The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3 surfaces

Alessandra Sarti

Laboratoire de Mathématiques et Applications Université de Poitiers (France)

LXXX Encuentro Anual SOMACHI, Termas el Corazón 3, 4 y 5 de noviembre 2011

Motivation

- Paper of the physicists Berglund and Hübsch (1992): they describe a special mirror construction for Calabi-Yau threefolds.
- Recent generalization by Chiodo and Ruan (2010).
- Recent results by Krawitz, Borisov, Ebeling,...
- Analyze the construction for K3 surfaces and look for relation with the mirror symmetry for lattice polarized K3 surfaces decribed by Dolgachev-Voisin.

The construction

Let

$$
W=\sum_{i=1}^{N} \prod_{j=1}^{N} x_{j}^{a_{i j}}
$$

be a potential, we assume that W is

- non-degenerate: the only critical point is the origin.
- invertible: the matrix $A:=\left(a_{i j}\right)$ is an $N \times N$-invertible matrix (over \mathbb{Q}).
Let $A^{-1}:=\left(a^{i j}\right)$ be the inverse matrix and $q_{i}:=\sum_{j=1}^{N} a^{i j}$ be the charges. Then:
- $\{W=0\} \subset \mathbb{P}\left(w_{1}, \ldots, w_{N}\right)$ is an hypersurface in a w.p.s, where $w_{i}=d q_{i}, d$ the least positive integer $(d \neq 0)$ such that $d q_{i} \in \mathbb{Z}, \forall i$, d is the total degree of W.

Definition

A compact, complex manifold W with at most canonical singularities, trivial canonical bundle and $H^{0}\left(X, \Omega_{X}^{l}\right)=0$ for $0<l<\operatorname{dim} W$ is a Calabi Yau (singular) manifold.

We have $W \subset \mathbb{P}\left(w_{1}, \ldots, w_{N}\right)$ is CY iff $\sum q_{i}=1$ and the w_{i} satisfy some numerical conditions (W is well formed):

- $\operatorname{gcd}\left(w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{N}\right)=1$.
- $\operatorname{gcd}\left(w_{1}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, w_{N}\right)$ divides d.

Up to now we will always assume that W is CY.

Diagonal Automorphisms

Let
$\operatorname{Aut}(W)=\left\{\gamma=\left(\exp \left(2 \pi i \beta_{1}\right), \ldots, \exp \left(2 \pi i \beta_{N}\right)\right) \in\left(\mathbb{C}^{*}\right)^{N} \mid W(\gamma x)=W(x)\right\}$
denote the diagonal automorphisms group of W. Then:

- Aut (W) is finite abelian.
- $\operatorname{Aut}(W)$ is generated by $\rho_{j}=\left(\exp \left(2 \pi i a^{1 j}\right), \ldots, \exp \left(2 \pi i a^{N j}\right)\right.$.
- $\left\langle\rho_{1} \cdot \ldots \cdot \rho_{N}\right\rangle=\left\langle\left(\exp \left(2 \pi i q_{1}\right), \ldots, \exp \left(2 \pi i q_{N}\right)\right)\right\rangle=J_{W}$
is the trivial subgroup (acts trivially on the w.p.s. $\mathbb{P}\left(w_{1}, \ldots, w_{N}\right)$).
- $J_{W} \subset \operatorname{Aut}(W) \cap \mathrm{SL}_{N}(\mathbb{C}):=\mathrm{SL}(W)$, since $\sum q_{i}=1$.

The BHCR mirror symmetry

The transposed matrix $A^{T}=\left(a_{j i}\right)$ defines a transposed potential W^{T},

- W is CY iff W^{T} is CY.

Let $J_{W} \subset G_{W} \subset \mathrm{SL}(W)$ we can associate to G_{W} a transposed group G_{W}^{T} (Krawitz 2009) with:

- $\left(G_{W}^{T}\right)^{T}=G_{W}$,
- $\left(J_{W}\right)^{T}=\mathrm{SL}\left(W^{T}\right),(\mathrm{SL}(W))^{T}=J_{W^{T}}$,
- $J_{W^{T}} \subset G_{W}^{T} \subset \mathrm{SL}\left(W^{T}\right)$.

Theorem (Chiodo-Ruan 2010)

Let W be a non-degenerate, invertible potential defining a $C Y$ manifold. Denote $\widetilde{G_{W}}:=G_{W} / J_{W}$ and $\widetilde{G_{W}^{T}}:=\left(G_{W}\right)^{T} / J_{W^{T}}$ then the orbifolds $\left[W / \widetilde{G_{W}}\right]$ and $\left[W^{T} / \widetilde{G_{W}^{T}}\right]$ are mirror of each other, in the following sense

$$
H_{C R}^{p, q}\left(\left[W / \widetilde{G_{W}}\right], \mathbb{C}\right) \cong H_{C R}^{(N-2)-p, q}\left(\left[W^{T} / \widetilde{G_{W}^{T}}\right], \mathbb{C}\right)
$$

The BHCR for K3 surfaces

- If $\operatorname{dim}(W)=2$ the theorem gives no information.
- Apply the construction to K3 surfaces with non-symplectic involution.
- Compare it with the mirror construction by Dolgachev-Voisin.

Consider a K3 surface W with non-symplectic involution $\iota: x \mapsto-x$ and equation given by a non-degenerate, invertible potential:

$$
x^{2}=f(y, z, w) \subset \mathbb{P}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)
$$

Let $J_{W} \subset G_{W} \subset \mathrm{SL}(W), J_{W^{T}} \subset G_{W}^{T} \subset \mathrm{SL}\left(W^{T}\right)$ and $\widetilde{G_{W}}:=G_{W} / J_{W}$, $\widetilde{G_{W}^{T}}:=\left(G_{W}\right)^{T} / J_{W^{T}}$.
Let $\widetilde{W} \longrightarrow W / \widetilde{G_{W}}$ and $\widetilde{W^{T}} \longrightarrow W^{T} / \widetilde{G_{W}^{T}}$ be minimal resolutions.
Remark: The groups $\widetilde{G_{W}}$ and $\widetilde{G_{W}^{T}}$ act symplectically.

Theorem (Artebani, Boissière, Sarti, 2011)

The BHCR-mirror couples \widetilde{W} and $\widetilde{W^{T}}$ belong to the mirror families described by Dolgachev and Voisin.

Example

Consider a K3 surface:

$$
W: \quad x^{2}=z^{7} y+y^{3} w+w^{10} \subset \mathbb{P}(5,3,1,1), \quad \operatorname{deg}(W)=10
$$

Let $G_{W}=J_{W}$ which has order 10, the total degree of W. One computes $(r, a, \delta)=(3,1,1)$.
Consider the transposed K3 surface:

$$
W^{T}: \quad x^{2}=z^{7}+z y^{3}+y w^{10} \subset \mathbb{P}(7,4,2,1), \quad \operatorname{deg}\left(W^{T}\right)=14
$$

one computes $\widetilde{J_{W}^{T}}=\operatorname{SL}\left(W^{T}\right) / J_{W^{T}} \cong \mathbb{Z} / 3 \mathbb{Z}$. For the minimal resolution of $W^{T} / \widetilde{G_{W}^{T}}$ one has $(r, a, \delta)=(17,1,1)$.
Methods: Classification of non-degenerate invertible potentials (Kreuzer-Skarke 1992), Reid's list of K3 surfaces in w.p.s., study of singularities of hypersurfaces in w.p.s., combinatorics to compute $\mathrm{SL}(W)$ and $\mathrm{SL}\left(W^{T}\right), \ldots$

