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Automorphisms of K3 surfaces

Let X be a K3 surface and σ an automorphism of finite order d ∈ N.

σ : X −→ X σd = id .

We call σ (purely) non-symplectic if

σ∗ωX = ζωX , ζ = e
2πi
d

where H0(X,Ω2
X) = CωX .

Their study was started essentially by Nikulin in 1980.
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Fixed locus

First question: How to describe the topology of the fixed locus?

The Lefschetz number

L(σ) =

2∑
i=0

(−1)i tr(σ∗|H i(X,OX)) = 1 + ζ−1.

together with the topological Lefschetz formula gives:
L(σ) 6= 0 then Xσ 6= ∅.

Nikulin: complete classification of non-symplectic involutions (about 75
cases).

On K3 surfaces the only automorphisms without fixed points are
non-symplectic involutions (i∗ωX = −ωX).
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Enriques surfaces

Let X be a K3 surface complete intersection of three quadrics in P5(C):

Qi : pi(x0, x1, x2) + qi(y0, y1, y2) = 0, i = 1, 2, 3

and an involution

i : C6 −→ C6

(x0, x1, x2, y0, y1, y2) 7→ (−x0,−x1,−x2, y0, y1, y2)

induces an involution on X without fixed points (generic choice of pi
and qi).

Y := X/i is an Enriques surface: compact, complex, smooth surface
such that

q(Y ) = pg(Y ) = 0, 2KY = 0, (KY 6= 0).

In particular we have χ(OY ) = 1
2χ(OX) = 1 and π1(Y ) = Z/2Z.
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Enriques varieties

How to generalize in higher dimension?

Definition

A Calabi-Yau manifold (CY) is a complex, compact, smooth, Kähler
manifold X such that the canonical bundle is trivial and

H0(X,Ωl
X) = 0 for 0 < l < dimX

Definition

An irreducible holomorphic symplectic manifold (IHS) is a complex,
compact, smooth, Kähler manifold X simply connected, such that

H0(X,Ω2
X) = CωX

where ωX is an everywhere non-degenerate holomorphic symplectic
form.
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Let X be a CY variety, dimX = m then χ(OX) = 1 + (−1)m: if m
is even a quotient variety Y by a fixed point free involution has
χ(OY ) = 1.

Let X be an IHS, dimX = 2n− 2, then we can consider quotients
Y by fixed point free automorphisms of order d, we get:

χ(OY ) =
1

d

(
dimX

2
+ 1

)
=
n

d

hence take d = n to get χ(OY ) = 1.

Observe that the automorphisms must be (purely) non-symplectic (use
the holomorphic Lefschetz formula).

In both cases we get dKY = 0 for some d ∈ N.
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Basic facts

Definition (Boissiére/Nieper-Wisskirchen/Sarti 2010)

1) A connected, compact, smooth, Kähler manifold Y is called an
Enriques variety if there exists d ≥ 2 (the index of Y ) such that
dKY = 0 in Pic(Y ) (and d′KY 6= 0 for any 0 6= d′ < d), χ(OY ) = 1
and π1(Y ) is cyclic of order d.

2) An Enriques variety is called irreducible if the holonomy group of
its universal cover is irreducible.

The definition 2) means in particular that Y is not a product (the
product of two Enriques varieties of index prime to each other is again
an Enriques variety).

Oguiso and Schröer (2010) defined Enriques varieties as quotients of
IHS.
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Properties of Enriques varieties

Theorem (B/N-W/S)

1) Every Enriques variety is even dimensional.

2) If Y is an irreducible Enriques variety of index 2, then there exists
a CY variety X, dimX = 2r and an involution ι on X without
fixed points such that Y = X/〈ι〉.

3) If Y is an irreducible Enriques variety of index > 2, then there
exists an IHS variety X, dimX = 2d− 2 and an automorphism f
without fixed points, fd = id such that Y = X/〈f〉.

4) Every irreducible Enriques variety is projective.
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Important ingredient: Bogomolov decomposition theorem for compact
Kähler manifolds with first Chern class c1 = 0.

If Y is an Enriques variety its universal cover X has c1 = 0 and it is
simply connected. We have

X ∼=
∏
j

Vj ×
∏
i

Wi

with Vj =CY (of even dimension) and Wi =IHS.
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Examples

It is not difficult to produce examples of Enriques varieties of index 2
(use Calabi-Yau’s).

For the index > 2: we use generalized Kummer varieties. Let A be a
complex torus of dimension 2.

Kmn(A) = s−1(0) ⊂ Hilbn(A)
s−→ A

Then Kmn(A) is a generalized Kummer variety of dimension 2n− 2.
(Beauville 1983: Kmn(A) is an IHS).
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Let A = E × E, E be an elliptic curve with an automorphism of order
n ∈ {3, 4},

h :=

(
ζn 0
0 1

)
∈ AutZ(A) ζn = e

2πi
n

and ai ∈ E, i = 1, 2 points of order n, a := (a1, a2). The composition

ψ := ta ◦ h

induces an automorphism ψ[n] on Hilbn(A).

Proposition (B/N-W/S)

One can choose a such that ψ[n] has no fixed points on Kmn(A).

There exists Enriques varieties of index 3 and 4.
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Remark: The same construction does not work to produce an example
of an Enriques variety of index 6, we always get fixed points.

One can not use Hilbn(X), X a K3 surface, and automorphisms of K3
suraces to produce examples of Enriques varieties (they always have
fixed points).

Problem: Study the automorphisms of Hilbn(X) and Kmn(A) not
induced by automorphisms of X or A.
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Further results

Theorem (B/N-W/S)

If Y is an Enriques variety, dimY = 2d− 2, d odd, d ≥ 3, then Y is
irreducible (and so projective).

This is false if d is even:
Let V be the 6-dimensional CY variety in P13 complete intersection of
7 quadrics:

Qj(x0, . . . , x6)− Pj(y0, . . . , y6) = 0 j = 1, . . . , 7.

The involution ι : (x, y) 7→ (x,−y) does not have fixed points on V . Let
W := Km3(A) then the 10 dimensional quotient:

V ×W/〈ι× ψ[3]〉 := Y

is an Enriques variety cannot be obtained as the quotient of a CY or
an IHS by a fixed points free automorphism.
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Kim’s generalization

Theorem (Kim 2010)

1) Let Y be an Enriques variety, dimY = 2n− 2, n = 2m, m prime,
and π1(Y ) cyclic of order n.
Then Y is the quotient of a product of a Calabi-Yau manifold of
dimension 2m and an IHS of dimension 2m− 2 by an
automorphism f of order n acting freely.

2) The variety Y and its universal cover are projective.
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