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Abstract. In this paper we present a complete classification of non-symplectic automorphisms

of K3 surfaces whose order is a multiple of seven by describing the topological type of their fixed
locus. In the case of purely non-symplectic automorphisms, we provide new results for order 14

and alternative proofs for orders 21, 28 and 42, so that we can unify in the same paper the results
on these automorphisms. For each of these orders we also consider not purely non-symplectic

automorphisms and obtain a complete characterization of their fixed loci. Several results of our

paper were obtained independently in the recent paper [12] by Brandhorst and Hofmann, but
the methods used in the two papers are completely different.

1. Introduction

An automorphism of a K3 surface induces an action on the one-dimensional space of holomorphic
2-forms on the surface, so there are two kinds of automorphisms of K3 surfaces: symplectic and
non-symplectic ones. The automorphism is called symplectic if the induced action on the 2-form is
trivial. Otherwise, it is called non-symplectic, in which case one distinguishes between purely non-
symplectic automorphisms, meaning the action on the volume form is given by multiplication by a
primitive root of unity, and not purely non-symplectic automorphisms, meaning some (non-trivial)
power of the automorphism is symplectic.

It is known [27, Theorem 0.1] that the rank of the transcendental lattice of a K3 surface carrying
a purely non-symplectic automorphism of order n is divisible by the Euler totient function of n,
which implies ϕ(n) ≤ 20. Moreover, all positive integers n 6= 60 satisfying such property occur as
orders of purely non-symplectic automorphisms by [24, Main Theorem 3]. For each possible n, it
is thus a natural and fundamental problem to obtain a complete classification of non-symplectic
automorphisms of order n in terms of their fixed locus, and many people have contributed to the
development of the subject.

A classification of non-symplectic automorphisms of prime order p was completed by Nikulin
in [28] when p = 2, and by Artebani, Sarti and Taki in [7], [29], [9] when p > 2. The study of
non-symplectic automorphisms of composite order is much more intricate, one of the reasons being
that lattice theory works less well in these cases. Results for some possible orders can be found in
[8], [13], [5], [6], [11], [1], [3], [2] and [12], among others.

In this paper, we contribute to the classification of non-symplectic automorphisms of orders
that are multiples of seven by describing the topological type of their fixed locus. For purely non-
symplectic automorphisms, we provide new results for order 14 and alternative proofs for orders
21, 28 and 42, recovering the results in [11]. Observe that 42 is the maximum possible order which
is a multiple of seven. We also consider the not purely non-symplectic case and obtain a complete
characterization for each possible order, which is completely new.

Our main result in the case of purely non-symplectic automorphisms is summarized below in
Theorem A. We point the reader to Propositions 3.1, 4.1, 5.1 and 6.1 for the details.

Theorem A. Let σn be a purely non-symplectic automorphism of order n ∈ {14, 21, 28, 42} on a
K3 surface X. Then the fixed locus of σn is not empty, and Fix(σn) and the fixed loci of its powers
are described by Tables 2, 6, 8, 9.

We observe that an analogue of Theorem A has also been obtained independently, and via a
different method, by Brandhorst and Hofmann in [12, Theorem 1.4]. The approach we use here
is more geometric. In particular, we show the different possibilities for the fixed loci are indeed
realizable by explicitly constructing examples that have the desired topological types. Examples
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in Sections 4, 5 and 6 were already given in [11], but we provide here a different proof and a more
detailed description.

In the not purely non-symplectic case, we also consider automorphisms of orders 14, 21, 28, and
42 and again we provide a complete classification. In each case we show that not every power of
the automorphism can be symplectic and our main result in this direction is given by Theorem B
below. The details are explained in Section 7.

Theorem B. Let σn be a non-symplectic automorphism of order order n ∈ {14, 21, 28, 42} on a
K3 surface X.

(i) If n = 14, then both its square and its 7-th power can be symplectic. In each case, the fixed
loci of σ14 and its powers are described in Propositions 7.2 and 7.5.

(ii) If n = 21, its cube is necessarily non-symplectic, whereas σ7
21 can be symplectic and the fixed

loci of σ21 and its powers in this case are described in Proposition 7.10.
(iii) If n = 28, then σn is necessarily purely non-symplectic.
(iv) If n = 42, then every power σk42 is necessarily non-symplectic except for k = 14. In this case,

the fixed loci of σ42 and its powers are described in Proposition 7.13.

To prove Theorems A and B we apply a unified approach to all orders. A central idea consists
in observing that the study of the fixed locus of σn can be reduced to a local analysis of the fixed
loci of (some of) its powers. In particular, we rely on the classification result for order 7 in [9],
and some of the tools we use are the Hodge index theorem and the holomorphic and topological
Lefschetz formulas (2) and (3). Moreover, the examples we construct are often given in terms of
elliptic fibrations (see Definition 2.3).

The structure of the paper is the following: Section 2 is devoted to presenting background ma-
terial, introducing notation and recalling some standard results on automorphisms on K3 surfaces.
In Section 3 we classify purely non-symplectic automorphisms of order 14 in terms of the topo-
logical type of their fixed locus. Our main result is outlined in Proposition 3.1 and Tables 2 and
4. Moreover, we show the different possibilities indeed occur giving explicit examples. Section 4
(resp. 5, 6) provides the classification of purely non-symplectic automophism of order 21 (resp.
28, 42). The topology of their fixed locus is summarized in Tables 6 (resp. 8, 9). In Section
7 we then consider the case of not purely non-symplectic automoprhisms and obtain a complete
characterization for each possible order (14, 21, 28 and 42). Finally, in Section 8 we study the
Néron–Severi lattice of a K3 surface carrying a purely non-symplectic automorphism of order a
multiple of seven.

All computations in this paper are carried out using MAGMA [10] and we work over C through-
out.
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2. Background and notation

A K3 surface is a compact, complex surface which is simply connected and has trivial canonical
bundle. An automorphism of finite order on a K3 surface is called non-symplectic if it acts non-
trivially on the volume form. The automorphism is called purely non-symplectic if the action is
given by multiplication by a primitive n-th root of unity.

Notation 2.1. Throughout the paper we will adopt the following notations:

• ωX will denote a nowhere vanishing holomorphic 2-form on a K3 surface X;
• ζn will denote an n-th root of unity;
• σn will denote an automorphism of (finite) order n on a K3 surface X. In particular, given

σn, if m divides n, we will also denote σ
n
m
n by σm;

• U will denote the unique even unimodular hyperbolic lattice of rank 2;
• Ai, Dj , E6, E7, E8, i ≥ 1, j ≥ 4 will denote the even, negative definite lattices associated

with the Dynkin diagrams of the corresponding types;
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• K7 will denote the lattice of rank 2 whose bilinear form is given by the matrix

(
−4 1
1 −2

)
;

• given a lattice L, L(k) will denote the lattice having as bilinear form the one on L multiplied
by k, k ∈ Z;
• S(σn) will denote the invariant lattice: {x ∈ H2(X,Z)| (σn)∗(x) = x}, which is primitively

embedded in the Néron–Severi lattice NS(X) of the surface X, by [27].

Given any purely non-symplectic automorphism σn with n ≥ 3, by the Hodge Index Theorem,
its fixed locus Fix(σn) consists of a disjoint union of smooth curves and isolated points:

(1) Fix(σn) = Cgn tR1 t . . . tRkn t {p1, . . . , pNn
}

where Cgn is a smooth curve of genus gn ≥ 0 and Ri are rational curves and pi are isolated fixed
points, whose total number is Nn.

By [27], the action of σn can be locally linearized and diagonalized around a fixed point so that
σn acts as multiplication by the matrix

Ai,n :=

[
ζ1+i
n 0
0 ζn−in

]
such that 0 ≤ i < n,

and we say that such a fixed point is of type Ai,n. The total number of fixed points of type Ai,n
will be denoted by mi,n. Observe that if i = 0, one of the eigenvalues of A0,n is 1, thus the fixed
point is not isolated but it belongs to a fixed curve.

We may use the holomorphic Lefschetz formula for σn to compute the Lefschetz number L(σn)
in two ways. First of all, we have:

L(σn) =

2∑
i=0

(−1)itr(σ∗n|Hi(X,OX)) = 1 + ζn−1
n

where we are assuming σ∗nωX = ζnωX . On the other hand, we have:

L(σn) =

n−2∑
i=1

mi,n

det(I − σ∗n|TX)
+ αn

1 + ζn
(1− ζn)2

.

where αn :=
∑

C⊂Fix(σn)

(g(C)− 1). Equating these two expressions we obtain a linear system of

equations that allows us to determine the possible values for mi,n and αn:

(2) 1 + ζn−1
n =

n−2∑
i=1

mi,n

(1− ζ1+i
n )(1− ζn−in )

+ αn
1 + ζn

(1− ζn)2
.

The topological Lefschetz formula, in turn, can be used to compute the Euler characteristic of
the fixed locus of σn:

(3) χn
.
= χ(Fix(σn)) = 2 + tr(σ∗n|H2(X,R)).

Both (2) and (3) will be used extensively throughout the paper in order to perform a local
analysis of the action of non-symplectic automorphisms with order a multiple of seven. It is this
local analysis that will lead us to a complete classification of such automorphisms, in terms of the
topological type of their fixed locus.

We will also make extensive use of the already known classification of non-symplectic automor-
phisms of order seven, given by Theorem 2.2 below:

Theorem 2.2. [9, Section 6] If X is a K3 surface and σ7 a non-symplectic automorphism of order
7, then the possibilities for the fixed locus of σ7 and the invariant lattice S(σ7) are listed in Table
1 and all cases exist.

m1,7 m2,7 m3,7 g7 k7 S(σ7)

A 2 1 0 1 0 U ⊕K7

† 2 1 0 - - U(7)⊕K7

B 4 3 1 1 1 U ⊕ E8

C 4 3 1 0 0 U(7)⊕ E8

D 6 5 2 0 1 U ⊕ E8 ⊕A6

Table 1. Order 7
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For each possibility in our classification, the existence of a K3 surface carrying an automorphism
with fixed locus having the desired topological type will then be obtained via the construction of
explicit examples. Most of the examples will arise from elliptic fibrations. Therefore, we also recall
some generalities about elliptic K3 surfaces, and we refer the reader to [25] for details.

Definition 2.3. An elliptic fibration on a projective surface X consists of a surjective proper
morphism π : X → C (with connected fibers) such that the generic fiber is a smooth curve of genus
one, and we further assume there exists a section s : C → X (i.e. π ◦ s = idC).

A K3 surface X admits an elliptic fibration if and only if there exists a primitive embedding of
the hyperbolic lattice U into NS(X), the Néron–Severi lattice of the surface. Any elliptic fibration
can be reconstructed from its Weierstrass model, and in the case of K3 surfaces such model is given
by an equation of the form:

(4) y2 = x3 +A(t)x+B(t), t ∈ P1

where A(t) and B(t) are polynomials in C[t] of degrees 8 and 12, respectively.
Given an elliptic fibration, a chosen section s : C → X is called the zero section; and one

identifies the map s with the curve s(C) on X. In the model given by (4), the zero section is
t 7→ (0 : 1 : 0).

We further observe that, using (4), the volume form can be written locally as

dx ∧ dt
2y

Moreover, the discriminant of the fibration is the polynomial of degree 24:

∆(t) = 4A(t)3 + 27B(t)2

and each zero of ∆(t) corresponds to a singular fiber of the fibration. The possible singular fibers
have been classified by Néron and Kodaira [26], [20], [21].

3. Order 14

Let σ14 be a purely non-symplectic automorphism of order 14. As described in Section 2, the
local actions of σ14 at fixed points are of seven types. Points of type A0,14 lie on a fixed curve, and
isolated fixed points are of type Ai,14 for i = 1, . . . , 6. Thus, the fixed locus of σ14 can contain both
fixed curves and isolated fixed points of six different types. The goal of this section is to prove the
following classification result:

Proposition 3.1. The fixed locus of a purely non-symplectic automorphism of order 14 on a K3
surfaces is not empty and it consists of either:

(i) The union of N14 isolated points, where N14 ∈ {3, 4, 5, 6, 7}; or
(ii) The disjoint union of a rational curve and N14 isolated points, where N14 ∈ {6, 11, 12}.

Moreover, all these possibilities occur, and in each case σ7
.
= σ2

14 fixes at least one curve. A more
detailed description is given in Tables 2 and 5 below, where σ2 denotes the involution σ7

14.

Fix(σ14) Fix(σ7) Fix(σ2) Example

A1(9,1) {p1, . . . , p7} E t {p1, p2, p3} C9 tR 3.20
A1(3,2) {p1, . . . , p7} E t {p1, p2, p3} C3 tR1 tR2 3.21

A2 {p1, . . . , p5} E t {p1, q1, q2} C9 3.22

B3 R t {p1, . . . , p12} E tR t {p1, . . . p8} C6 tR tR1 t . . . tR4 3.23

C1(6,1) {p1, . . . , p6} R t {p1, . . . p4, q1, . . . , q4} C6 tR′ 3.24
C1(7,2) {p1, . . . , p6} R t {p1, . . . p4, q1, . . . , q4} C7 tR1 tR2 3.25
C1(0,2) {p1, . . . , p6} R t {p1, . . . p4, q1, . . . , q4} R1 tR2 tR3 3.26

C2 {p1, . . . , p4} R t {p1, p2, q1 . . . q6} C6 3.27

C3 R t {p1, . . . , p6} R t {p1, . . . p6, q1, q2} C6 tR tR′ 3.28

D2 {p1, p2, p3} R1 tR2 t {p1, . . . , p13} C3 3.29

D3 {p1, . . . , p7} R1 tR2 t {p1, p2, p3, q1 . . . , q10} C3 tR′ tR′′ 3.30

D8 R t {p1, . . . , p11} R tR′ t {p1, . . . , p9, q1, . . . , q4} C3 tR tR1 t . . . R4 3.31

Table 2. Order 14
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The proof of Proposition 3.1 is done in several steps. First, in Section 3.1 we use formulas (2)
and (3) in order to generate Table 4, which provides a list of possibilities for the fixed locus of
σ14 and its powers. In Section 3.2 we then exclude many of these possibilities using geometric
arguments, and produce a new table - Table 5. Finally, in Section 3.3 we show all the remaining
cases listed in Table 5 are indeed admissible by constructing explicit examples that have the desired
topological types.

