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ABSTRACT. In this paper we present a complete classification of non-symplectic automorphisms
of K3 surfaces whose order is a multiple of seven by describing the topological type of their fixed
locus. In the case of purely non-symplectic automorphisms, we provide new results for order 14
and alternative proofs for orders 21, 28 and 42, so that we can unify in the same paper the results
on these automorphisms. For each of these orders we also consider not purely non-symplectic
automorphisms and obtain a complete characterization of their fixed loci. Several results of our
paper were obtained independently in the recent paper [12] by Brandhorst and Hofmann, but
the methods used in the two papers are completely different.

1. INTRODUCTION

An automorphism of a K3 surface induces an action on the one-dimensional space of holomorphic
2-forms on the surface, so there are two kinds of automorphisms of K3 surfaces: symplectic and
non-symplectic ones. The automorphism is called symplectic if the induced action on the 2-form is
trivial. Otherwise, it is called non-symplectic, in which case one distinguishes between purely non-
symplectic automorphisms, meaning the action on the volume form is given by multiplication by a
primitive root of unity, and not purely non-symplectic automorphisms, meaning some (non-trivial)
power of the automorphism is symplectic.

It is known [27, Theorem 0.1] that the rank of the transcendental lattice of a K3 surface carrying
a purely non-symplectic automorphism of order n is divisible by the Euler totient function of n,
which implies ¢(n) < 20. Moreover, all positive integers n # 60 satisfying such property occur as
orders of purely non-symplectic automorphisms by [24, Main Theorem 3]. For each possible n, it
is thus a natural and fundamental problem to obtain a complete classification of non-symplectic
automorphisms of order n in terms of their fixed locus, and many people have contributed to the
development of the subject.

A classification of non-symplectic automorphisms of prime order p was completed by Nikulin
in [28] when p = 2, and by Artebani, Sarti and Taki in [7], [29], [9] when p > 2. The study of
non-symplectic automorphisms of composite order is much more intricate, one of the reasons being
that lattice theory works less well in these cases. Results for some possible orders can be found in
8], [13], [5], [6], [11], [1], [3], [2] and [12], among others.

In this paper, we contribute to the classification of non-symplectic automorphisms of orders
that are multiples of seven by describing the topological type of their fixed locus. For purely non-
symplectic automorphisms, we provide new results for order 14 and alternative proofs for orders
21,28 and 42, recovering the results in [11]. Observe that 42 is the maximum possible order which
is a multiple of seven. We also consider the not purely non-symplectic case and obtain a complete
characterization for each possible order, which is completely new.

Our main result in the case of purely non-symplectic automorphisms is summarized below in
Theorem A. We point the reader to Propositions 3.1, 4.1, 5.1 and 6.1 for the details.

Theorem A. Let 0, be a purely non-symplectic automorphism of order n € {14,21,28,42} on a
K3 surface X. Then the fized locus of oy, is not empty, and Fix(o,,) and the fized loci of its powers
are described by Tables 2, 6, 8, 9.

We observe that an analogue of Theorem A has also been obtained independently, and via a
different method, by Brandhorst and Hofmann in [12, Theorem 1.4]. The approach we use here
is more geometric. In particular, we show the different possibilities for the fixed loci are indeed
realizable by explicitly constructing examples that have the desired topological types. Examples
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in Sections 4, 5 and 6 were already given in [11], but we provide here a different proof and a more
detailed description.

In the not purely non-symplectic case, we also consider automorphisms of orders 14, 21, 28, and
42 and again we provide a complete classification. In each case we show that not every power of
the automorphism can be symplectic and our main result in this direction is given by Theorem B
below. The details are explained in Section 7.

Theorem B. Let o, be a non-symplectic automorphism of order order n € {14,21,28,42} on a
K3 surface X.

(i) If n = 14, then both its square and its 7-th power can be symplectic. In each case, the fized
loci of 014 and its powers are described in Propositions 7.2 and 7.5.
(ii) If n = 21, its cube is necessarily non-symplectic, whereas o3, can be symplectic and the fized
loci of 091 and its powers in this case are described in Proposition 7.10.
(iii) If n = 28, then oy, is necessarily purely non-symplectic.
(iv) If n = 42, then every power o%y is necessarily non-symplectic except for k = 14. In this case,
the fized loci of 049 and its powers are described in Proposition 7.13.

To prove Theorems A and B we apply a unified approach to all orders. A central idea consists
in observing that the study of the fixed locus of ¢, can be reduced to a local analysis of the fixed
loci of (some of) its powers. In particular, we rely on the classification result for order 7 in [9],
and some of the tools we use are the Hodge index theorem and the holomorphic and topological
Lefschetz formulas (2) and (3). Moreover, the examples we construct are often given in terms of
elliptic fibrations (see Definition 2.3).

