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Introduction

▸ In recent years, it became popular to model the irregularity of the
network base station (BS) locations within the framework of
Stochastic Geometry.

▸ Cooperation in Cellular Networks: Very important subject of study.
Why? Two or more BSs exchange user information to offer stronger
signal with reduced interference.

▸ Coverage improvement.
▸ Better service to cell-edge users (inter-cell interference).
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Introduction

Benefit depends on:

+ Cooperation type.

+ Information exchange.

- Number and position of cooperating nodes!
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Literature

Stochastic Geometry (PPP) models:

▸ Andrews, Baccelli & Ganti (TCOM 2011): Tractable Approach

▸ Dhillon, Ganti, Baccelli & Andrews (JSAC 2012): K-tier HetNets

▸ Akoum & Heath (TSP 2013): Random layered clustering and cooperation.

▸ Baccelli & Giovanidis (Asilomar 2013 - TWC 2015): Cooperation between base
station pairs.

▸ Nigam, Minero & Haenggi (TCOM 2014): Cooperation in groups of more than
two.

▸ Tanbourgi, Singh, Andrews & Jondral (TWC 2014): Circle of fixed radius
around user.

▸ Keeler, B laszczyszyn & Karray (ISIT 2013, arXiv 2014): k-coverage, factorial
moment measures.
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Dynamic clusters: User-Driven

Every user (black dots) is served by its four closest BSs (blue dots).
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Static Vs Dynamic

Problems with Dynamic Clusters:

▸ Each user can ask any set of BSs to cooperate → overburdens the
backhaul/control channel with intensive communication.

▸ Time- (or more general Resource-) sharing between clusters.

Could static cooperation groups be more realistic? YES!

▸ Reasonable information exchange between BSs.

▸ No resource-sharing.

▸ One controller per cluster: Better to program and coordinate.
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Static Clusters: Randomized & Hierarchical

Clusters are formed by those BSs (blue dots) inside each square.
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Static Clusters: Proximity

+ Define a-priori static groups by means of proximity.

- Why?

▸ Strong signal.
▸ Weak interference (avoid first-order).
▸ Fast coordination.
▸ BSs share a planar area of common interest.
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Here: Singles and Pairs

The maximum group size constraint is K = 2:

▸ single BSs operating individually,

▸ pairs of BSs providing service cooperatively.

Why?

▸ To be avoided: big number of BSs serving only one user.

▸ Easier to derive first results.
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Mutually Nearest Neighbour Pair
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Single
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The point processes Φ(1) and Φ(2)

Definition
Fixed a realisation φ,

φ(1) = {x ∈ φ & x is single },

φ(2) = {x ∈ φ & x cooperates with another element of φ}.

Given a stationary point process Φ = {φ} we define the point process
Φ(1) and Φ(2) by means of the dependent thinning defined above:

Φ(1) = {φ(1)}

Φ(2) = {φ(2)}.
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The point processes Φ(1) and Φ(2)
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Some results.

If Φ is an homogeneus PPP,

▸ 62% of points are pairs, and 38% are single points (it is impossible
for Φ(1) and Φ(2) to be PPP).

▸ A representations for the Palm measures of Φ(1) and Φ(2).

▸ A closed formula for the NN function of Φ(2).

Some numerical results:

▸ Repulsion between the process of singles, and attraction between
the process of pairs.

▸ Tight bounds for the ES funcions of Φ(1) and Φ(2).

▸ Average Voronoi surface proportions.
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Interference field

Interference field generated by Φ(1) and Φ(2):

I
(1)

= ∑

x∈Φ(1)
f (x),

I
(2)

= ∑

x∈Φ(2)
∑

y∈Φ(2)

1

2
g(x , y)1

{x Φ↔y}
.
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Expected Interference

Theorem
The expected value of the interference fields has the analytical
representation

E [I
(1)

] = ∫
R2

E[f (x)](1 − p∗)λdx ,

E [I
(2)

] = ∫
R2
∫
R2

1

2
E[g(x , y)]e−λ∣x−y ∣

2(2π−γ)λdyλdx
.
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Laplace Transform for Singles

Theorem
For a random field f ∶ R2

Ð→ R+, and A ⊂ R2. Let
F (n)(x1, . . . , xn) = (f (x1), . . . , f (xn)), the LT of the interference I(1)

generated by f and Φ
(1)
A is equal to

E [e−sI
(1)

] =e−λS(A)
⎛

⎝

1 + λ∫
A
E [e−sf (x)]dx +

λ2

2

+

∞
∑

n=3

λn

n! ∫A
. . .∫

A
E [e−s(F

(n)⋅H(n))(x1,...,xn)
]dx1 . . .dxn

⎞

⎠

.
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Laplace Transform for Doubles

Theorem
For a random field g ∶ R2

×R2
Ð→ R+, and A ⊂ R2. Let

G
(n)
i (x1, . . . , xn) = (g(xi , x1), . . . ,g(xi , xn)), and G (n) = (G

(n)
1 , . . . ,G

(n)
n ),

the LT of the interference I(2) generated by g and Φ
(2)
A is equal to

E [e−sI
(2)

] =e−λS(A)
⎛

⎝

1 + λS(A)

+

λ2

2 ∫A
∫
A
E [e−

s
2 (g(x,y)+g(y ,x))]λdyλdx

+

∞
∑

n=3

λn

n! ∫A
. . .∫

A
E [e−

s
2 (G

(n)⋅J(n))(x1,...,xn)
]dx1 . . .dxn

⎞

⎠

.
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Extensions.

▸ Higher moments of Φ(1) and Φ(2).

▸ A rigorous proof for the numerically results.

▸ Use the above results to analyze the performance of cooperating
cellular networks.

▸ Cooperation functions.
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Extesions

(vx)x∈R2 random propagation effects from the BS x to the typical user.

▸ No cooperation function, f (x) = vx
∣∣x ∣∣β .

▸ Pair cooperation function,

g(x , y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

vx
∣∣x ∣∣β +

vy
∣∣y ∣∣β , [NC]

max{
vx
∣∣x ∣∣β ,

vy
∣∣y ∣∣β } , [OF1]

1onx
vx
∣∣x ∣∣β + (1 − 1onx )

vy
∣∣y ∣∣β , [OF2]

∣

√
vx
∣∣x ∣∣β e

iθ(x)
+

√
vy
∣∣y ∣∣β e

iθ(y)
∣

2

[PH].

What kind of laws are we interested in?
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Extensions

▸ Because of the difficulties in analysing the previous schemes, we
have further proposed a model that imitates the cluster structure of
the BSs:

▸ Based on using a superposition of 2 Poisson processes.
▸ One is for the singles.
▸ The second for the pairs.

▸ The percentage of single and pairs.

▸ The distance between two cooperating BSs.

We have obtained closed, analytic formulas.
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Thank you for your attention.

+ luis.alvarez-corrales@telecom-paristech.fr
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