3.1. Generation of table of possibilities. Since σ14 is purely non-symplectic, its square σ7 :=
σ2

14 is a non-symplectic automorphism of order 7. Moreover, Fix(σ14) ⊆ Fix(σ7) and in particular
each curve contained in Fix(σ14) is also contained in Fix(σ7).

Now, for all i = 1, . . . , 6 we have that (Ai,14)2 = Aj,7 for some j ∈ {0, 1, 2, 3}. For instance,
A2

1,14 = A1,7. Thus, fixed points of σ14 that are of type A1,14 are also points of type A1,7 for σ7.
Similarly:

• points of type A5,14 for σ14 are of type A1,7 for σ7,
• points of types A2,14 and A4,14 for σ14 are of type A2,7 for σ7, and
• points of type A3,14 for σ14 are of type A3,7 for σ7.

In particular, the following inequalities hold:

(5)


m1,14 +m5,14 ≤ m1,7

m2,14 +m4,14 ≤ m2,7

m3,14 ≤ m3,7

And we further observe the following:

Remark 3.2. Note that A2
6,14 = A0,7, which shows that points of type A6,14 lie on a curve fixed

by σ7. Therefore, if m6,14 6= 0, then there are curves in Fix(σ7) which are not in Fix(σ14).

Remark 3.3. A rational curve R invariant for an automorphism σn is either pointwise fixed or
R admits two isolated fixed points. In the latter case, the points are of consecutive types, i.e., if
one point is of type Ai,n, then the other is of type Ai+1,n. If n = 14, as in [8, Lemma 4], one can
prove that, given a tree of rational curves invariant for σ14, the distribution of types of isolated
fixed points is as shown in Figure 1. This can be done in a similar way for n = 21, 28, 42.

A0,14

A1,14

A2,14

A3,14

A4,14

A5,14

A6,14 A6,14

A5,14

A4,14

A3,14

A2,14

A1,14

A0,14

Figure 1. Actions of σ14 and σ7 on a tree of rational curves. Thin curves are
invariant but not pointwise fixed. Thick curves are pointwise fixed by σ14. The
gray points are isolated fixed points for both σ14 and σ7, and the two black points
in the middle lie on a curve fixed by σ7 only.

As a consequence, from (5) and the previous remarks, if we apply formula (2) to σ14 we obtain
the following linear system of equations:

(6)


m1,14 = 4α14 − 2m4,14 +m5,14

m2,14 = 1− 2m5,14 + 3m4,14

m6,14 = 8m4,14 + 4− 2m3,14 − 2α14 − 4m5,14

This allows us to prove the following two Lemmas.

Lemma 3.4. The value of α14 is either 0 or 1.

Proof. Since Fix(σ14) ⊂ Fix(σ7), a curve that is pointwise fixed by σ14 must be contained in
Fix(σ7). Thus, according to Table 1, we must have α14 ∈ {0, 1, 2}. Assume α14 = 2. Then σ14

fixes at least two rational curves. Therefore the fixed locus under σ7 is described by the last row
of Table 1, and both rational curves in Fix(σ7) are fixed by σ14. By Remark 3.2, m6,14 = 0. But
plugging in α14 = 2 and m6,14 = 0 with the inequalities (5) with the values of m1,7,m2,7,m3,7

from last line of Table 1 into (6) yields an unsolvable system. Therefore α14 can only be equal 0
or 1. �
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Lemma 3.5. There is no purely non-symplectic automorphism σ14 of order 14 such that the fixed
locus of σ7 is described by the second row of Table 1.

Proof. In this case, no curves are fixed by σ7 and hence no curves are fixed by σ14. Thus α14 = 0.
But a MAGMA calculation shows that in this case a solution of (6) would have m6,14 = 4, which
would imply that σ14 fixes a curve, and so this case cannot occur. �

In fact we can completely describe what are the possible solutions to (6), i.e. what are the
possibilities for the vector m = (m1,14,m2,14,m3,14,m4,14,m5,14,m6,14) and for the value of α14.
Organizing the possibilities according to the fixed locus of σ7 = σ2

14, we prove:

Proposition 3.6. If σ14 is a purely non-symplectic automorphism of order 14 on a K3 surface,
then the possible vectors m = (m1,14,m2,14,m3,14,m4,14,m5,14,m6,14) satisfying (6) are listed in
Table 3 below. The symbol ∗ means that the action on the elliptic curve E is a translation.

In particular, we obtain a list of possibilities for the fixed locus of σ14.

m1,14 m2,14 m3,14 m4,14 m5,14 m6,14 α14 curves fixed by σ14

A1 0 0 0 1 2 4 0 ∅
A2 0 1 0 0 0 4 0 ∅
B1 0 0 1 1 2 2 0 E
B1* 0 0 1 1 2 2 0 ∅
B2 0 1 1 0 0 2 0 E
B2* 0 1 1 0 0 2 0 ∅
B3 3 2 1 1 1 4 1 R
B4 4 1 1 0 0 0 1 R t E
B4* 4 1 1 0 0 0 1 R

C1 0 0 1 1 2 2 0 ∅
C2 0 1 1 0 0 2 0 ∅
C3 4 1 1 0 0 0 1 R

D1 0 0 2 1 2 0 0 ∅
D2 0 1 2 0 0 0 0 ∅
D3 0 0 0 1 2 4 0 ∅
D4 0 1 0 0 0 4 0 ∅
D5 4 0 0 1 2 2 1 R
D6 4 1 0 0 0 2 1 R
D7 3 1 2 2 3 2 1 R
D8 3 2 2 1 1 2 1 R

Table 3.

Proof of Proposition 3.6. We consider each row of Table 1:

Case A This corresponds to the case in which the fixed locus of σ7 is described by the first row of
Table 1 and Fix(σ7) consists of a genus one curve E, so we only need to determine whether
σ14 itself fixes E. In both cases, α14 = 0 and by (5) m3,14 = 0. A MAGMA calculation
shows that the only vectors m which satisfy (6) with α14 = m3,14 = 0 are (0, 0, 0, 1, 2, 4)
and (0, 1, 0, 0, 0, 4). By Remark 3.2, σ14 does not fix E.

Case B When Fix(σ7) is described by the third row of Table 1, the automorphism σ7 fixes a genus
one curve E and a rational curve R. We analyze this case by considering the possibilities
for α14 and m6,14.

First, suppose Fix(σ14) contains no curves, so σ14 fixes neither R nor E; in this case,
α14 = 0. Since σ14 acts as an involution on E, by the Riemann-Hurwitz formula it has
either four fixed points (coming from P 7→ −P after a choice of point at infinity) or no
fixed points (coming from P 7→ P + T where T is a 2-torsion point). The action on R has
2 fixed points, so m6,14 is either 6 or 2. A MAGMA calculation applying the constraints
from (6) shows that the possibilities for m are (0, 0, 1, 1, 2, 2) and (0, 1, 1, 0, 0, 2).

Second, suppose that E ⊂ Fix(σ14) and R 6⊂ Fix(σ14); in this case, α14 = 0 and
m6,14 = 2. The possibilities for m in this case are (0, 0, 1, 1, 2, 2) and (0, 1, 1, 0, 0, 2).

Next, if R ⊂ Fix(σ14) and E 6⊂ Fix(σ14), σ14 fixes either none or four points on E, so
α14 = 1 and m6,14 = 0 or 4, and the possibilities for m are (3, 2, 1, 1, 1, 4) and (4, 1, 1, 0, 0, 0).

Lastly, if EtR ⊂ Fix(σ14), all curves fixed under σ7 are also fixed under σ14, so α14 = 1
and m6,14 = 0, and the only possibility is m = (4, 1, 1, 0, 0, 0).
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Case C In this case, the only curve fixed by σ7 is a rational curve R. If σ14 does not fix R, then
α14 = 0 and m6,14 = 2 and the solutions of (6) for m are (0, 0, 1, 1, 2, 2) and (0, 1, 1, 0, 0, 2).

On the other hand, if σ14 fixes R, then α14 = 1 and m6,14 = 0, and the only possibility
for m is (4, 1, 1, 0, 0, 0).

Case D Finally, if the fixed locus of σ7 is described by the last row of Table 1, the curves fixed by
σ7 are two rational curves R1 tR2. First, suppose neither R1 nor R2 is fixed by σ14, thus
α14 = 0. Then, either σ14 exchanges R1 and R2, or σ14 acts nontrivially on R1 and R2. If
R1 and R2 are exchanged (hence fixing no points on either curve), then m6,14 = 0 and the
possibilities for m are (0, 0, 2, 1, 2, 0) and (0, 1, 2, 0, 0, 0). Otherwise, there are a total of 4
points fixed on these curves, so m6,14 = 4 and the possibilities for m are (0, 0, 0, 1, 2, 4) and
(0, 1, 0, 0, 0, 4).

If σ14 fixes one rational curve and acts nontrivially on the other, α14 = 1 and m6,14 = 2.
Possibilities for m are (0, 0, 1, 1, 2, 2), (0, 1, 1, 0, 0, 2), (3, 2, 2, 1, 1, 2) and (3, 1, 2, 2, 3, 2). By
Lemma 3.4, σ14 does not fix both R1 and R2.

�

We also observe the following:

Proposition 3.7. If σ14 is a purely non-symplectic automorphism on a K3 surface such that
σ7 = σ2

14 is of type B (see Table 1), then σ14 is of type B3.

Proof. Let X be a K3 surface and σ14 a purely non–symplectic automorphism of order 14 acting
on X. Assume we are in case B so that σ7 fixes a genus 1 curve, a rational curve and eight isolated
points. By [9, Thm. 6.3] X admits an elliptic fibration with a reducible fiber of types II∗ at
t = ∞, a smooth fiber at t = 0 and 14 singular fibers of type I1. The automorphism σ7 fixes the
fiber over 0 and the central component of the fiber II∗; all eight isolated points of σ7 lie on the
fiber II∗.

Since σ7 fixes the genus one curve, the fibration is σ7-invariant. Thus the fibers over t = 0 and
t = ∞ are preserved. The II∗ fiber does not admit a reflection, and so we can conclude that the
central component must be fixed by σ14. Moreover, the eight isolated fixed points of σ7 are also
isolated and fixed by σ14. Table 3 shows that the only case with N14 ≥ 8 is case B3. We also
observe that, because m6,14 = 4, the automorphism σ14 acts as an involution on the genus one
curve with four fixed points. �

Now, in order to better understand the different fixed loci listed in Table 3, the next step in our
approach consists in further studying the fixed locus of the involution σ7

14, and the eigenspaces of
σ∗14 in H2(X,C). We use the following notation:

di := dimH2(X,C)ζi , i = 1, 2, 7, 14.

In particular, we have

22 = 6d14 + 6d7 + d2 + d1.

Remark 3.8. Observe that rk S(σ14) = d1 and rk S(σ7) = d2 + d1 and rk S(σ2) = 6d7 + d1.

Moreover, by applying the topological Lefschetz formula (3) to the fixed loci of σ14 and its
powers, we obtain the following system of equations:

(7)


χ14 := χ(Fix(σ14)) = 2 + d14 − d7 − d2 + d1

χ7 := χ(Fix(σ7)) = 2− d14 − d7 + d2 + d1

χ2 := χ(Fix(σ2)) = 2− 6d14 + 6d7 − d2 + d1

Using (7) and Table 3 we can thus obtain a list of possibilities for (d14, d7, d2, d1) as well as the
corresponding Euler characteristics (χ14, χ7, χ2). We present our results in Table 4 below.
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N14 α14 χ14 χ7 χ2 (d14, d7, d2, d1) Possible (g2, k2)

A1 7 0 7 3 -14 (3,0,1,3) (8, 0), (9, 1)
0 (2,1,0,4) (1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (6, 5)

A2 5 0 5 3 -16 (3,0,2,2) (9, 0), (10, 1)
-2 (2,1,1,3) (2, 0), (3, 1), (4, 2), (5, 3), (6, 4)
12 (1,2,0,4) (0, 5), (1, 6), (2, 7)

B3 12 1 14 10 0 (2,0,0,10) (1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (6, 5)

C1 6 0 6 10 -8 (2,0,4,6) (5, 0), (6, 1), (7, 2)
6 (1,1,3,7) (0, 2), (1, 3), (2, 3), (3, 5)

C2 4 0 4 10 -10 (2,0,5,5) (6, 0), (7, 1)
4 (1,1,4,6) (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)

C3 6 1 8 10 -6 (2,0,3,7) (4, 0), (5, 1), (6, 2)
8 (1,1,2,8) (0, 3), (1, 4), (2, 5), (3, 6)

D1 5 0 5 17 -2 (1,0,7,9) (2, 0), (3, 1), (4, 2), (5, 3), (6, 4)

D2 3 0 3 17 -4 (1,0,8,8) (3, 0), (4, 1), (5, 2), (6, 3)

D3 7 0 7 17 0 (1,0,6,10) (1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (6, 5)

D4 5 0 5 17 -2 (1,0,7,9) (2, 0), (3, 1), (4, 2), (5, 3), (6, 4)

D5 9 1 11 17 4 (1,0,4,12) (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)

D6 7 1 9 17 2 (1,0,5,11) (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)

D7 13 1 15 17 8 (1,0,2,14) (0, 3), (1, 4), (2, 5), (3, 6)

D8 11 1 13 17 6 (1,0,3,13) (0, 2), (1, 3), (2, 3), (3, 5)

Table 4.