The structure of the paper is the following: Section 2 is devoted to presenting background ma-
terial, introducing notation and recalling some standard results on automorphisms on K3 surfaces.
In Section 3 we classify purely non-symplectic automorphisms of order 14 in terms of the topo-
logical type of their fixed locus. Our main result is outlined in Proposition 3.1 and Tables 2 and
4. Moreover, we show the different possibilities indeed occur giving explicit examples. Section 4
(resp. 5, 6) provides the classification of purely non-symplectic automophism of order 21 (resp.
28, 42). The topology of their fixed locus is summarized in Tables 6 (resp. 8, 9). In Section
7 we then consider the case of not purely non-symplectic automoprhisms and obtain a complete
characterization for each possible order (14, 21, 28 and 42). Finally, in Section 8 we study the
Néron—Severi lattice of a K3 surface carrying a purely non-symplectic automorphism of order a
multiple of seven.

All computations in this paper are carried out using MAGMA [10] and we work over C through-
out.
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2. BACKGROUND AND NOTATION

A K3 surface is a compact, complex surface which is simply connected and has trivial canonical
bundle. An automorphism of finite order on a K3 surface is called non-symplectic if it acts non-
trivially on the volume form. The automorphism is called purely non-symplectic if the action is
given by multiplication by a primitive n-th root of unity.

Notation 2.1. Throughout the paper we will adopt the following notations:

o wx will denote a nowhere vanishing holomorphic 2-form on a K3 surface X;
e (, will denote an n-th root of unity;
e o, will denote an automorphism of (finite) order n on a K3 surface X. In particular, given

On, if m divides n, we will also denote Ui by om;

U will denote the unique even unimodular hyperbolic lattice of rank 2;
Ai,Dj, Es, E7, Eg,i > 1,5 > 4 will denote the even, negative definite lattices associated
with the Dynkin diagrams of the corresponding types;
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e given a lattice L, L(k) will denote the lattice having as bilinear form the one on L multiplied
by k, keZ;

o S(oy,) will denote the invariant lattice: {x € H*(X,Z)| (0,)*(x) = x}, which is primitively
embedded in the Néron—Severi lattice NS(X) of the surface X, by [27].

o K, will denote the lattice of rank 2 whose bilinear form is given by the matriz

Given any purely non-symplectic automorphism o,, with n > 3, by the Hodge Index Theorem,
its fixed locus Fix(o,,) consists of a disjoint union of smooth curves and isolated points:

(1) Fix(o,) =Cy, UR U...URy, U{p1,...,pn,}

where Cy,, is a smooth curve of genus g, > 0 and R; are rational curves and p; are isolated fixed
points, whose total number is N,,.

By [27], the action of o, can be locally linearized and diagonalized around a fixed point so that
o, acts as multiplication by the matrix

<1+i 0
Aip = [ nO Cn_i] such that 0 < i < n,

and we say that such a fixed point is of type A;,. The total number of fixed points of type A; ,
will be denoted by m;,. Observe that if i = 0, one of the eigenvalues of Ay, is 1, thus the fixed
point is not isolated but it belongs to a fixed curve.

We may use the holomorphic Lefschetz formula for o, to compute the Lefschetz number L(o},)
in two ways. First of all, we have:

2
L(on) = Y (=1)'tr(o} ] mi(x.0x) = 1+
i=0

where we are assuming o} wx = (,wx. On the other hand, we have:

n—2
L(Un) = ’ +an :

i:Zl det(I — o|Tx) (1—2¢n)?

where «, = Z (¢9(C) —1). Equating these two expressions we obtain a linear system of
CCFix(oy)
equations that allows us to determine the possible values for m;,, and o,,:
n—2
_ min 1 + Cn
(2) 1+(¢0 7 = — — tan .
! ;ﬂ— D [ R (T

The topological Lefschetz formula, in turn, can be used to compute the Euler characteristic of
the fixed locus of o,,:

(3) xn = X(Fix(0y,)) = 2 + tr(o} | H* (X, R)).

Both (2) and (3) will be used extensively throughout the paper in order to perform a local
analysis of the action of non-symplectic automorphisms with order a multiple of seven. It is this
local analysis that will lead us to a complete classification of such automorphisms, in terms of the
topological type of their fixed locus.

We will also make extensive use of the already known classification of non-symplectic automor-
phisms of order seven, given by Theorem 2.2 below:

Theorem 2.2. [9, Section 6] If X is a K3 surface and o7 a non-symplectic automorphism of order
7, then the possibilities for the fized locus of o7 and the invariant lattice S(o7) are listed in Table
1 and all cases exist.

mi7 | Moy | may | g7 | kr S(o7)
A 2 1 0 1 0 Uas K,
T 2 11 [ 0 -[-] 00ek
Bl 7 | 5 | 1 |11 U®aEs
cl 7 [ 3 1 [0]0] UMeEs
D 6 5 2 0| 1 |UdEsD Ag

TABLE 1. Order 7
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For each possibility in our classification, the existence of a K3 surface carrying an automorphism
with fixed locus having the desired topological type will then be obtained via the construction of
explicit examples. Most of the examples will arise from elliptic fibrations. Therefore, we also recall
some generalities about elliptic K3 surfaces, and we refer the reader to [25] for details.

Definition 2.3. An elliptic fibration on a projective surface X consists of a surjective proper
morphism 7 : X — C (with connected fibers) such that the generic fiber is a smooth curve of genus
one, and we further assume there exists a section s : C — X (i.e. mos=1idc).

