lambda dx.$$

Interference Field

Laplace Transform for Singles

Theorem

For a random field $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^+$, and $A \in \mathbb{R}^2$. Let $F^{(n)}(x_1, \ldots, x_n) = (f(x_1), \ldots, f(x_n))$, the LT of the interference $\mathcal{I}^{(1)}$ generated by f and $\Phi_A^{(1)}$ is equal to

$$\mathbb{E}\left[e^{-s\mathcal{I}^{(1)}}\right] = e^{-\lambda S(A)} \left(1 + \lambda \int_{A} \mathbb{E}\left[e^{-sf(x)}\right] dx + \frac{\lambda^{2}}{2} + \sum_{n=3}^{\infty} \frac{\lambda^{n}}{n!} \int_{A} \dots \int_{A} \mathbb{E}\left[e^{-s(F^{(n)} \cdot H^{(n)})(x_{1}, \dots, x_{n})}\right] dx_{1} \dots dx_{n}\right).$$

Laplace Transform for Doubles

Theorem

For a random field $g : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^+$, and $A \subset \mathbb{R}^2$. Let $G_i^{(n)}(x_1, \ldots, x_n) = (g(x_i, x_1), \ldots, g(x_i, x_n))$, and $G^{(n)} = (G_1^{(n)}, \ldots, G_n^{(n)})$, the LT of the interference $\mathcal{I}^{(2)}$ generated by g and $\Phi_A^{(2)}$ is equal to

$$\mathbb{E}\left[e^{-s\mathcal{I}^{(2)}}\right] = e^{-\lambda S(A)} \left(1 + \lambda S(A) + \frac{\lambda^2}{2} \int_A \int_A \mathbb{E}\left[e^{-\frac{s}{2}(g(x,y) + g(y,x))}\right] \lambda dy \lambda dx + \sum_{n=3}^{\infty} \frac{\lambda^n}{n!} \int_A \dots \int_A \mathbb{E}\left[e^{-\frac{s}{2}(G^{(n)} \cdot J^{(n)})(x_1, \dots, x_n)}\right] dx_1 \dots dx_n\right).$$

Extensions.

- Higher moments of $\Phi^{(1)}$ and $\Phi^{(2)}$.
- A rigorous proof for the numerically results.
- Use the above results to analyze the performance of cooperating cellular networks.
- Cooperation functions.

Extesions

 $(v_x)_{x\in\mathbb{R}^2}$ random propagation effects from the BS x to the typical user.

- No cooperation function, $f(x) = \frac{v_x}{||x||^{\beta}}$.
- Pair cooperation function,

$$g(x,y) = \begin{cases} \frac{v_x}{||x||^{\beta}} + \frac{v_y}{||y||^{\beta}}, & [NC] \\ \max\left\{\frac{v_x}{||x||^{\beta}}, \frac{v_y}{||y||^{\beta}}\right\}, & [OF1] \\ \mathbb{1}_{on_x}\frac{v_x}{||x||^{\beta}} + (1 - \mathbb{1}_{on_x})\frac{v_y}{||y||^{\beta}}, & [OF2] \\ \left|\sqrt{\frac{v_x}{||x||^{\beta}}}e^{i\theta(x)} + \sqrt{\frac{v_y}{||y||^{\beta}}}e^{i\theta(y)}\right|^2 & [PH]. \end{cases}$$

What kind of laws are we interested in?

Extensions

- Because of the difficulties in analysing the previous schemes, we have further proposed a model that imitates the cluster structure of the BSs:
 - Based on using a superposition of 2 Poisson processes.
 - One is for the singles.
 - The second for the pairs.
- The percentage of single and pairs.
- The distance between two cooperating BSs.

We have obtained closed, analytic formulas.

Thank you for your attention.

luis.alvarez-corrales@telecom-paristech.fr