We remark that by [28], the fixed locus of a non-symplectic involution is either empty; or it
consists of two disjoint elliptic curves; or

(8) Fix(σ2) = Cg2 tR1 t . . . tRk2
where Cg2 is a smooth curve of genus g2 ≥ 0 and Ri are rational curves, and all possibilities for

the pair of invariants (g2, k2) are classified (see for example [9, Figure 1]).
In our case, it follows from (6) that Fix(σ2) cannot be empty. Any possible solution to (6) gives

us that Fix(σ14) contains at least one fixed point. In fact, this also implies Fix(σ2) cannot be the
union of two elliptic curves either. If the latter occurs, then the action of σ14 on each elliptic curve
would be without fixed points. Since Fix(σ14) ⊂ Fix(σ2), again we would have no fixed points in
Fix(σ14), contradicting (6). As a consequence, for each line of Table 4, we know that Fix(σ2) is of
the form (8). Moreover, there is more than one possible pair of invariants (g2, k2).

3.2. Excluding cases. We will now show many cases of Table 4 can actually be excluded for
geometric reasons. We prove a series of Lemmas in this direction.

Notation 3.9. In what follows, we will use the following notation: A1(8,0) means that Fix(σ7)
is as in line A of Table 1, Fix(σ14) is described in the line A1 of Table 4 and (g2, k2) = (8, 0).
Similarly for all other cases.

Remark 3.10. Observe that cases B3(1,0) and D6(0,0) are not admissible because in both cases,
the fixed locus Fix(σ14) contains a rational curve while Fix(σ2) does not.

Remark 3.11. Fix(σ2) does not contain a curve of genus 2, 4 or 5. This is a direct consequence
of the following Lemma.

Lemma 3.12 ([19]). Let C be a curve of genus g ≥ 2 that admits an automorphism of prime order
q where q > g. Then either q = g + 1 or q = 2g + 1.

Lemma 3.13. The following cases are not admissible:

A1(6, 5), A1(8, 0), A1(1, 0), A1(6, 5), A2(6, 4), A2(0, 5), A2(1, 6), B3(3, 2),

C1(3, 5), C2(3, 4), C3(3, 6), D1(6, 4), D2(6, 3), D3(1, 0), D3(6, 5),

D4(6, 4), D5(0, 1), D5(1, 2), D6(1, 1), D7(0, 3), D7(1, 4), D8(0, 2), D8(1, 3).

Proof. Consider case A1(6,5). By Riemann-Hurwitz’s formula, the automorphism σ14 acts on the
curve C4 ⊂ Fix(σ2) fixing four points, and it also acts on each of the five rational curves in Fix(σ2),
fixing two points on each. Therefore σ14 fixes a total of 14 points. By a previous computation,
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the fixed locus Fix(σ14) consists of seven points. Therefore this case is not admissible. A similar
argument can be used to exclude the other cases.

�

Lemma 3.14. Case C1(1,3) is not admissible.

Proof. Let E be the elliptic curve fixed by the involution σ2 = σ7
14. The curve E is preserved by

σ14. Moreover, E is not fixed by σ7 pointwise but it is invariant for σ7 because we are in Case C.
Thus, since E is elliptic, the automorphism σ14 acts as a translation on E. Let E be the elliptic
fibration induced by E, with fiber E over t = 0. Since fixed curves do not meet, the zero section is
not fixed by the involution σ2. The involution fixes three rational curves since k2 = 3 and they are
contained in the fiber F∞ over t =∞. The only possible types of singular fibers that can contain
three curves fixed by the involution are the types I6, or III∗, or I∗4 .

Figure
2. Fiber III∗

Figure
3. Fiber I∗4

Figure
4. Fiber I6

If F∞ is of type III∗, then the three curves which are fixed by σ2 are represented by the three
double circles in Figure 2. The zero section would meet the external component of the fiber III∗

and thus it would be fixed by σ2, which we already observed is impossible. By a similar argument,
we may exclude the case when F∞ is of type I∗4 , as shown in Figure 3.

Suppose that F∞ is of type I6. By analyzing the types of points, it can be seen that one of the
curves of the fiber I6 which is not fixed by σ2 must be fixed by σ7. Such a curve is represented by
a square in Figure 4. Since σ7 must preserve the fiber, this is impossible. �

Lemma 3.15. The following cases are not admissible:

A2(10, 1), A2(3, 1), C2(1, 2), C2(0, 1), C3(1, 4), C3(0, 3), D4(3, 1), D5(3, 4), D6(3, 3).

Proof. Observe that in Case A2(10,1), Fix(σ2) = C10 ∪ R, where C10 a curve of genus 10 and R
a rational curve, and neither of these curves are fixed by σ14. The automorphism σ14 fixes five
isolated points, two of which lie on R. As observed in Remark 3.3, isolated points on a rational
curve are of consequent types but this is in contradiction with the types of points for A2 (see Table
3). The other cases can be excluded by a similar argument. �

Lemma 3.16. Suppose that the involution σ2 fixes a curve C7 of genus seven. Then the curve C7

contains two fixed points by σ14, which cannot be of the same type.

Proof. First, note that σ14 acts with order seven on C7. Thus, by Riemann-Hurwitz it has exactly
two fixed points, which we call p and q.

Considering the line bundle L associated to 8p, by Riemman-Roch we have h0(C7, L) ≥ 2 so
that we obtain a finite (surjective) morphism f : C7 → P1 of degree d ≤ 8. Now, because σ fixes p,
σ and f induce an automorphism σ̃ (of order 7) on P1. This automorphism has two fixed points,
say p̃ and q̃, and we must have (up to relabeling) f−1(p̃) = p and f−1(q̃) = q. Moreover, we can
assume p̃ = (0 : 1) and q̃ = (1 : 0).

We can thus choose local coordinates z on P1 centered on p̃ so that the action of σ̃ on p̃ is given
by multiplication by ζ2j

14 and on q̃ it is given by multiplication by ζ14−2j
14 (for some j). Note that

1/z is then a local coordinate centered on q̃. In fact we can choose local coordinates on C7 which
are compatible with the above so that f is given by z 7→ zd around p̃ (and analogously for q̃).

Using this, we see that the local action of σ on p must be given by multiplication by ζ
2j/d
14 and on

q it is given by multiplication by ζ
(14−2j)/d
14 .

The local action of σ on p and q as points in X can thus be diagonalized so that p is a point of
type Ai,14 where i = 2j/d− 1 or 2j/d, and q is a point of type Aj,14 where k = (14− 2j)/d− 1 or
(14− 2j)/d. In any case, i 6≡ k mod 14 so that p and q cannot be of the same type. �

As a consequence we can prove:

Lemma 3.17. Case C2(7,1) is not admissible.
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Proof. According to Table 3, in case C2 the automorphism σ14 fixes exactly one point of type
A2,14, one point of type A3,14, and two points of type A6,14. Two of these are on the rational curve
fixed by σ2 and two are on the genus seven curve C7 fixed by σ2. Since the fixed points on R must
be of consecutive types (see Remark 3.3), the two points of type A6,14 lie on C7. This contradicts
Lemma 3.16. �

Thanks to [12], we also prove:

Lemma 3.18. Cases D1 and D7 are not admissible.

Proof. By [12, Corollary 1.3], there are exactly 12 distinct deformation classes of K3 surfaces X
carrying a purely non-symplectic automorphism σ of order 14. In Section 3.3, we show all 12
cases listed in Table 5 indeed occur. Therefore, it suffices to observe the different cases determine
different deformation classes.

In fact, looking at the eigenvalues of the induced isometry σ∗ on H2(X,Z) we see that different
cases determine at least 11 deformation classes. With the exception of cases C1(6, 1) and C1(7, 2),
the different cases determine 11 distinct vectors (d14, d7, d2, d1) (see Table 5). So we analyze these
two cases separately.

By [14, Theorem 1.5.2], if (X,σ) is of type C1(6, 1) and (X̃, σ̃) is of type C1(7, 2), then the
invariant lattices S(σ7) and S(σ̃7) do not lie in the same genus. And, since the deformation class
of a pair (X,σ) is determined by the collection of genera of the lattices S(σj) by [12, Theorem
1.4], we conclude these two cases indeed determine two distinct deformation classes. �

Using Table 4 and combining Lemmas 3.13, 3.14, 3.15, 3.17 and 3.18 we have thus proved:

Proposition 3.19. Let σ14 be a purely non-symplectic automorphism on a K3 surface. Then the
admissible cases according to the possible fixed locus are listed in Table 5.

N α14 χ14 χ7 χ2 (g2, k2) (d14, d7, d2, d1)

A1 7 0 7 3 -14 (9, 1) (3,0,1,3)
0 (3, 2) (2,1,0,4)

A2 5 0 5 3 -16 (9, 0) (3,0,2,2)

B3 12 1 14 10 0 (6, 5) (2,0,0,10)

C1 6 0 6 10 -8 (6, 1), (7, 2) (2,0,4,6)
6 (0, 2) (1,1,3,7)

C2 4 0 4 10 -10 (6, 0) (2,0,5,5)
C3 6 1 8 10 -6 (6, 2) (2,0,3,7)

D2 3 0 3 17 -4 (3, 0) (1,0,8,8)
D3 7 0 7 17 0 (3, 2) (1,0,6,10)
D8 11 1 13 17 6 (3, 5) (1,0,3,13)

Table 5.

3.3. Realization by examples. It remains to show each case listed in Table 5 is indeed realizable.
For each possibility, we construct explicit examples of K3 surfaces carrying a purely non-symplectic
automorphism σ14 (of order 14) that has the desired type of fixed locus.

Example 3.20. (Case A1(9,1)) Consider (Xa,b, σ14), taking Xa,b to be the elliptic K3 surface
with Weierstrass equation

y2 = x3 + (at7 + b)x+ (t7 − 1), t ∈ P1

where a, b ∈ C, as in [9, Example 6.1], and letting σ14 be the purely non-symplectic order 14
automorphism:

σ14 : (x, y, t) 7→ (x,−y, ζ4
7 t)

where ζ7 denotes a primitive 7-th root of unity.
If a and b are generic, then Xa,b contains a fiber of type III at t = (1 : 0) and 21 singular fibers

of type I1. One can show that the fixed locus of σ14 is such that m = (0, 0, 0, 0, 1, 2, 4). In fact it is
of type A1(9, 1). It can be described as follows: the four isolated points of type A6,14 lie on a curve
which is fixed by σ7, namely the fiber at t = (0 : 1); the other three points lie on the fiber of type
III: the tangency point, along with one other point on each of the two components. Moreover, the
involution σ2 fixes the zero section (which is rational) and the trisection (which has genus 9).
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Example 3.21. (Case A1(3,2)) Consider (X,σ14), where X is the elliptic K3 surface with
Weierstrass equation given by

y2 = x(x2 + (t7 + 1)), t ∈ P1,

and σ14 : (x, y, t) 7→ (x,−y, ζ4
7 t) is a purely non-symplectic automorphism of order 14. We note

that X contains eight singular fibers of type III. The fixed locus of σ7 is given by an elliptic curve
at t = (0 : 1) and three points that lie on the fiber of type III at t = (1, 0). On the fiber of type III,
one of the three points is the tangency point, while the remaining two lie on different components.
Therefore, we are in case A (for σ7).

The fixed locus of σ14 is such that m = (0, 0, 0, 0, 1, 2, 4) and in fact we can check it is of type
A1(3, 2). On the elliptic curve σ14 acts as an involution and we obtain 4 fixed points there, the other
3 fixed points are again in the fiber of type III at t = (1, 0) distributed as above. The involution σ2

fixes the bisection which has genus 3, and two rational curves: the zero section and the two torsion
section given by x = y = 0. Therefore, (g2, k2) = (3, 2).

Example 3.22. (Case A2(9,0)) Let us consider (X,σ14) the elliptic K3 surface X together with
the automorphism σ = σ14 from Example 3.21.

The translation τ given by (x, y, t) 7→ ((y/x)2 − x, (y/x)3 − y, t) (which is the translation by
the 2−torsion section) is a symplectic involution that commutes with σ. As a consequence, the
composition σ′ := σ ◦ τ is also a purely non-symplectic automorphism of order 14. We remain in
case A for σ7 and the fixed locus of σ′ is such that m = (0, 0, 1, 0, 0, 0, 4). Indeed, σ′ acts as an
involution on the elliptic curve E at t = (0, 1) and E contains four fixed points. Due to the fact
that τ has only eight fixed points, which are precisely the tangency points on the singular fibers of
type III, we only have one additional fixed point lying on the fiber at t = (1, 0). The involution
does not fix any rational curves and therefore we are in case (g2, k2) = (9, 0). We note that this
case is also presented in [15, Section 7.2, p.19].

Example 3.23. (Case B3) Consider (Xa,b, σ14), where we let Xa,b be the elliptic K3 surface
in Example 3.20 with a = 0. X0,b contains a fiber of type II∗ at t = (1 : 0), a smooth fiber at
(0 : 1), and 14 singular fibers of type I1. With the order 14 automorphism σ14 given in (3.20), the
component of multiplicity 6 on the II∗ fiber is fixed by σ and the action on the fiber over t = (0 : 1)
is an involution, so it has 4 fixed points. Checking types of fixed points, we find m = (3, 2, 1, 1, 1, 4)
with α14 = 1.