A K3 surface X admits an elliptic fibration if and only if there exists a primitive embedding of
the hyperbolic lattice U into NS(X), the Néron—Severi lattice of the surface. Any elliptic fibration
can be reconstructed from its Weierstrass model, and in the case of K3 surfaces such model is given
by an equation of the form:

(4) y* =2+ A(t)r + B(t), teP!

where A(t) and B(t) are polynomials in C[t] of degrees 8 and 12, respectively.

Given an elliptic fibration, a chosen section s : C — X is called the zero section; and one
identifies the map s with the curve s(C) on X. In the model given by (4), the zero section is
t(0:1:0).

We further observe that, using (4), the volume form can be written locally as

dx N dt
2y

Moreover, the discriminant of the fibration is the polynomial of degree 24:

A(t) = 4A(t)* + 27B(t)?

and each zero of A(t) corresponds to a singular fiber of the fibration. The possible singular fibers
have been classified by Néron and Kodaira [26], [20], [21].

3. ORDER 14

Let 014 be a purely non-symplectic automorphism of order 14. As described in Section 2, the
local actions of 014 at fixed points are of seven types. Points of type A 14 lie on a fixed curve, and
isolated fixed points are of type A; 14 for ¢ = 1,...,6. Thus, the fixed locus of 014 can contain both
fixed curves and isolated fixed points of six different types. The goal of this section is to prove the
following classification result:

Proposition 3.1. The fixed locus of a purely non-symplectic automorphism of order 14 on a K3
surfaces is not empty and it consists of either:

(i) The union of N14 isolated points, where N14 € {3,4,5,6,7}; or

(i) The disjoint union of a rational curve and N1y isolated points, where N1y € {6,11,12}.

Moreover, all these possibilities occur, and in each case o7 = o3, fizes at least one curve. A more
detailed description is given in Tables 2 and 5 below, where oo denotes the involution o7,.

Fix(o14) Fix(o7) Fix(o2) Ezample
A1(9,1) {p1,...,p7} EU{p1,p2,p3} CoUR 3.20
AI(S’,Q) {p17...7p7} Eu{phpQ,pg} CsU Ry UR> 3.21
A2 {p1,.--,ps5} EU{pi,q1,q} Cy 3.22
B3 Ru{pl,...,plz} EURU{p1,...ps} Ce UWRURU...URy 3.28
C1(6,1) {p1,.--,p6} RU{pi,...pa,q1,...,qa} Ce UR' 3.24
01(7,2) {p17...7p6} Ru{pl,..‘p4,ql,...,Q4} C7UR1UR2 3.25
01(0,2) {pl,...,ps} Ru{pl,...p4,q1,...,q4} R1|_|R2|_|R3 3.26
c2 {p1,~~,p4} Ru{pl,pg,ql.“qt;} 06 3.27
c3 RU{pi,...,pe} RU{p1,...ps,q1,q2} CsURUR 3.28
Dz {p1,p2,ps} RiUR:U{pi,...,pi3} Cs 3.29
D38 {pl,...,p7} R1|_|R2U{pl,pz,p3,ql...,qlo} CgURIURN 3.30
D& Ru{pl,...,pu} RHRIH{pl,...,pg,ql,...,q;;} 03|_|RL|R1L|...R4 3.81

TABLE 2. Order 14
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The proof of Proposition 3.1 is done in several steps. First, in Section 3.1 we use formulas (2)
and (3) in order to generate Table 4, which provides a list of possibilities for the fixed locus of
014 and its powers. In Section 3.2 we then exclude many of these possibilities using geometric
arguments, and produce a new table - Table 5. Finally, in Section 3.3 we show all the remaining
cases listed in Table 5 are indeed admissible by constructing explicit examples that have the desired
topological types.

3.1. Generation of table of possibilities. Since 014 is purely non-symplectic, its square o7 :=
0%, is a non-symplectic automorphism of order 7. Moreover, Fix(c14) C Fix(07) and in particular
each curve contained in Fix(o14) is also contained in Fix(o7).

Now, for all i = 1,...,6 we have that (4;14)® = A, for some j € {0,1,2,3}. For instance,
AiM = A 7. Thus, fixed points of 014 that are of type Ay 14 are also points of type A; 7 for o7.
Similarly:

e points of type As 14 for 014 are of type A; 7 for o7,
e points of types As 14 and A4 14 for 014 are of type Ag 7 for o7, and
e points of type As 14 for 014 are of type As 7 for o7.

In particular, the following inequalities hold:

mii4 +ms14a <My
(5) Mo 14 +Mmg14 < Moy
ms 14 <mg3z

And we further observe the following:

Remark 3.2. Note that AZ,, = Aoz, which shows that points of type Ag 14 lie on a curve fized
by o7. Therefore, if meg 14 # 0, then there are curves in Fix(o7) which are not in Fix(o14).

Remark 3.3. A rational curve R invariant for an automorphism o, is either pointwise fixed or
R admits two isolated fixed points. In the latter case, the points are of consecutive types, i.e., if
one point is of type A; , then the other is of type A;i11 . If n =14, as in [8, Lemma 4], one can
prove that, given a tree of rational curves invariant for o14, the distribution of types of isolated
fixed points is as shown in Figure 1. This can be done in a similar way for n = 21,28, 42.