Example 3.24. (Case C1(6,1)) Consider (Xa,b, σ14) from Example 3.20, with a generic and
b such that b3 = − 27

4 . Then Xa,b contains a fiber of type III at t = (1 : 0), a fiber of type
I7 at t = (0 : 1) and 14 singular fibers of type I1. In this case the fixed locus of σ14 is such
that m = (0, 0, 0, 1, 1, 2, 2). The trisection {y = 0} is a curve of genus 6 and it is fixed by the
involution, as well as the zero section. Thus the invariants of the fixed locus of the involution σ2

are (g2, k2) = (6, 1).

Example 3.25. (Case C1(7,2)) Let (X,σ14), the elliptic K3 surface with Weierstrass equation

y2 = x3 + 4t4(t7 − 1), t ∈ P1,

together with the order 14 purely non-symplectic automorphism σ14 given by

σ14(x, y, t) = (ζ4
7x,−ζ6

7y, ζ
3
7 t).

We note that the singular fibers are of type IV ∗ over t = (0 : 1) and type II over t = (1 : 0),
in addition to seven fibers of type II. The square of σ14 fixes the component of multiplicity 3 on
the fiber of type IV ∗, so this example falls under case C. The involution σ2 acts as a reflection on
this fiber, and so the fixed locus Fix(σ14) only contains points. The 3-section {y = 0} has genus
seven and it is fixed by the involution, as well as the zero section and one rational component of
the fiber IV ∗. Thus the invariant of the fixed locus of the involution are (g2, k2) = (7, 2). This
surface appears in [11, Table 3], with a non-symplectic automorphism of a different order.

Example 3.26. (Case C1(0,2)) Let us consider (X,σ14), the elliptic K3 surface X with Weier-
strass equation given by

y2 = x3 + t2x+ t10, t ∈ P1,

and the order 14 purely non-symplectic automorphism σ14 : (x, y, t) 7→ (ζ7x, ζ
5
7y,−ζ7t). Note that

X contains a fiber of type IV at t = (1 : 0), a fiber of type I∗0 at t = (0 : 1) and 14 singular fibers of
type I1. The fixed locus of σ7 fixes one rational curve, the non-reduced component, and eight points,
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so this example falls under Case C. Because the involution σ2 fixes only three rational curves, we
see that σ14 is of type C1 with (g2, k2) = (0, 2).

Example 3.27. (Case C2(6,0)) Consider (X,σ14), where X is the K3 surface with equation

y2 = x7s− t2(t− s2)(t− 2s2)

in P(4, 2, 1, 1)(y,t,x,s) and σ14 : (y, t, x, s) 7→ (−y, t, ζ7x, s) is a purely non-symplectic automorphism
of order 14. One can see that the points (−1 : 1 : 0, 0) and (1 : 1 : 0, 0) are of type A1. Moreover,
at the point (0 : 0 : 0 : 1) we have a singularity of type A6. Since σ7 fixes the rational curve
Cx := {x = 0} and eight points, this example falls under Case C. The only curve fixed by the
involution σ2 is Cy, which has genus six.

Example 3.28. (Case C3) Consider (X,σ14), the elliptic surface X with Weierstrass equation

y2 = x3 + t3(t7 + 1), t ∈ P1,

and the order 14 purely non-symplectic automorphism σ14

σ14(x, y, t) = (ζ2
7x,−ζ3

7y, ζ
3
7 t).

The singular fibers consist of a type I∗0 fiber over t = (0 : 1), a type IV fiber over t = (1 : 0), and
seven type II fibers (cusps). We call R the non-reduced component of the I∗0 fiber. The involution
σ2 fixes the zero section, the rational curve R and the 3-section C given by y = 0. The curve
C passes through the center of the IV fiber and through the cusps, and so C has genus six by
Riemann-Hurwitz. Thus the invariants of the involution are (g2, k2) = (6, 2) which corresponds to
Case C3. The fixed locus of σ14 consists of the curve R and six points.

Another example for Case C3 is given as follows. Let X be the K3 surface with equation

x2 + y3z + z7 + w14 = 0

and weights (7, 4, 2, 1). Singularities can occur only at singularities of P(7, 4, 2, 1) and one can see

that the point (0 : 1 : 0 : 0) is an A3 singularity and (0 : ζj6 : 1 : 0), j = 1, 3, 5 is an A1 singularity.

Cw

Cx

Figure 5. C3

After resolving the singularities, the curve Cw := {w = 0} has genus zero, while the transform
of Cx := {x = 0} has genus six. The automorphism σ14 : (x, y, z, w) 7→ (x, y, z, ζ14w) is a purely
non-symplectic automorphism of order 14 and it fixes the rational curve Cw. Its square σ7 fixes
Cw as well, so that this example falls under Case C. Moreover, the involution σ2 fixes Cw and Cx
and the central fiber of the resolution of the A3 (another rational curve). Therefore, σ14 is of type
C3 and the invariants of the involution are (g2, k2) = (6, 2).

Example 3.29. (Case D2) Let (X,σ14) be the K3 surface X with equation

y2 = x7s− t2(t− s2)2

in P(4, 2, 1, 1)(y,t,x,s) and the order 14 purely non-symplectic automorphism σ : (y, t, x, s) 7→ (−y, t, ζ7x, s).
The points (−1 : 1 : 0, 0) and (1 : 1 : 0, 0) are of type A1. Moreover, at the points (0 : 0 : 0 : 1)

and (0 : 1 : 0 : 1), we have singularities of type A6. Since σ7 fixes two rational curves C1 and C2,
appearing when x = 0, this example falls under Case D. The only curve fixed by the involution σ2

is Cy, which has genus three. See also [15, Section 7.3].

Example 3.30. (Case D3) Consider (X,σ14), where X is the K3 surface with equation

x2 = w7y + y4 + z7

in P(14, 7, 4, 3)(x,y,z,w) given in [4], and σ14 the order 14 purely non-symplectic automorphism
σ14 : (x, y, z, w) 7→ (−x, y, z, ζ7w).

We have the following: point (1 : 0 : 1 : 0) of type A1; points (1 : 1 : 0 : 0) and (−1 : 1 : 0 : 0),
both of type A6; and point (0 : 0 : 0 : 1) of type A2 (Figure 6).

Since σ7 fixes the rational curves Cz := {z = 0} and Cw := {w = 0}, we are in case D. The
involution σ2 fixes the curve Cx := {x = 0} of genus 3 and two rational curves given by the
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Cw

Cz

Cx

Figure 6. D3

component of the A1 and one of the components of the A2. The involution σ2 also exchanges the
two A6 points.

Example 3.31. (Case D8) Again, consider (Xa,b, σ14), the K3 surface together with the auto-
morphism from Example 3.20. If a = 0 and b is such that b3 = − 27

4 , it follows that Xa,b contains
a fiber of type II∗ at t = (1 : 0), a fiber of type I7 at t = (0 : 1), and seven singular fibers of type
I1. The fixed locus of σ14 is of type D8.

Observe that the surface y2 = x3 + t3x+ t8, t ∈ P1 given in [22, Example 7.5] admits the purely
non-symplectic order 14 automorphism σ14 : (x, y, t) 7→ (ζ3

7x,−ζ7y, ζ2
7 t) and corresponds to case

D8 as well.

4. Order 21

Purely non-symplectic automorphisms of order 21 on K3 surfaces have been classified in [11].
Here we present a new proof and a more detailed description of Brandhorst’s result. More precisely,
using the same kind of approach from the previous section, we show that the examples of [11, Table
3] fit the invariants of Table 6 below, and we prove:

Proposition 4.1. The fixed locus of a non-symplectic automorphism of order 21 on a K3 surface
is not empty and it consists of either:

(i) The union of N21 isolated points, where N21 ∈ {4, 7}; or
(ii) The disjoint union of a rational curve and N21 isolated points, where N21 ∈ {8, 11}.

Moreover, all these possibilities occur, and a more detailed description is given in Table 6 below,
where σ7

.
= σ3

21 and σ3
.
= σ7

21.

Fix(σ21) Fix(σ7) Fix(σ3) Example

C(3,2,3) R t {p1, . . . , p8} R t {p1, . . . , p8} C3 tR tR′ t {p1, p2, p3} 4.4
C(3,1,2) {p1, . . . , p7} R t {p1, . . . , p5, q1, q2, q3} C3 tR t {p1, q1} 4.5
C(3,0,1) {p1, . . . , p4} R t {p1, . . . , p8} C3 t {p1} 4.6

B(3,3,4) R t {p1, . . . , p11} E tR t {p1, . . . , p8} C3 tR tR′ tR′′ t {p1, . . . , p4} 4.7

Table 6. Order 21

In order to prove Proposition 4.1, we first note that, as we observed in Section 2, at any fixed
point a purely non-symplectic automorphism σ21 of order 21 acts as multiplication by the matrix
Ai,21 for some i, with

Ai,21 :=

(
ζ1+i
21 0

0 ζ21−i
21

)
, 0 ≤ i ≤ 10.

Thus, the holomorphic Lefschetz formula (2) applied to σ21 gives us the following linear system
of equations:
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(9)



3m6,21 = 3 + 4m1,21 − 5m2,21 − 4m4,21 + 8m5,21

3m7,21 = 3− 5m1,21 + 4m2,21 − 13m4,21 + 17m5,21

m8,21 = 1− 2m1,21 + 2m2,21 − 5m4,21 + 6m5,21

m9,21 = 3− 4m1,21 + 4m2,21 − 3m3,21 − 3m4,21 + 7m5,21

2m10,21 = 2− 3m1,21 + 3m2,21 − 2m3,21 − 3m4,21 + 6m5,21

6α21 = m1,21 +m2,21 −m4,21 + 2m5,21

where α21 :=
∑

1− g(C) and the sum is taken over all curves C fixed by σ21.
Moreover, considering the non-symplectic automorphism σ7 = σ3

21 of order 7, we know that
m1,21 +m5,21 +m8,21 ≤ m1,7

m2,21 +m4,21 +m9,21 ≤ m2,7

m3,21 +m10,21 ≤ m3,7

We note also that points of type A6,21 and A7,21 lie on a curve fixed by σ7 (but not fixed by σ21)
and points of type Aj,21, where j = 2, 3, 5, 6, 8, 9, lie on a curve fixed by σ3 = σ7

21 (but not fixed
by σ21). For this reason, we choose r := m6,21 + m7,21. Using MAGMA, we obtain the following
four possibilities for the vector (m1,21, . . . ,m10,21;α21, r):

v1 = (3, 3, 1, 0, 0, 0, 0, 1, 0, 0; 1, 0) v2 = (0, 0, 0, 0, 0, 1, 1, 1, 3, 1; 0, 2)

v3 = (0, 0, 1, 0, 0, 1, 1, 1, 0, 0; 0, 2) v4 = (3, 2, 1, 1, 1, 3, 0, 0, 0, 0; 1, 3)

Furthermore, we observe the following:

Lemma 4.2. If the fixed locus of σ21 is described by one of the vectors v1, v2, v3, then the fixed
locus of σ7 = σ3

21 is as in Case C of Table 1. If it is described by the vector v4, then the fixed locus
of σ7 is as in Case B.

Proof. We first observe that σ7 cannot be of type A. Assume we are in Case A. We know that
Fix(σ21) ⊆ Fix(σ7). By the Riemann-Hurwitz formula, the genus one curve in Fix(σ7) would
contain either none or three isolated points fixed by σ21, and thus r = 0 or 3. But the cases with
these values of r both have α21 = 1, which is not possible in Case A (recall that in Case A, a fixed
curve must have genus 1, as shown in Table 1).

Case D for σ7 is not admissible either. In fact, if σ7 is as in case D, then Fix(σ7) contains two
rational curves. If they were both pointwise fixed by σ21, this would give α21 = 2. If one curve is
pointwise fixed and the other one is invariant, then α21 = 1 and r = 2. If both curves are invariant
but not pointwise fixed, then α21 = 0 and r = 4. These cases do not appear among the admissible
ones. Therefore we conclude that σ7 must fall under Case B or Case C.

We now observe that the situation described by the vector v4 is only possible in Case B: since
r = 3 in this case, it means that there are three points on curves fixed by σ7 and they are not fixed
by σ21. Thus there must be an elliptic curve in Fix(σ7). As we observed in Lemma 3.7, if σ7 fixes
an elliptic curve and a rational curve as in Case B, the surface admits an elliptic fibration with a
fiber of type II∗ and 14 fibers of type I1. Since the fiber of type II∗ does not admit a symmetry
of order three, σ21 fixes the central curve of this fiber and eight points that lie on it.

As for vector v2 (respectively v3), the fixed locus of σ21 consists of seven (respectively four)
points. Thus σ7 cannot belong to Case B, since by the previous remark, it would fix too many
points.

Assume now that we are in Case B and the vector v1 describes the action of σ21. Then the fixed
locus of σ21 is the union of a rational curve and eight points; since r = 0, the action of σ21 on the
elliptic curve in Fix(σ7) is a translation. But then the action should be a translation on the fiber
II∗, and this is not the case. �

At last, we are now in position to prove Proposition 4.1:

Proof of Proposition 4.1. Consider the induced action of σ21 on H2(X,R) and recall the definition
of di := dim H2(X,R)ζi for i = 1, 3, 7, 21.
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For each i = 3, 7, 21 we let χi denote the Euler characteristic of the fixed locus of σi = σ
21
i . By

applying the topological Lefschetz formula (3) to σ21, σ7 and σ3, we obtain:

(10)


χ21 = 2 + d21 − d7 − d3 + d1

χ7 = 2− (2d21 + d7) + 2d3 + d1

χ3 = 2− 6d21 + 6d7 − d3 + d1

Moreover, we know that

22 = dim H2(X,R) = 12d21 + 6d7 + 2d3 + d1.

Combining these equations one gets the possibilities given in Table 7.

Type σ7 χ7 χ21 χ3 (d21, d7, d3, d1) (m1,21, . . . ,m10,21, α21, r) Fix(σ21)
10 10 3 (1,0,1,8) (3,3,1,0,0,0,0,1,0,0,1,0) Rt 8 pts

C 10 7 0 (1,0,2,6) (0,0,0,0,0,1,1,1,3,1,0,2) 7 pts
10 4 -3 (1,0,3,4) (0,0,1,0,0,1,1,1,0,0,0,2) 4 pts

B 10 13 6 (1,0,0,10) (3,2,1,1,1,3,0,0,0,0,1,3) Rt 11pts
Table 7.

Thus, it remains to look at the fixed locus of σ3, which by [7] consists of N3 isolated fixed points,
a curve of genus g3 ≥ 0, and k3 rational curves, where by [7, Theorem 2.2] the following relation
holds:

1− g3 + k3 = N3 − 3.

In particular, χ3 = N3 + 2(1− g3 + k3) = 3N3 − 6, and we can list the possibilities for (g3, k3, N3)
according to the value of N3.

If χ3 = 3, then N3 = 3 and by [7] we have the following possibilities for the invariants (g3, k3, N3)
of Fix(σ3):

(g3, k3, N3) = (−,−, 3), (1, 0, 3), (2, 1, 3), (3, 2, 3).

Similarly,

• if χ3 = 0, then N3 = 2 and the possibilities are (g3, k3, N3) = (2, 0, 2), (3, 1, 2), (4, 2, 2).
• if χ3 = −3 then N3 = 1 and the possibilities are (g3, k3, N3) = (3, 0, 1), (4, 1, 1).
• if χ3 = 6, thenN3 = 4 and the possibilities are: (g3, k3, N3) = (3, 3, 4), (2, 2, 4), (1, 1, 4), (0, 0, 4).

Next, we observe that we can actually eliminate most of these possibilities.
As in Lemma 3.12, the automorphism σ21 acts with order seven on Fix(σ3), and thus Cg3 should

admit an automorphism of order seven. But if g3 ≥ 2 and if φ is an automorphism of prime order
p, we must have p ≤ 2g3 + 1. Then we may eliminate the case where g3 = 2.

A curve of genus four does not admit an automorphism of order seven by [23], and thus g3 6= 4.
Finally, if χ3 = 3, then Fix(σ21) consists of a fixed rational curve plus eight points. Since

Fix(σ21) ⊆ Fix(σ3), using Riemann-Hurwitz we can also eliminate the triples (g3, k3, N3) =
(−,−, 3), (1, 0, 3). The argument is similar for triples (g3, k3, N3) = (1, 1, 4), (0, 0, 4) with χ3 = 6.

Therefore, the possible cases are the ones listed in Table 6. �

Remark 4.3. Note that in the proof of Proposition 4.1, we have

rk S(σ21) = d1, rk S(σ7) = 2d3 + d1, rk S(σ3) = 6d7 + d1.

We end this section by showing the examples in [11] are indeed compatible with the invariants
of Table 6, as claimed.

Example 4.4. (Case C(3,2,3)) Let (X,σ21) be the following elliptic K3 surface with the non-
symplectic automorphism σ21 of order 21:

y2 = x3 + 4t4(t7 − 1), t ∈ P1 σ21 : (x, y, t) 7→ (ζ6
7ζ3x, ζ

2
7y, ζ7t).

The collection of singular fibers of the elliptic fibration consist of a fiber of type IV ∗ over t = 0,
a fiber of type II over t =∞, and 7 of type II over the zeros of t7−1. The fixed locus of σ7 consist
of the central component R of the fiber IV ∗, six isolated points on the fiber IV ∗ and two points on
the fiber II over t =∞. The automorphism σ21 has the same fixed locus as σ7. The fixed locus of
σ3 consists of the zero section, the curve R and the 3-section y = 0, which has genus three and 3
additional points.

In particular, the invariants of Fix(σj21), j = 1, 3, 7 are as in the first row of Table 6.
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Example 4.5. (Case C(3,1,2)) Let (X,σ21) be the following elliptic K3 surface with the non-
symplectic automorphism σ21 of order 21:

y2 = x3 + t3(t7 + 1), t ∈ P1 σ21 : (x, y, t) 7→ (ζ3
7ζ3x, ζ7y, ζ

3
7 t).

The singular fibers of the elliptic fibration are I∗0 +IV +7II. The fixed locus Fix(σ7) consists of the
central component R of the fiber I∗0 , four points on I∗0 , and four points on IV . The automorphism
σ21 does not fix R and only fixes isolated points. The automorphism σ3 exchanges three of the non-
central components of the fiber I∗0 and acts on the remaining one, and thus (g3, k3, N3) = (3, 1, 2).

The conclusion is that the invariants of Fix(σj21), j = 1, 3, 7 are as in the second row of Table 6.

Example 4.6. (Case C(3,0,1)) Let X be the K3 surface whose equation in P3 is

x3
0x1 + x3

1x2 + x0x
3
2 + x0x

3
3 = 0.

This surface admits the purely non-symplectic automorphism of order 21

σ21 : (x0, x1, x2, x3) 7→ (ζ7x0, ζ
5
7x1, x2, ζ3x3)

whose fixed locus consists of the four standard coordinate points. The fixed locus of σ3 consists of
the genus three curve {x3 = 0} ∩X and the point p1 = (0 : 0 : 0 : 1).

In particular, we see that the invariants of Fix(σj21), j = 1, 3, 7 are as described in the third row
of Table 6.

Example 4.7. (Case B(3,3,4)) Let (X,σ21) be the following elliptic K3 surface with the non-
symplectic automorphism σ21 of order 21:

y2 = x3 + t5(t7 − 1), t ∈ P1 σ21 : (x, y, t) 7→ (ζ2
21x, ζ7y, ζ

6
7 t).

The collection of singular fibers consists of a type II∗ fiber at t =∞ and seven type II fibers over
the zeros of t7 + 1. The order seven automorphism σ7 fixes the following: the smooth fiber E of
genus one over t = 0, the central component R of the II∗ fiber, and eight isolated points on the
same fiber II∗. The automorphism σ21 fixes R as well and acts on E as an automorphism of order
three, fixing three points. The fixed locus of σ3 consists of R, along with another rational curve in
the fiber II∗, the zero section, the genus three 3-section X ∩ {y = 0}, and four isolated points on
the fiber II∗.

Therefore, the invariants of Fix(σj21), j = 1, 3, 7 are as in the fourth row of Table 6.
Another example of this type of automorphism is given by the following. Consider the equation
y3 = z7 + x2w + xw11 in the weighted projective space P(10, 7, 3, 1)x,y,z,w, and consider the order
21 automorphism

σ21 : (x, y, z, w) 7→ (x, ζ3y, z, ζ7w).

The curve Cy := {y = 0} has genus three and is fixed by σ3, and the curve Cw := {w = 0} has genus
one and is fixed by σ7. The rational curve fixed by σ21 is a rational component in the resolution of
the A9 singularity (1 : 0 : 0 : 0).

5. Order 28

We now prove a classification theorem for purely non-symplectic automorphisms of order 28
recovering the results in [11]. Our result is the following:

Proposition 5.1. The fixed locus of a purely non-symplectic automorphism of order 28 on a K3
surfaces is not empty and it consists of either:

(i) The union of N21 isolated points, where N21 ∈ {3, 5}; or
(ii) The disjoint union of a rational curve and 10 isolated points.

Moreover, all these possibilities occur. The examples of [11, Table 3] fit the invariants of Table 8
below, which provides a more detailed description of the possible different fixed loci of σ28 and its
powers.

Fix(σ28) Fix(σ14) Fix(σ7) Fix(σ4) Fix(σ2) Example

{p1, . . . , p5} {p1, . . . , p5, p6, p7} E t {p1, p2, p3} {q1, . . . , q7, p1} tR1 tR2 C3 tR1 tR2 5.3
{p1, p2, p3} {p1, . . . , p7} E t {p1, q1, q2} C3 C3 tR1 tR2 5.4

R t {p1, . . . , p10} R t {p1, . . . , p10, p11, p12} E tR t {p1, . . . , p8} {p1, . . . , p8} tR tR1 C6 tR tR1 t . . . tR4 5.5

Table 8. Order 28
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Proof. As explained in Section 2, at any fixed point the automorphism σ28 acts as multiplication

by Ai,28 :=

(
ζi+1
28 0

0 ζ28−i
28

)
for 0 ≤ i ≤ 13, and we denote the number of points of type Ai,28 by

mi,28.
The holomorphic Lefschetz formula (2) applied to σ28 gives us the following linear system of

equations 

3m6,28 = 3 + 4m1,28 − 5m2,28 − 4m4,28 + 8m5,28

3m7,28 = 3− 5m1,28 + 4m2,28 − 13m4,28 + 17m5,28

m8,28 = 1− 2m1,28 + 2m2,28 − 5m4,28 + 6m5,28

m9,28 = 3− 4m1,28 + 4m2,28 − 3m3,28 − 3m4,28 + 7m5,28

2m10,28 = 2− 3m1,28 + 3m2,28 − 2m3,28 − 3m4,28 + 6m5,28

6α28 = m1,28 +m2,28 −m4,28 + 2m5,28

where α28 :=
∑

(1− g(C)) and the sum runs over all curves C which are fixed by σ28.
Moreover, considering the automorphism σ7 = σ4

28 which has order seven, we further know that
m1,28 +m5,28 +m8,28 +m12,28 ≤ m1,7

m2,28 +m4,28 +m9,28 +m11,28 ≤ m2,7

m3,28 +m10,28 ≤ m3,7

Note that

• points of type A13,28 lie on a curve fixed by σ14 (but not by σ28);
• points of type A7,28, A8,28 and A13,28 lie on a curve fixed by σ7 (but not fixed by σ28);
• points of type Aj,28, j = 3, 4, 7, 8, 11, 12 lie on a curve fixed by σ4 (but not fixed by σ28).

Because of the observations listed above, letting r := m6,28 + m7,28 + m13,28 we obtain the
following four possibilities for (m1,28, . . . ,m13,28;α28, r):

w1 = (0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0; 0, 2) w3 = (0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0; 0, 2)

w2 = (3, 2, 1, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0; 1, 2) w4 = (3, 2, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0; 1, 2)

We now consider the induced action of σ28 on H2(X,R) and as in Section 2 we let

di := dimH2(X,R)ζi , i = 28, 14, 7, 4, 2, 1

For each i = 2, 4, 7, 14, 28 we let χi denote the Euler characteristic of the fixed locus of the
power of σ28 which has order i. Applying the topological Lefschetz formula (3) to σ28, σ14, σ7, σ4

and σ2 we obtain:

(11)



χ28 = 2 + d14 − d7 − d2 + d1

χ14 = 2 + 2d28 − d14 − d7 − 2d4 + d2 + d1

χ7 = 2− 2d28 − d14 − d7 + 2d4 + d2 + d1

χ4 = 2− 6d14 + 6d7 − d2 + d1

χ2 = 2− 12d28 + 6d14 + 6d7 − 2d4 + d2 + d1

Moreover, we know that

22 = dim H2(X,R) = 12d28 + 6d14 + 6d7 + 2d4 + d2 + d1

Using (11) one gets the following possibilities, according to the four vectors wi:

wi χ28 (d28, . . . , d1) χ14 χ7 χ4 χ2

w1 5 (1,1,0,1,0,2) 3 3 -2 -4
(1,1,0,0,1,3) 7 3 -2 0
(1,0,1,0,0,4) 7 3 12 0

w2 14 - - - - -

w3 3 (1,1,0,1,0,1) 3 3 -4 -4
(1,0,1,1,0,2) 3 3 10 -4
(1,1,0,0,2,2) 7 3 -4 0
(1,0,1,0,1,3) 7 3 10 0

w4 12 (1,0,0,0,0,10) 14 10 12 0

Observe that vector w2 does not give any admissible case and χ14 cannot be 3 by our classification
of Section 3. This implies either χ7 = 10, the vector of types of points is w4 and σ14 = σ2

28 is of
type B3 of Table 2 or (χ14, χ7, χ2) = (7, 3, 0). In the latter case, σ14 is of type A1(3,2) of Table 2
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and Fix(σ2) = C3 ∪ R1 ∪ R2. Recalling that Fix(σ4) ⊆ Fix(σ2) and that σ4 acts with order 1 or
2 on Fix(σ2), with Riemann-Hurwitz formula we can conclude that χ4 ∈ {−4, 0, 4, 8, 12}.

This leaves only the cases highlighted in gray.
We now study the action of σ4 on Fix(σ2). If χ4 = −4, then Fix(σ4) = C3 and R1 and R2 are

exchanged by σ4. If χ4 = 12, then σ4 can only fix rational curves and [8, Proposition 1] implies σ4

fixes exactly two rational curves and 8 isolated points. �

Remark 5.2. As in the order 21 case, note that the following relations hold:

rk S(σ7) = 2d4 + d2 + d1, rk S(σ4) = 6d7 + d1, rk S(σ2) = 6(d14 + d7) + d2 + d1.

We now show the examples in [11, Table 3] are consistent with the invariants listed on Table 8.

Example 5.3. The elliptic K3 surface with Weierstrass equation

y2 = x3 + (t7 + 1)x

admits the following order 28 purely non-symplectic automorphism

σ28(x, y, t) = (x− (y/x)2, i(y − (y/x)3), ζ7t),

The elliptic fibration admits a smooth fiber over t = 0, a fiber of type II over t =∞ and 7 fibers of
type II over the roots of ∆ = 4(t7 + 1)3. One can check the invariants of Fix(σj28), j = 1, 2, 4, 14
are as in the first row of Table 8. In particular, the automorphism σ14 = σ2

28 is of type A1(3, 2)
in our classification of Section 3. Moreover, given that Fix(σ2) = C3 t R1 t R2, we have that σ4

does not exchange R1 and R2 and fixes the 8 tangential points of the fibers of type II lying on C3.
Therefore, σ28 fixes the same three points in the fiber over t = ∞ and two additional points in
smooth fiber over t = 0.