Ap 14 Az 14 Ay 1 Ag,14 A4 Ay 4 Az 14 Ao, 14

)

Aj1a Az 14 As 14 As 14 Az 14 Aj 14

)

FIGURE 1. Actions of 014 and o7 on a tree of rational curves. Thin curves are
invariant but not pointwise fixed. Thick curves are pointwise fixed by o14. The
gray points are isolated fixed points for both ¢14 and o7, and the two black points
in the middle lie on a curve fixed by o7 only.

As a consequence, from (5) and the previous remarks, if we apply formula (2) to 014 we obtain
the following linear system of equations:

mi,14a = 4ogg — 2my 14 + M5 14
(6) mo 14 = 1—2mg5 14 + 3my 14
me,14 = 8Mya14 +4 —2m3 14 — 20014 — 4ms 14

This allows us to prove the following two Lemmas.
Lemma 3.4. The value of a4 is either 0 or 1.

Proof. Since Fix(o14) C Fix(o7), a curve that is pointwise fixed by 014 must be contained in
Fix(o7). Thus, according to Table 1, we must have a4 € {0,1,2}. Assume a14 = 2. Then o4
fixes at least two rational curves. Therefore the fixed locus under o7 is described by the last row
of Table 1, and both rational curves in Fix(o7) are fixed by 014. By Remark 3.2, mg 14 = 0. But
plugging in a4 = 2 and mg14 = 0 with the inequalities (5) with the values of mq 7, mo 7, ms 7
from last line of Table 1 into (6) yields an unsolvable system. Therefore a4 can only be equal 0
or 1. (]
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Lemma 3.5. There is no purely non-symplectic automorphism o14 of order 14 such that the fized
locus of o7 is described by the second row of Table 1.

Proof. In this case, no curves are fixed by o7 and hence no curves are fixed by o14. Thus a4 = 0.
But a MAGMA calculation shows that in this case a solution of (6) would have mg 14 = 4, which
would imply that o14 fixes a curve, and so this case cannot occur. O

In fact we can completely describe what are the possible solutions to (6), i.e. what are the
possibilities for the vector m = (m1,14, M2,14, M3 14, M4, 14, M5,14, Me 14) and for the value of aqy.
Organizing the possibilities according to the fixed locus of o7 = 0%, we prove:

Proposition 3.6. If 014 is a purely non-symplectic automorphism of order 14 on a K3 surface,
then the possible vectors m = (mq,14,M2,14, M3 14, Ma,14, M5,14, M6 14) Satisfying (6) are listed in
Table 3 below. The symbol x means that the action on the elliptic curve E is a translation.

In particular, we obtain a list of possibilities for the fixed locus of o14.

curves fixed by 014

Q
N

mi,14 M2,14 M3,14 M414 M514 M6,14
Al 0 0 0 1 2 4
A2
B1
B1*
B2
B2*
B3
B4
B4*
C1
C2
C3
D1
D2
D3
D4
D5
D6
D7
D8

== =0 OO0 OO RFEFEOOOO OO

W Wk OO OOk OOk kWO oo olo
N R~ O+, OO FROIFRPRRINRE~OO|IR
NNOODODONNRF R RFRFRRFERFRRFERFRRFRFRO
HNO R OFORFROOFOORFOORRO
H W ONONONODONOOFOONDNO
NNDNNERBROOIONNOOERDNDNDDNDN| &
T s s s syl gl e s

TABLE 3.

Proof of Proposition 3.6. We consider each row of Table 1:

Case A This corresponds to the case in which the fixed locus of o7 is described by the first row of
Table 1 and Fix(o7) consists of a genus one curve E, so we only need to determine whether
014 itself fixes E. In both cases, ay4 = 0 and by (5) ms314 = 0. A MAGMA calculation
shows that the only vectors m which satisty (6) with a14 = ms314 = 0 are (0,0,0,1,2,4)
and (0,1,0,0,0,4). By Remark 3.2, 014 does not fix E.

Case B When Fix(o7) is described by the third row of Table 1, the automorphism o7 fixes a genus
one curve F and a rational curve R. We analyze this case by considering the possibilities
for Q14 and me,14-

First, suppose Fix(o14) contains no curves, so 014 fixes neither R nor E; in this case,
ayq4 = 0. Since 014 acts as an involution on E, by the Riemann-Hurwitz formula it has
either four fixed points (coming from P — —P after a choice of point at infinity) or no
fixed points (coming from P +— P + T where T is a 2-torsion point). The action on R has
2 fixed points, so mg 14 is either 6 or 2. A MAGMA calculation applying the constraints
from (6) shows that the possibilities for m are (0,0,1,1,2,2) and (0,1,1,0,0,2).

Second, suppose that E C Fix(o14) and R ¢ Fix(o14); in this case, aq4 = 0 and
me,14 = 2. The possibilities for m in this case are (0,0,1,1,2,2) and (0,1,1,0,0,2).

Next, if R C Fix(014) and E ¢ Fix(014), 014 fixes either none or four points on E, so
a4 = 1 and mg 14 = 0 or 4, and the possibilities for m are (3,2,1,1,1,4) and (4, 1,1,0,0,0).

Lastly, if EL/R C Fix(o14), all curves fixed under o7 are also fixed under 014, so a4 = 1
and meg 14 = 0, and the only possibility is m = (4, 1,1,0,0,0).
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Case C In this case, the only curve fixed by o7 is a rational curve R. If 014 does not fix R, then

a4 = 0 and me 14 = 2 and the solutions of (6) for m are (0,0,1,1,2,2) and (0,1,1,0,0, 2).
On the other hand, if 014 fixes R, then ay4 = 1 and mg 14 = 0, and the only possibility
for m is (4,1,1,0,0,0).

Case D Finally, if the fixed locus of o7 is described by the last row of Table 1, the curves fixed by
o7 are two rational curves R; U Ry. First, suppose neither Ry nor Ry is fixed by 014, thus
a14 = 0. Then, either 014 exchanges Ry and R, or 014 acts nontrivially on Ry and Rs. If
Ry and Ry are exchanged (hence fixing no points on either curve), then mg 14 = 0 and the
possibilities for m are (0,0,2,1,2,0) and (0,1,2,0,0,0). Otherwise, there are a total of 4
points fixed on these curves, so mg 14 = 4 and the possibilities for m are (0,0,0,1,2,4) and
(0,1,0,0,0,4).

If 014 fixes one rational curve and acts nontrivially on the other, ai4 = 1 and mg 14 = 2.
Possibilities for m are (0,0,1,1,2,2), (0,1,1,0,0,2), (3,2,2,1,1,2) and (3,1,2,2,3,2). By
Lemma 3.4, 014 does not fix both R; and Rs.

]

We also observe the following:

Proposition 3.7. If 014 is a purely non-symplectic automorphism on a K3 surface such that
o7 = a3, is of type B (see Table 1), then 14 is of type B3.

Proof. Let X be a K3 surface and 014 a purely non—symplectic automorphism of order 14 acting
on X. Assume we are in case B so that o7 fixes a genus 1 curve, a rational curve and eight isolated
points. By [9, Thm. 6.3] X admits an elliptic fibration with a reducible fiber of types IT* at
t = 0o, a smooth fiber at ¢t = 0 and 14 singular fibers of type I;. The automorphism o7 fixes the
fiber over 0 and the central component of the fiber IT%; all eight isolated points of o7 lie on the
fiber IT*.

Since o7 fixes the genus one curve, the fibration is o7-invariant. Thus the fibers over ¢ = 0 and
t = oo are preserved. The IT* fiber does not admit a reflection, and so we can conclude that the
central component must be fixed by o14. Moreover, the eight isolated fixed points of o7 are also
isolated and fixed by o14. Table 3 shows that the only case with N4 > 8 is case B3. We also
observe that, because mg 14 = 4, the automorphism 014 acts as an involution on the genus one
curve with four fixed points. O

Now, in order to better understand the different fixed loci listed in Table 3, the next step in our
approach consists in further studying the fixed locus of the involution o],, and the eigenspaces of
oty in H2(X,C). We use the following notation:

d; = dim H*(X,C)¢,,i = 1,2,7,14.
In particular, we have
22 = 6dy4 + 6d7 + do + d;.
Remark 3.8. Observe that rk S(o14) = dy and vk S(o7) = ds + dy and vk S(o2) = 6d7 + d;.

Moreover, by applying the topological Lefschetz formula (3) to the fixed loci of o14 and its
powers, we obtain the following system of equations:

X14 — X(FiX(014)) =2+ d14 - d7 - d2 + d1
(7) X7 = X(FiX(O’7)) =2 d14 - d7 + d2 + dl
X2 == X(FiX(O’Q)) =2 — 6dyq + 6d; — do + dq

Using (7) and Table 3 we can thus obtain a list of possibilities for (dy4,d7,d2,d;) as well as the
corresponding Euler characteristics (x14, X7, X2). We present our results in Table 4 below.
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N14 14 X14 X7 X2 (d14, d7, dz, dl) POSSible (gz, kz)

ATl 7 [0 7 ]3]-14 (3,0,1,3) (8,0),(9,1)

0 (2,1,0,4) (1,0),(2,1),(3,2), (4,3), (5,4), (6,5)
A2 5 [0 |5 | 3]-16 (3,0,2,2) (9,0), (10, 1)

-2 (2,1,1,3) (2,0),(3,1),(4,2),(5,3),(6,4)

12 (1,2,0,4) (0,5),(1,6),(2,7)
B3| 12| 1 [14]10] 0 (2,0,0,10) (1,0), (2,1),(3,2), (4,3), (5,4), (6,5)
citl 6 T o] o6 [10]-8 (2,0,4,6) (5,0), (6,1), (7,2)

6 (1,1,3,7) (0,2),(1,3),(2,3), (3,5)
2| 4 [0 [ 4 [10]-10 (2,0,5,5) (6,0), (7,1)