Example 5.4. The elliptic K3 surface with Weierstrass equation

y2 = x3 + (t7 + 1)x, t ∈ P1,

admits the following order 28 purely non-symplectic automorphism

σ28(x, y, t) = (−x, iy,−ζ7t).

One can check that the invariants of Fix(σj28), j = 1, 2, 4, 14 are as in the second row of Table
8. In particular, the automorphism σ14 = σ2

28 is of type A1(3, 2) in our classification of Section 3.
Given that Fix(σ2) = C3 t R1 t R2, the automorphism σ4 exchanges R1 and R2 and fixes C3. As
a consequence, σ28 fixes the tangential point in the fiber of type II over t =∞ and two additional
points in the smooth fiber.

Another example of this type of automorphism is given by the following. Consider the K3 surface
in P(7, 3, 2, 2) which is the zero locus of the quasi-smooth polynomial x2 + y4z+ z7 +w7. It admits
the purely non-symplectic automorphism of order 28

σ28(x, y, z, w) = (x, iy, z, ζ7w).

Resolving the singularity of type A2 at (0 : 1 : 0 : 0) and the seven singularities of type A1 at
(0 : 0 : ζi14, 1), i = 1, 3, . . . , 13 we see that the different fixed loci of the powers of σ28 are as in the
second row of Table 8.

Example 5.5. The elliptic K3 surface with Weierstrass equation

y2 = x3 + x+ t7, t ∈ P1,

admits the order 28 purely non-symplectic automorphism

σ28(x, y, t) = (−x, iy,−ζ7t).

The elliptic fibration admits a smooth fiber over t = 0, a fiber of type II∗ over t = ∞ and 14
nodal curves over the roots of ∆ = 4 + 27t14. The automorphism σ14 = σ2

28 is of type B3 in our

classification in Section 3 and we can check the invariants of Fix(σj28), j = 1, 4, 14 indeed agree
with the third row of Table 8. Moreover, since Fix(σ2) = C6tRtR1t . . . R4, we have that σ4 fixes
two rational curves including R, two points in C6 and six additional points in the other rational
curves. As a consequence, σ28 fixes R and ten additional points, two of them on the smooth fiber
over t = 0.
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6. Order 42

In [11], Brandhorst classifies purely non-symplectic automorphisms of order 42 on K3 surfaces.
Here, we provide a different and more geometric view of his result. We prove:

Proposition 6.1. The fixed locus of a purely non-symplectic automorphism of order 42 on a K3
surfaces is not empty and it consists of either:

(i) The union of N21 isolated points, where N21 ∈ {5, 6}; or
(ii) The disjoint union of a rational curve and 9 isolated points.

Moreover, all these possibilities occur, and a more detailed description is given in Table 9 below.

Type σ14 Fix(σ42) Fix(σ7) Fix(σ21) Fix(σ3) Example

C1 {p1, . . . , p6} R t {p1, . . . , p8} R t {p1, . . . , p8} C3 tR tR′ t {p1, p2, p3} 6.5

C3 {p1, . . . , p5} R t {p1, . . . , p8} {p1, . . . , p7} C3 tR t {p1, p2} 6.6

B3 R t {p1, . . . p9} E tR t {p1, . . . , p8} R t {p1, . . . p11} C3 tR tR′ tR′′ t {p1, . . . p4} 6.7

Table 9. Order 42

Proof. Let σ42 be a purely non-symplectic automorphism of order 42. Thus its square is a purely
non-symplectic automorphism of order 21 and we use the classification of Section 4.

Observe that isolated fixed points for σ42 of type A20,42 lie on curves fixed by σ21 and not fixed
by σ42. Thus, if σ21 has invariants as in the first or fourth rows of Table 6, it must be the case
that m20,42 is either 0 or 2, according to the fact the the rational curve R ⊂ Fix(σ21) is fixed by
σ42 or not.

We also have the following inequalities

m1,42+m19,42 ≤ m1,21, m2,42+m18,42 ≤ m2,21, m3,42+m17,42 ≤ m3,21, m4,42+m18,42 ≤ m4,21,

m5,42+m15,42 ≤ m5,21, m6,42+m14,42 ≤ m6,21, m7,42+m13,42 ≤ m7,21, m8,42+m12,42 ≤ m8,21,

m9,42 +m11,42 ≤ m9,21, m10,42 ≤ m10,21

According to this, we look for possible solutions m = (m1,42, . . . ,m20,42;α42) of the Lefschetz
holomorphic formula (2) applied to σ42. Using MAGMA we get the following:

• if σ21 is as in the first row of Table 6, there is no possible solution m with α42 = 1. If
α42 = 0 one gets the vector m = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2; 0). Thus
Fix(σ42) consists of 6 isolated points, two of which are contained in the rational curve
fixed by σ21.
• if σ21 is as in the second row of Table 6, then α42 is necessarily 0 and m20,42 = 0. There is

one solution m = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0; 0). Thus Fix(σ42) consists
of 5 isolated points.

• if σ21 is as in the third row of Table 6, α42 is necessarily 0 and m20,42 = 0. There is no
solution in this case.
• if σ21 is as in the fourth of Table 6, α42 can be 0 or 1. If α42 = 0 and m20,42 = 2

there are no solutions. If α42 = 1 and m20,42 = 0 by MAGMA we get only one solution
(m1,42, . . . ,m20,42;α42) = (3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1). Thus Fix(σ42)
consists of a rational curve and 9 isolated points.

Thus, there are three possibilities for Fix(σ42). As before, let di := dimH2(X,R)ζi for i =
42, 21, 14, 7, 6, 3, 2, 1. We have

22 = 12d42 + 12d21 + 6d14 + 6d7 + 2d6 + 2d3 + d2 + d1

By the topological Lefschetz formula (3) applied to the powers of σ42 we get the following linear
system of equations

(12)



χ42 = 2− d42 + d21 + d14 − d7 + d6 − d3 − d2 + d1

χ21 = 2 + d42 + d21 − d14 − d7 − d6 − d3 + d2 + d1

χ14 = 2 + (2d42 + d14)− (2d21 + d7)− (2d6 + d2) + 2d3 + d1

χ7 = 2− (2d42 + 2d21 + d14 + d7) + 2d6 + 2d3 + d2 + d1

χ6 = 2 + (6d42 + d6)− (6d21 + d3)− (6d14 + d2) + 6d7 + d1

χ3 = 2− (6d42 + 6d21 + d6 + d3) + 6d14 + 6d7 + d2 + d1

χ2 = 2− (12d42 + 6d14 + 2d6 + d2) + 12d21 + 6d7 + 2d3 + d1
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Considering the different possible solutions we can compute the values of the Euler characteristics
of the fixed locus of σ42 and its powers:

Type σ14 χ42 Fix(σ42) (d42, . . . , d1) χ21 χ14 χ7 χ6 χ3 χ2

C1 6 6 pts (1,0,0,0,1,0,2,6) 10 6 10 13 3 -8
C3 5 5 pts (1,0,0,0,1,1,1,5) 7 8 10 12 0 -6
B3 11 R t 9 pts (1,0,0,0,0,0,0,10) 13 14 10 18 6 0

�

Remark 6.2. Observe the following relations hold:

rk S(σ) = d1 ≥ 1, rk S(σ7) = 2d6 + 2d3 + d2 + d1, rk S(σ6) = 6d7 + d1,

rk S(σ3) = 6d14 + 6d7 + d2 + d1, rk S(σ2) = 6(2d21 + d7) + 2d3 + d1.

Remark 6.3. The complete description of Fix(σ3) follows from Proposition 4.1.

Remark 6.4. The possible values of χ6 obtained in the proof of Proposition 6.1 and the classifi-
cation in [13] allow us to also completely describe Fix(σ6). The description is as follows:

If σ42 is as in the first row of Table 9, then we must have m2,6 = 10 and m1,6 = 1. Moreover,
σ6 fixes 1 rational curve. With our notations, there are 8 fixed points under σ6 lying on C3, σ6

fixes p1, it also fixes R and it has 2 more fixed points lying on R′.
Now, if σ42 is as in the second row of Table 9, then m2,6 = 8 and m1,6 = 2. Moreover, σ6 fixes

1 rational curve. There are 8 points fixed under σ6 lying on C3, σ6 fixes p1 and p2, and it also
fixes R.

Finally, if σ42 is as in the last row of Table 9, then m2,6 = 10 and m1,6 = 4. Moreover, σ6 fixes
2 rational curves. There are 8 points fixed under σ6 lying on C3, σ6 fixes p1, . . . , p4, it also fixes
R and R′ and it has 2 more fixed points lying on R′′.

Observe that Proposition 6.1 is compatible with [11]. In fact the examples in [11, Table 3] agree
with the invariants listed on Table 9, as we describe below:

Example 6.5. The K3 surface is the same as in Example 4.4, see [11]. On the same elliptic
fibration y2 = x3 + 4t4(t7 − 1) the order 42 automorphism σ42 is given by

σ42 : (x, y, t) 7→ (ζ6
7ζ3x,−ζ2

7y, ζ7t).

The automorphism σ42 acts on the fiber of type IV ∗ as a reflection, moving two legs and leaving
the third invariant. Thus on the fiber IV ∗ σ42 fixes 4 isolated points. The 2 isolated points fixed
by σ21 on the cuspidal fiber over t = ∞ are fixed by σ42 too. In particular, the invariants of
Fix(σj42), j = 1, 2, 3, 6, 7, 14, 21 are as in the first row of Table 9.

Example 6.6. The K3 surface is the same as in Example 4.5, see [11]. On the same elliptic
fibration y2 = x3 + t3(t7 + 1) the order 42 automorphism σ42 is given by

σ42 : (x, y, t) 7→ (ζ3
7ζ3x,−ζ7y, ζ3

7 t).

One can check that the invariants of Fix(σj42), j = 1, 2, 3, 6, 7, 14, 21 are as in the second row of
Table 9.

Example 6.7. The K3 surface is the same as in Example 4.7, see [11]. On the same elliptic
fibration y2 = x3 + t5(t7 + 1) the order 42 automorphism σ42 is given by

σ42 : (x, y, t) 7→ (ζ2
42x, ζ

3
42y, ζ

18
42 t)

On the fiber II∗ σ42 fixes 8 isolated points and the central component R. It also fixes 1 point on
the elliptic curve E over t = 0. Therefore, the invariants of Fix(σj42), j = 1, 2, 3, 6, 7, 14, 21 are as
in the third row of Table 9.

7. Not purely non-symplectic automorphisms

As we observed in Section 2, a not purely non-symplectic automorphism f is such that its action
on the period ωX is given by multiplication by a non-primitive n-th root of unity (different from
1). As a consequence, at least one power of f is symplectic.

The following are well known results about symplectic automorphisms on K3 surfaces. First,
by [27], a symplectic automorphism can only fix isolated points, and its order must be less than or
equal to eight. Moreover, according to the possible orders:
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Lemma 7.1. (see [16, Prop 1.1],[17, Prop. 5.1], [27]) Given a symplectic automorphism g on a
K3 surface, the number N of isolated fixed points and the rank of the invariant lattice S(g) are
shown in the following table.

ord(g) N rk S(g) ord(g) N rk S(g)

2 8 14 6 2 6
3 6 10 7 3 4
4 4 8 8 2 2
5 4 6

In this section we will provide a complete classification of not purely non-symplectic automor-
phisms of orders 14, 21, 28 and 42 according to which powers of the automorphisms are assumed
to be symplectic.

7.1. Order 14. Let σ14 be a non-symplectic automorphisms of order 14 such that either σ7 = σ2
14

or σ2 = σ7
14 are symplectic. We will study the two cases separately.

7.1.1. σ7 symplectic. When the square of σ14 is symplectic we prove:

Proposition 7.2. Let σ14 be a non-symplectic automorphism of order 14 on a K3 surface X such
that σ7 = σ2

14 is symplectic. Then Fix(σ14) consists of 3 isolated points and the possible values of
(d14, d7, d2, d1) are (2, 1, 2, 2), (3, 0, 3, 1). In the first case, Fix(σ2) consists of a curve of genus 3,
while in the second case, it consists of a curve of genus 10. Moreover, both possibilities occur.

Proof. By Lemma 7.1, the fixed locus of σ7 consists of 3 isolated points and since Fix(σ14) ⊂
Fix(σ7), it follows that the number N14 of isolated points fixed by σ14 is at most 3. Now, by
Lemma 7.1, we also know the invariant lattice of σ7 has rank 4. Therefore, by Remark 3.8, we
further know d2 + d1 = 4 and d14 + d7 = 3. Moreover, by the topological Lefschetz formula (3)
(applied to σ14) we have

χ14 = N14 = 2 + d14 − d7 − d2 + d1.

Further observing that we must have d2 > 0 and d1 > 0, these give the following list of possibilities
for (d14, d7, d2, d1;N14):

(0, 3, 1, 3; 1), (1, 2, 1, 3; 3), (1, 2, 2, 2; 1), (2, 1, 2, 2; 3), (2, 1, 3, 1; 1), (3, 0, 3, 1; 3).

As in Section 3.1, using (7) and [28], we can compute χ2 and the possible invariants (g2, k2)
of the fixed locus of σ2. These are listed in Table 10 below. In particular, we observe that if
(d14, d7, d2, d1) = (0, 3, 1, 3), then we would have χ2 = 22, which is impossible by [28].