4 (1,1,4,6) (0,1),(1,2),(2,3),(3,4), (4,5)
a3l 6 [ 1|8 [10] -6 (2,0,3,7) (4,0, (5,1), (6,2)

8 (1,1,2,8) (0,3), (1,4), (2,5), (3,6)
DI 5 ] 0| 5 |17] -2 (1,0,7,9) (2,0), (3,1), (4,2), (5, 3), (6,4)
D2 3 [ 0 | 3 [17] 4 (1,0,8,8) (3,0, (4, 1), (5, 2), (6, 3)
D3| 7 [ o [ 7 [17] 0 (1,0,6,10) (1,0, (2,1), (3,2), (4,3), (5,4), (6,5)
Da|l 5 [ 0 | 5 |[17] -2 (1,0,7,9) (2,0), (3,1), (4,2), (5, 3), (6,4)
D5 9 1 [ 11|17 4 (1,0,4,12) (0,1),(1,2),(2,3),(3,4), (4,5)
D6 | 7 [ 1 [ 9 [17] 2 (1,0,5,11) (0,0, (1,1), (2,2), (3,3), (4,4), (5,5)
D7| 13 | 1 [ 15 | 17| 8 (1,0,2,14) (0,3), (1,4), (2,5), (3,6)
D8| 11 | 1 |13 ]17] 6 (1,0,3,13) (0,2),(1,3),(2,3),(3,5)

TABLE 4.

We remark that by [28], the fixed locus of a non-symplectic involution is either empty; or it
consists of two disjoint elliptic curves; or

(8) Fix(o2) = Cg, URy U... U Ry,

where Cy, is a smooth curve of genus g» > 0 and R; are rational curves, and all possibilities for
the pair of invariants (ge, k2) are classified (see for example [9, Figure 1]).

In our case, it follows from (6) that Fix(og) cannot be empty. Any possible solution to (6) gives
us that Fix(o14) contains at least one fixed point. In fact, this also implies Fix(c3) cannot be the
union of two elliptic curves either. If the latter occurs, then the action of 14 on each elliptic curve
would be without fixed points. Since Fix(o14) C Fix(o2), again we would have no fixed points in
Fix(o14), contradicting (6). As a consequence, for each line of Table 4, we know that Fix(c9) is of
the form (8). Moreover, there is more than one possible pair of invariants (gs, k2).

3.2. Excluding cases. We will now show many cases of Table 4 can actually be excluded for
geometric reasons. We prove a series of Lemmas in this direction.

Notation 3.9. In what follows, we will use the following notation: A1(8,0) means that Fix(o7)
is as in line A of Table 1, Fix(o14) is described in the line A1 of Table 4 and (ga2,k2) = (8,0).
Similarly for all other cases.

Remark 3.10. Observe that cases B3(1,0) and D6(0,0) are not admissible because in both cases,
the fized locus Fix(o14) contains a rational curve while Fix(o2) does not.

Remark 3.11. Fix(03) does not contain a curve of genus 2, 4 or 5. This is a direct consequence
of the following Lemma.

Lemma 3.12 ([19]). Let C be a curve of genus g > 2 that admits an automorphism of prime order
q where ¢ > g. Then eitherq=g+1 or q=2g+ 1.

Lemma 3.13. The following cases are not admissible:
A1(6,5), A1(8,0), A1(1,0), Al(6,5), A2(6,4), A2(0,5), A2(1,6), B3(3,2),
C1(3,5), C2(3,4), C3(3,6), D1(6,4), D2(6,3), D3(1,0), D3(6,5),
D4(6,4), D5(0,1), D5(1,2), D6(1,1), D7(0,3), D7(1,4), D8(0,2), D8(1,3).

Proof. Consider case A1(6,5). By Riemann-Hurwitz’s formula, the automorphism o4 acts on the
curve Cy C Fix(o2) fixing four points, and it also acts on each of the five rational curves in Fix(o3),
fixing two points on each. Therefore o4 fixes a total of 14 points. By a previous computation,
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the fixed locus Fix(o14) consists of seven points. Therefore this case is not admissible. A similar

argument can be used to exclude the other cases.
O

Lemma 3.14. Case C1(1,3) is not admissible.

Proof. Let E be the elliptic curve fixed by the involution oy = 07,. The curve E is preserved by
014. Moreover, E is not fixed by o7 pointwise but it is invariant for o7 because we are in Case C.
Thus, since F is elliptic, the automorphism o14 acts as a translation on E. Let £ be the elliptic
fibration induced by F, with fiber E over ¢t = 0. Since fixed curves do not meet, the zero section is
not fixed by the involution o5. The involution fixes three rational curves since ko = 3 and they are
contained in the fiber F, over ¢ = co. The only possible types of singular fibers that can contain
three curves fixed by the involution are the types Ig, or I11*, or I}.

0—@—'—?—'—@—0

FIGURE

2. Fiber IT1* FIGURE FIGURE

3. Fiber I} 4. Fiber Ig

If F is of type I1I*, then the three curves which are fixed by oo are represented by the three
double circles in Figure 2. The zero section would meet the external component of the fiber I17*
and thus it would be fixed by o3, which we already observed is impossible. By a similar argument,
we may exclude the case when Fi, is of type Iy, as shown in Figure 3.

Suppose that F is of type Is. By analyzing the types of points, it can be seen that one of the
curves of the fiber I which is not fixed by o2 must be fixed by o7. Such a curve is represented by
a square in Figure 4. Since o7 must preserve the fiber, this is impossible. |

Lemma 3.15. The following cases are not admissible:

A2(10,1), A2(3,1), C2(1,2), C2(0,1), C3(1,4), C3(0,3), D4(3,1), D5(3,4), D6(3,3).

Proof. Observe that in Case A2(10,1), Fix(o2) = C19 U R, where Cig a curve of genus 10 and R
a rational curve, and neither of these curves are fixed by o14. The automorphism o4 fixes five
isolated points, two of which lie on R. As observed in Remark 3.3, isolated points on a rational
curve are of consequent types but this is in contradiction with the types of points for A2 (see Table
3). The other cases can be excluded by a similar argument. (|

Lemma 3.16. Suppose that the involution oo fizes a curve C7 of genus seven. Then the curve Cr
contains two fized points by o14, which cannot be of the same type.

Proof. First, note that 014 acts with order seven on C7. Thus, by Riemann-Hurwitz it has exactly
two fixed points, which we call p and q.

Considering the line bundle L associated to 8p, by Riemman-Roch we have h°(C7,L) > 2 so
that we obtain a finite (surjective) morphism f : C7 — P! of degree d < 8. Now, because o fixes p,
o and f induce an automorphism & (of order 7) on P!. This automorphism has two fixed points,
say p and ¢, and we must have (up to relabeling) f~1(5) = p and f~1(§) = q. Moreover, we can
assume p= (0:1) and ¢ = (1:0).

We can thus choose local coordinates z on P! centered on p so that the action of & on p is given
by multiplication by Ci{ and on ¢ it is given by multiplication by Cllffﬁj (for some j). Note that
1/z is then a local coordinate centered on ¢. In fact we can choose local coordinates on C7 which
are compatible with the above so that f is given by z + z¢ around p (and analogously for §).

Using this, we see that the local action of ¢ on p must be given by multiplication by lei/ 4 and on

q it is given by multiplication by Cﬁ‘l_w)/d.

The local action of o on p and ¢ as points in X can thus be diagonalized so that p is a point of
type Aj; 14 where i = 2j/d — 1 or 2j/d, and ¢ is a point of type A; 14 where k = (14 —2j)/d —1 or
(14 — 25)/d. In any case, i Z k mod 14 so that p and ¢ cannot be of the same type. ]

As a consequence we can prove:

Lemma 3.17. Case C2(7,1) is not admissible.
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Proof. According to Table 3, in case C2 the automorphism o4 fixes exactly one point of type
Ay 14, one point of type A3 14, and two points of type Ag 14. Two of these are on the rational curve
fixed by o9 and two are on the genus seven curve C; fixed by o3. Since the fixed points on R must
be of consecutive types (see Remark 3.3), the two points of type Ag 14 lie on C7. This contradicts
Lemma 3.16. (|

Thanks to [12], we also prove:
Lemma 3.18. Cases D1 and D7 are not admissible.

Proof. By [12, Corollary 1.3], there are exactly 12 distinct deformation classes of K3 surfaces X
carrying a purely non-symplectic automorphism o of order 14. In Section 3.3, we show all 12
cases listed in Table 5 indeed occur. Therefore, it suffices to observe the different cases determine
different deformation classes.

In fact, looking at the eigenvalues of the induced isometry o* on H?(X,Z) we see that different
cases determine at least 11 deformation classes. With the exception of cases C1(6,1) and C1(7,2),
the different cases determine 11 distinct vectors (d14,d7, d2,d1) (see Table 5). So we analyze these
two cases separately.

By [14, Theorem 1.5.2], if (X, o) is of type C1(6,1) and (X,5) is of type C'1(7,2), then the
invariant lattices S(o7) and S(67) do not lie in the same genus. And, since the deformation class
of a pair (X,0) is determined by the collection of genera of the lattices S(c7) by [12, Theorem
1.4], we conclude these two cases indeed determine two distinct deformation classes. O

Using Table 4 and combining Lemmas 3.13, 3.14, 3.15, 3.17 and 3.18 we have thus proved:

Proposition 3.19. Let 014 be a purely non-symplectic automorphism on a K3 surface. Then the
admissible cases according to the possible fived locus are listed in Table 5.

N | awq | x1a | X7 | X2 (g2, k2) (dia,d7,d2, dy)

ALl 710 7 1314 O0 3.0.1.3)

0 (3, 2) (2,1,0,4)
A5 0 5 [3][-16] (90 (3.0.2,2)
B3|12] 1 | 14 [10] 0 (6,5) (2,0,0,10)
CI[ 6] 06 10]-8]06.0.72] (20.40)

6 (0,2) (1,1,3,7)
Co[ 4]0 [ 4 [10[-10] (60 (2,0,5,5)
3618 106 (62 (2,0.3,7)
D231 0] 3 117 4] (30 (1,0.8.8)
D3| 7] 0 | 7 [17] 0 3,2) (1,0,6,10)
DS 11| 1 | 13 | 17| 6 3,5) (1,0,3,13)

TABLE 5.