N14 d14 d7 d2 d1 χ2 (g2, k2)
1 0 3 1 3 22 -
1 1 2 2 2 8 (3, 6), (2, 5), (1, 4), (0, 3)
1 2 1 3 1 -6 (6, 2), (5, 1), (4, 0)
3 1 2 1 3 10 (2, 6), (1, 5), (0, 4)
3 2 1 2 2 -4 (6, 3), (5, 2), (4, 1), (3, 0)
3 3 0 3 1 -18 (10, 0)

Table 10.

With computations similar to the ones of Section 3.2, we can actually eliminate many of the
other possibilities. In fact we see we must have that Fix(σ14) = Fix(σ7) consists of 3 isolated
points and Fix(σ2) consists of either a curve of genus 3 or a curve of genus 10. The existence of
both cases is shown in the following examples.

�

Example 7.3. Let f(x0, x1, x2) := x3
0x1 + x3

1x2 + x3
2x0 and consider the K3 surface

Xf := {(x0 : x1 : x2 : x3) : x4
3 = f(x0, x1, x2)} ⊂ P3.

This surface carries the order 14 automorphism σ14 : (x0 : x1 : x2 : x3) 7→ (ζ4
7x0 : ζ2

7x1 : ζ7x2 :
−x3). We have Fix(σ14) = {(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0)} and Fix(σ7) is given by the
curve {x3 = 0}, which has genus three. Note that σ2 is symplectic.
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Example 7.4. Let X be the surface in P(3, 1, 1, 1)x,y,z,w given as the zero locus of x2 + y5z +
z5w + w5y. X admits the action of the order 14 automorphism

σ14 : (x, y, z, w) 7→ (−x, ζ5
7y, ζ

3
7z, ζ

6
7w)

whose square is symplectic and fixes the three points {(0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1)}.
The fixed locus of σ2 is the genus 10 curve {x = 0} ∩X.

7.1.2. σ2 symplectic. We now consider what happens when the involution σ7
14 is symplectic and

σ2
14 is non-symplectic. About the fixed loci of σ14 and its powers, we can prove the following:

Proposition 7.5. Let σ14 be a non-symplectic automorphism of order 14 on a K3 surface X and
assume the involution σ2 = σ7

14 is symplectic. Then Fix(σ14) consists of N14 ≤ 8 isolated points
and the possible values of N14 and (d14, d7, d2, d1) are given in Table 11 below, together with χ7 in
each case.

N14 d14 d7 d2 d1 χ7

1 0 1 8 8 17
8 1 1 2 8 10
1 1 2 2 2 3

Table 11.

Proof. By [27], the fixed locus of the symplectic involution σ2 consists of 8 isolated points. Since
Fix(σ14) ⊆ Fix(σ2), it follows that N14 ≤ 8. The invariant lattice of σ2 has rank 14 by Lemma
7.1, thus 6d7 + d1 = 14 and 6d14 + d2 = 8 by Remark 3.8. Moreover, by the topological Lefschetz
formula (applied to σ14) we have

χ(Fix(σ14)) = N14 = 2 + d14 − d7 − d2 + d1.

Further observing that we must have d7 > 0 and d1 > 0, this gives the above list of possibili-
ties, that is, if the involution σ2 is symplectic one has 3 possibilities for (d14, d7, d2, d1), namely
(0, 1, 8, 8), (1, 1, 2, 8), (1, 2, 2, 2). �

According to [12, Table 3] there are four different deformation families of K3 surfaces with these
automorphisms. Assuming general conditions, i.e. that the Picard lattice of the surface coincides
with S(σ7), we prove the following Lemma which complements Proposition 7.5 (and Table 11).

Lemma 7.6. Let σ14 be a non-symplectic automorphism of order 14 on a K3 surface and assume
the involution σ2 = σ7

14 is symplectic. Under the assumption that the Picard lattice agrees with
S(σ7) we have that the order seven automorphism σ7 = σ2

14 cannot be of type † (here we are
referring to the notation in Table 1). In particular, σ7 must fix a curve.

Proof. Since the K3 surface admits a symplectic involution, the transcendental lattice TX must be
primitively embedded in E8(2)⊕U ⊕U ⊕U [18]. By assumption, TX = T (σ7), and we see that σ7

cannot be of type †, since in that case T (σ7) = U(7)⊕ U ⊕ E8 ⊕A6. �

As a consequence of the Lemma, the four deformations families given in [12, Table 3] correspond
to families of type A, B, C and D. One can check Table 11 to know N14 in each case.

We now exhibit two examples of possibilities in Table 11: one belonging to case C, corresponding
to the second line of Table 11, and one belonging to case A and corresponding to the third line of
Table 11. Observe that in both cases, the K3 surfaces appear also in the classification of Section
3, showing that these surfaces admit both a symplectic and non-symplectic involution.

Example 7.7. (Case C) Let us consider the elliptic K3 surface X with Weierstrass equation
given by y2 = x3 + t2x + t10, t ∈ P1. The automorphism σ14 : (x, y, z, t, s) 7→ (ζ7x,−ζ5

7y,−ζ7t) is
a non-symplectic automorphism of order 14 and σ2 is symplectic. Note that Fix(σ14) consists of 8
points.

Example 7.8. (Case A) Let X be the elliptic K3 surface given by an equation of the form
y2 = x(x2 + t7 + 1), t ∈ P1. Then X admits the order 14 purely non-symplectic automor-
phism σ : (x, y, t) 7→ (x,−y, ζ7t) described in Example 3.21, which corresponds to case A1 with
(g2, k2) = (3, 2) in our classification of Section 3. Composing σ2 = σ7 : (x, y, t) 7→ (x, y, ζ7t) and
the translation

τ : (x, y, t) 7→ ((y/x)2 − x, (y/x)3 − y, t)
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by the 2-torsion section produces an automorphism of order 14, say ϕ, which is not purely non-
symplectic. By construction, ϕ7 = τ and τ is symplectic. The invariants of ϕ are as in the third
row of Table 11.

7.2. Order 21. Let σ21 be a non-symplectic automorphism of order 21 such that either σ7 = σ3
21

or σ3 = σ7
31 are symplectic. Again, we will study the two cases separately.

7.2.1. σ7 symplectic.

Proposition 7.9. If σ21 is a non-symplectic automorphism of order 21 on a K3 surface X, then
σ7 cannot be symplectic.

Proof. By contradiction, assume σ7 is symplectic. Then, by Nikulin, the fixed locus of σ7 consists
of 3 isolated points. Since Fix(σ21) ⊆ Fix(σ7), σ21 is acting with order three on Fix(σ7). So
Fix(σ21) consists of N21 = 0 or N21 = 3 isolated fixed points.

Now, because the invariant lattice of σ7 has rank 4 (Lemma 7.1), we also know d3 + d1 = 4 and
d21 + d7 = 3. Moreover, by the topological Lefschetz formula (3) (applied to σ21, σ7 and σ3) we
have 

χ21 = N21 = 2 + d21 − d7 − d3 + d1

χ7 = 2− (2d21 + d7) + 2d3 + d1 = 3

χ3 = 2− 6(d21 − d7)− d3 + d1

By Remark 4.3 and further observing that d3, d1 > 0 these give the possibilities for (d21, d7, d3, d1)
and χ3 shown in Table 12, but since χ3 = N3 + 2(1− g3 + k3) = N3 + 2(N3− 3) = 3N3− 6 we can
eliminate all cases.

N21 (d21, d7, d3, d1) χ3

3 (2,1,2,2) -4
3 (1,2,1,3) 10
3 (3,0,3,1) -18

Table 12.

�

7.2.2. σ3 symplectic. Similarly, we can prove:

Proposition 7.10. Let σ21 be a non-symplectic automorphism of order 21 on a K3 surface X and
assume σ3 is symplectic. Then Fix(σ21) consists of exactly N21 = 6 isolated points and the only
possible values for (d21, d7, d3, d1) are (1, 1, 0, 4). Moreover, Fix(σ7) is as in case A of Table 1 and
such an automorphism exists (see Example 7.11).

Proof. By Lemma 7.1 , the fixed locus of σ3 consists of 6 isolated points. Since Fix(σ21) ⊆ Fix(σ3),
it follows that Fix(σ21) consists of N21 ≤ 6 isolated fixed points. The invariant lattice of σ3 has
rank 10 by Lemma 7.1, so we also know 6d7 + d1 = 10 and 6d21 + d3 = 6. Further observing that
d7, d1 > 0, the topological Lefschetz formula (3) (applied to σ21, σ7 and σ3) gives (d21, d7, d3, d1) =
(1, 1, 0, 4), N21 = 6 and χ7 = 3.

Note that since Fix(σ21) = {6 pts} ⊆ Fix(σ7), the above implies σ7 is of type A. That is,
Fix(σ7) = E ∪ 3 pts and we must have three fixed points under σ21 lying on E. �

Example 7.11. In P(3, 2, 1, 1) we consider the surface

x2w + xy2 + yw5 + z7 = 0

with the order 21 automorphisms

σ21 : (x, y, z, w) 7→ (ζ3x, ζ3y, ζ7z, ζ3w)

The order 7 automorphism σ7 is non-symplectic and fixes the genus 1 curve {z = 0} and 3 more
points on the resolutions of the singularities (1:0:0:0) and (0:1:0:0), of type A2 and A1 respectively.
The automorphism σ7 = σ3 is symplectic.
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7.3. Order 28. Let σ28 be a non-symplectic automorphisms of order 28. We will prove in what
follows that no power of σ28 can be symplectic.

Proposition 7.12. If σ28 is a non-symplectic automorphism of order 28, then σ28 is purely non-
symplectic. In other words, no power of σ28 is symplectic.

Proof. We will assume some power of σ28 is symplectic. Since there are no symplectic automor-
phisms of (finite) order bigger than 8 by [27], we have to consider three posibilities:

Case I σ7 = σ4
28 is a symplectic automorphism of order 7; or

Case II σ4 = σ7
28 is a symplectic automorphism of order 4; or

Case III σ2 = σ14
28 is a symplectic involution.

Observe that in this last case, σ4 = σ7
28 is also symplectic.

We refer to Section 5 for the definition of (d28, d14, d7, d4, d2, d1) and recall the relations given
in Remark 5.2:

rk S(σ7) = 2d4 + d2 + d1, rk S(σ4) = 6d7 + d1, rk S(σ2) = 6(d14 + d7) + d2 + d1.

We now study the three cases separately.

Case I If σ7 is a symplectic automorphism of order 7, the action of σ∗7 on the period ωX of X
is trivial. Therefore σ∗28ωX = ζ4ωX , which implies that d4 = dimH2(X,R)ζ4 ≥ 1. Then
(σ14)∗ωX = ±ωX and since there are no symplectic automorphisms of finite order bigger
than 8 by [27], then (σ14)∗ωX = −ωX . By Lemma 7.1, the fixed locus of a symplectic
automorphism of order 7 consists of 3 isolated points. Since Fix(σ28) ⊆ Fix(σ7), then σ28

only fixes isolated points and their number is N28 ≤ 3. Moreover, σ28 acts with order 1,2
or 4 on Fix(σ7), hence N28 = 1 or 3. By Lemma 7.1, rk S(σ7) = 4; it follows by the above
formulas and (11) that

2d4 + d2 + d1 = 4

6(2d28 + d14 + d7) = 18

χ28 = N28 = 2 + d14 − d7 − d2 + d1

This gives the following list of possibilities for (d28, d14, d7, d4, d2, d1):

(1, 0, 1, 1, 1, 1), (0, 1, 2, 1, 1, 1), (0, 0, 3, 1, 0, 2), (1, 1, 0, 1, 1, 1),

(0, 2, 1, 1, 1, 1), (1, 0, 1, 1, 0, 2), (0, 1, 2, 1, 0, 2).(13)

Moreover observe that σ14 is non-symplectic, σ7 is symplectic and σ7 = (σ14)2. Thus
we can use the classification of not purely non-symplectic automorphisms of order 14 given
in Proposition 7.2. In this case, the possible values of (a′, b′, c′, d′) = (d14, d7, d2, d1) are
(2, 1, 2, 2), (3, 0, 3, 1) and the relations with (d28, d14, d7, d4, d2, d1) are

d28 = a′, d14 + d7 = b′, c′ = d4, d
′ = d2 + d1.

The vectors in (13) do not satisfy the above conditions, thus it is not possible for σ7 to be
symplectic.

Case II Assume σ4 is symplectic. Since σ∗4ωX = ωX , then σ∗28ωX = ζ7ωX , which implies d7 ≥ 1.
By Lemma 7.1, the fixed locus of σ4 consists of 4 isolated points. Since Fix(σ28) ⊆ Fix(σ4),
it follows that σ28 only fixes N28 isolated points with N28 ≤ 4. Moreover, σ28 acts with
order 1 or 7 on Fix(σ4), hence N28 = 4. By Lemma 7.1, rk S(σ4) = 8, thus it follows from
the above formulas and (11) that

6d7 + d1 = 8

12d28 + 6d14 + 2d4 + d2 = 14

χ28 = N28 = 2 + d14 − d7 − d2 + d1 = 4

The only solution is (d28, d14, d7, d4, d2, d1) = (0, 1, 1, 4, 0, 2). Observe that in this case
σ2

28 = σ14 is non-symplectic. By (11), we can compute χ14 = −6 and this is impossible
since by [9], the Euler characteristic of the fixed locus of a non-symplectic automorphism
of order 14 is bigger than 0. Thus there are no possibilities for (d28, d14, d7, d4, d2, d1) and
hence σ4 can’t be symplectic.
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Case III We now show that there is no K3 surface with a non-symplectic automorphism σ28 such
that σ4 = σ7

28 is non-symplectic and σ2 = σ14
28 is symplectic. Assume the involution σ2 is

symplectic and σ4 is non-symplectic. Thus

σ∗2ωX = ωX , σ∗28ωX = ζi14ωX , σ∗4ωX 6= ωX .

Thus we are interested in odd i’s, such that σ∗4ωX = −ωX . In particular, d14 ≥ 1. By
Lemma 7.1, the fixed locus of σ2 consists of 8 isolated points and since Fix(σ28) ⊆ Fix(σ2),
it follows that σ28 only fixes N28 isolated points and N28 ≤ 8. Moreover, σ28 acts on
Fix(σ2) with order 1, 2, 7 or 14; it follows that either N28 is even or N28 = 1. By Lemma
7.1, rk S(σ2) = 14, thus it follows from the above formulas and (11) that

6d14 + 6d7 + d2 + d1 = 14

12d28 + 2d4 = 8

χ28 = N28 = 2 + d14 − d7 − d2 + d1 = 4

This gives the following list of possibilities for (d28, d14, d7, d4, d2, d1):

(14) (0, 2, 0, 4, 1, 1), (0, 1, 1, 4, 1, 1), (0, 2, 0, 4, 0, 2), (0, 1, 1, 4, 0, 2), (0, 1, 0, 4, 5, 3).

Moreover, observe that σ14 is non-symplectic, σ2 is symplectic and σ2 = (σ14)7. Thus we
can use the classification of not purely non-symplectic automorphisms of order 14 given
in Proposition 7.2. In Proposition 7.5 we found three possible vectors (a′, b′, c′, d′) =
(d14, d7, d2, d1):

(0, 1, 8, 8), (1, 1, 2, 8), (1, 2, 2, 2)

and the relations with (d28, d14, d7, d4, d2, d1) are, as before,

d28 = a′, d14 + d7 = b′, c′ = d4, d
′ = d2 + d1.

The vectors in (14) do not satisfy the above conditions, thus it is not possible for σ2 to be
symplectic.

Therefore, we proved that a non-symplectic automorphism of order 28 is necessarily
purely non-symplectic.

�

7.4. Order 42. Let σ42 be a non-symplectic automorphism of order 42. We will prove in what
follows that σ14

42 = σ3 can be symplectic, but any other power σk42, where k = 6, 7 or 21 must be
non-symplectic. Note that there are no symplectic automorphisms of (finite) order bigger than 8
by [27].

We first prove the following:

Proposition 7.13. Let σ42 be a non-symplectic automorphism of order 42 on a K3 surface X, and
assume σ3 = σ14

42 is symplectic. Then Fix(σ42) consists of 2 or 4 isolated points. In the first case
Fix(σ14) is as in case A2(9,0) of Table 2; and, in the second, it is as in case A1(9,1). Moreover,
both cases exist (see Example 7.14 and Example 7.15).

Proof. Let σ = σ42. If σ14 = σ3 is symplectic. Then σ2 = σ21 is a non-symplectic automorphism
of order 21 such that σ7

21 is symplectic. Therefore, we can apply Proposition 7.10 to conclude that
σ21 fixes exactly 6 points and σ7 = σ6 is of type A of Table 1.

Now, if we let a = d42 + d21, b = d14 + d7, c = d6 + d3, d = d2 + d1, and di
.
= dimH2(X,R)ζi for

i = 42, 21, 14, 7, 6, 3, 2, 1, then Proposition 7.10 also gives us (a, b, c, d) = (1, 1, 0, 4).
Combining the above with the Topological Lefschetz formula (3) applied to the powers of σ as

in (12) (and imposing the relations in Remark 6.2) gives the following list of possible values for
(d42, d21, d14, d7, d6, d3, d2, d1):

(1, 0, 1, 0, 0, 0, 2, 2), (1, 0, 1, 0, 0, 0, 1, 3)

Note that σ∗ω = ζi14ω for some 1 ≤ i ≤ 13, and if i is even (resp. i = 7), then σ7 (resp. σ2)
is symplectic, but the latter is impossible by Proposition 7.10 and Lemma 7.1. Thus, i is odd
(6= 7) and d14 ≥ 1. In other words, σ3 = σ14 is purely non-symplectic of order 14. In particular,
χ2 ∈ {0,−16,−14}, by Proposition 3.1.

In addition, note also that using (12), the first vector gives us (χ42, χ21, χ14, χ7, χ6, χ3, χ2) =
(2, 6, 5, 3, 2, 6,−16), while the second gives (χ42, χ21, χ14, χ7, χ6, χ3, χ2) = (4, 6, 7, 3, 4, 6,−14).
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Therefore, Fix(σ) consists of 2 or 4 isolated points. In the first case, σ14 is of type A(9,0) of
Table 2 and, in the second, σ14 is of type A(9,1). �

Example 7.14. In P(4, 2, 1, 1)x,y,t,s we consider the K3 surface given by

x2 + s7t+ y4 + yt6

with the order 42 automorphism

σ42 : (x, y, z, w) 7→ (−x, y, ζ7ζ3t, ζ2
3s).

The order 14 automorphism σ14 is purely non-symplectic of type A2(9, 0), i.e. σ7 fixes the genus
1 curve {s = 0} and 3 points, two of them on the resolutions of the singularities of (1 : −1 : 0 : 0)
and (1 : 1 : 0 : 0) of type A1. Moreover, we have that σ2 fixes a genus 9 curve {x = 0}. The
automorphism σ14 = σ3 is symplectic.

Example 7.15. In P(5, 3, 1, 1)x,y,t,s we consider the K3 surface given by

x2 + s7y + y3t+ t10

with the order 42 automorphism

σ42 : (x, y, z, w) 7→ (−x, ζ3y, t, ζ7ζ2
3s).

The order 14 automorphism σ14 is purely non-symplectic of type A1(9, 1), i.e. σ7 fixes the genus
1 curve {s = 0} and 3 points, two of them on the resolutions of the singularities of (0 : 1 : 0 : 0)
of type A2. Moreover, we have that σ2 fixes a genus 9 curve {x = 0} and a rational curve. The
automorphism σ14 = σ3 is symplectic.

In contrast, we further prove:

Proposition 7.16. Let σ42 be a non-symplectic automorphism of order 42 on a K3 surface X.
Then σk42 is non-symplectic for k = 6, 7, 21.

Proof. By contradiction, assume σ = σ42 is a non-symplectic automorphism of order 42 such that
one of the powers σk42 is symplectic with k = 6, 7 or 21. That is, assume there exists a k ∈ {6, 7, 21}
such that the action of σ on ωX is given by multiplication by ζik for some 1 ≤ i < k.

k = 6 If σ6 = σ7 is symplectic, then σ2 = σ21 is a non-symplectic automorphism of order 21 such
that σ3

21 is symplectic. But this contradicts Proposition 7.9.
k = 7 If σ7 is symplectic, then σ14 is also symplectic. And since Fix(σ) ⊂ Fix(σ7) ⊂ Fix(σ14),

the proof of Proposition 7.13 implies we must have

(d42, d21, d14, d7, d6, d3, d2, d1) = (1, 0, 1, 0, 0, 0, 2, 2)

where di
.
= dimH2(X,R)ζi for i = 42, 21, 14, 7, 6, 3, 2, 1. But for this vector we do not have

d7 ≥ 1. Therefore, σ7 cannot be symplectic.
k = 21 Finally, assume σ21 = σ2 is symplectic. Then σ∗ωX = ζi21ωX for some 1 ≤ i ≤ 20. If i = 7,

then σ3 is symplectic, which is impossible by [27]. If i = 3, then σ7 would be symplectic,
which we showed is not possible (case k = 7). Therefore, d21 ≥ 1.

Now, observe σ2 = σ7
14 so that we can use our classification results from Section 7.1 to

conclude σ2 cannot be symplectic.
More precisely, applying Proposition 7.5, and letting a = d42 + d14, b = d21 + d7, c =

d2 + d6, d = d3 + d1, we find that the possible values of (a, b, c, d) are (0, 1, 8, 8), (1, 1, 2, 8)
or (1, 2, 2, 2). But for these three vectors, if we use (12) and Remark 6.2 together with the
fact that d21, d1 ≥ 1, χ2 = 8, χ42 ≤ 8 and

22 = 12(d42 + d21) + 6(d14 + d7) + 2(d6 + d3) + d2 + d1

then we find no possible solutions for (d42, d21, d14, d7, d6, d3, d2, d1).

�

8. The Néron–Severi lattice

We conclude with a description of the Néron–Severi lattice of a K3 surface X admitting a
purely non-symplectic automorphism σ = σn of order n = 14, 21, 28 or 42. Under the assumption
of generality we have:

(15) r
.
= rk NS(X) = 22− dn · ϕ(n)
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and using the results obtained in the previous sections we are able to describe NS(X) in every
case. Since the invariant lattices S(σi) are all primitively embedded in NS(X) by [27, Section 3],
if we can find one power i such that the corresponding invariant lattice has the expected rank r,
then we can conclude we have equality S(σi) = NS(X).

We will call a pair (X,σn) satisfying (15) as above a general pair and we will use the classification
of automorphisms of prime orders in [9] and [28] in order to describe explicitly the lattices NS(X).

Our results are presented in Propositions 8.1 and 8.4 below:

Proposition 8.1. Let (X,σ14) be a general pair. For each possibility listed in Table 5, with the
exception of case C1(0, 2) (see Remark 8.3), the Néron–Severi lattice NS(X) is as in Table 13
below.

χ14 χ7 χ2 (d14, d7, d2, d1) NS(X)

A1 7 3 -14 (3,0,1,3) S(σ7) = U ⊕K7

A1 7 3 0 (2,1,0,4) S(σ2)
A2 5 3 -16 (3,0,2,2) S(σ7) = U ⊕K7

B3 14 10 0 (2,0,0,10) S(σ7) = U ⊕ E8

C1 6 10 -8 (2,0,4,6) S(σ7) = U(7)⊕ E8

C2 4 10 -10 (2,0,5,5) S(σ7) = U(7)⊕ E8

C3 8 10 -6 (2,0,3,7) S(σ7) = U(7)⊕ E8

D2 3 17 -4 (1,0,8,8) S(σ7) = U ⊕ E8 ⊕A6

D3 7 17 0 (1,0,6,10) S(σ7) = U ⊕ E8 ⊕A6

D8 13 17 6 (1,0,3,13) S(σ7) = U ⊕ E8 ⊕A6

Table 13.

Proof. For n = 14, one has ϕ(14) = 6 and by Remark 3.8, rk S(σ7) = d2 +d1, rk S(σ2) = 6d7 +d1.
By (15) one has

• if d14 = 3, rk NS(X) = 4:
• if d14 = 2, rk NS(X) = 10;
• if d14 = 1, rk NS(X) = 16.

and we get that the Néron–Severi lattice NS(X) is as in Table 13. �

Remark 8.2. If σ = σ14 is a purely non-symplectic automorphism of order 14 on a K3 surface
X such that σ2 is of type D, then NS(X) = S(σ2). In fact, we know that r = rk NS(X) ≥ 16 =
rk S(σ2), hence the rank ` of the transcendental lattice NS(X)⊥ is at most 6. But since ` must be
divisible by ϕ(14) = 6, it must be the case that ` = 6 and r = 16.

Remark 8.3. For a general pair (X,σ14) such that Fix(σ14) is of type C1(0, 2), none of the
invariant lattices S(σi14) have the expected rank. Thus we are not able to compute the Néron–
Severi lattice of the general K3 surface in this case.

When n = 21, 28 or 42, we have that ϕ(21) = ϕ(28) = ϕ(42) = 12 and for all cases dn = 1, thus
rk NS(X) = 22− 12 = 10. We prove:

Proposition 8.4. If n = 21, 28 or 42, the description of the lattice NS(X) for a general pair
(X,σn) is as follows:

(i) If n = 21, the possibilities are shown in the following table:

Type σ21 χ21 χ7 χ3 (d21, d7, d3, d1) NS(X)

C(3,2,3) 10 10 3 (1,0,1,8) S(σ7) = U(7)⊕ E8

C(3,1,2) 7 10 0 (1,0,2,6) S(σ7) = U(7)⊕ E8

C(3,0,1) 4 10 -3 (1,0,3,4) S(σ7) = U(7)⊕ E8

B(3,3,4) 13 10 6 (1,0,0,10) S(σ7) = U ⊕ E8

(ii) Similarly, if n = 28 we have the following table of possibilities:
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Type σ14 χ2 χ4 χ7 χ14 χ28 (d28, d14, d7, d4, d2, d1) NS(X)

A1(3,2) 0 12 3 7 5 (1,0,1,0,0,4) S(σ2)
A1(3,2) 0 -4 3 7 3 (1,1,0,0,2,2) S(σ2)
B3(6,5) 0 12 10 14 12 (1,0,0,0,0,10) S(σ2)

(iii) And if n = 42 we have:

Type σ14 χ21 χ7 χ3 (d42, d21, d14, d7, d6, d3, d2, d1) NS(X)

C1 10 10 3 (1,0,0,0,1,0,2,6) S(σ7) = U(7)⊕ E8

C3 7 10 0 (1,0,0,0,1,1,1,5) S(σ7) = U(7)⊕ E8

B3 13 10 6 (1,0,0,0,0,0,0,10) S(σ7) = U ⊕ E8

Proof. It follows from Remarks 4.3, 5.2 and 6.2. �

Remark 8.5. We observe that when n = 28 and Fix(σ14) is of type A1(3, 2), then the 2-elementary
lattice S(σ2) has invariants (r, a) = (10, 6). But, a priori, the invariant δ is not unique. By [18,
Theorem 0.1], we have that δ = 0 if and only if X also admits a symplectic involution.
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