3.3. Realization by examples. It remains to show each case listed in Table 5 is indeed realizable.
For each possibility, we construct explicit examples of K3 surfaces carrying a purely non-symplectic
automorphism o014 (of order 14) that has the desired type of fixed locus.

Example 3.20. (Case A1(9,1)) Consider (Xqp,014), taking Xqp to be the elliptic K3 surface
with Weierstrass equation

v =2+ (at" +b)z+ (" —1), teP

where a,b € C, as in [9, Example 6.1], and letting o14 be the purely non-symplectic order 1}
automorphism:

014 : (J?,y, t) = (l‘, —-Y, C?t)
where (7 denotes a primitive T-th root of unity.

If a and b are generic, then X, 3 contains a fiber of type I11 att = (1:0) and 21 singular fibers
of type I;. One can show that the fized locus of 014 is such that m = (0,0,0,0,1,2,4). In fact it is
of type A1(9,1). It can be described as follows: the four isolated points of type Ag 14 lie on a curve
which is fized by o7, namely the fiber at t = (0 : 1); the other three points lic on the fiber of type
II1: the tangency point, along with one other point on each of the two components. Moreover, the
involution oy fizes the zero section (which is rational) and the trisection (which has genus 9).
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Example 3.21. (Case A1(3,2)) Consider (X,014), where X is the elliptic K3 surface with
Weierstrass equation given by

yv? =a(x? + (t" 4+ 1)), t € P,

and o14: (2,y,t) = (z,—y,(Ft) is a purely non-symplectic automorphism of order 14. We note
that X contains eight singular fibers of type I11. The fized locus of o7 is given by an elliptic curve
att = (0: 1) and three points that lie on the fiber of type I11 att = (1,0). On the fiber of type I11,
one of the three points is the tangency point, while the remaining two lie on different components.
Therefore, we are in case A (for o7 ).

The fized locus of 014 is such that m = (0,0,0,0,1,2,4) and in fact we can check it is of type
A1(3,2). On the elliptic curve o14 acts as an involution and we obtain 4 fized points there, the other
3 fized points are again in the fiber of type I1I att = (1,0) distributed as above. The involution oo
fizes the bisection which has genus 3, and two rational curves: the zero section and the two torsion
section given by x =y = 0. Therefore, (g2, k2) = (3,2).

Example 3.22. (Case A2(9,0)) Let us consider (X, 014) the elliptic K3 surface X together with
the automorphism o = 014 from Example 3.21.

The translation T given by (x,y,t) = ((y/x)? — 2, (y/x)> — y,t) (which is the translation by
the 2—torsion section) is a symplectic involution that commutes with o. As a consequence, the
composition ¢’ = o o T is also a purely non-symplectic automorphism of order 14. We remain in
case A for o7 and the fixed locus of o’ is such that m = (0,0,1,0,0,0,4). Indeed, ¢’ acts as an
involution on the elliptic curve E at t = (0,1) and E contains four fixed points. Due to the fact
that T has only eight fized points, which are precisely the tangency points on the singular fibers of
type 111, we only have one additional fized point lying on the fiber at t = (1,0). The involution
does not fix any rational curves and therefore we are in case (ga, ka) = (9,0). We note that this
case is also presented in [15, Section 7.2, p.19].

Example 3.23. (Case B3) Consider (X,,p,014), where we let X, be the elliptic K3 surface
in Example 3.20 with a = 0. Xo; contains a fiber of type IT* at t = (1 : 0), a smooth fiber at
(0:1), and 14 singular fibers of type 1. With the order 14 automorphism o14 given in (3.20), the
component of multiplicity 6 on the IT* fiber is fized by o and the action on the fiber overt = (0: 1)
is an involution, so it has 4 fixed points. Checking types of fized points, we find m = (3,2,1,1,1,4)
with 14 = 1.

Example 3.24. (Case C1(6,1)) Consider (Xqp,014) from Ezample 3.20, with a generic and
b such that b = —%, Then Xqp contains a fiber of type 111 att = (1 : 0), a fiber of type
I; at t = (0 : 1) and 14 singular fibers of type I1. In this case the fized locus of 014 is such
that m = (0,0,0,1,1,2,2). The trisection {y = 0} is a curve of genus 6 and it is fized by the
involution, as well as the zero section. Thus the invariants of the fized locus of the involution o
are (g2, k2) = (6,1).

Example 3.25. (Case C1(7,2)) Let (X, 014), the elliptic K3 surface with Weierstrass equation
y? = a3 4t (tT 1), t € P!,
together with the order 14 purely non-symplectic automorphism 14 given by

014 (x7 Y, t) = (C?Iv *C?ZJ, C?t)

We note that the singular fibers are of type IV* over t = (0 : 1) and type IT over t = (1 : 0),
in addition to seven fibers of type I1. The square of 014 fixes the component of multiplicity 3 on
the fiber of type IV*, so this example falls under case C. The involution oo acts as a reflection on
this fiber, and so the fized locus Fix(o14) only contains points. The 3-section {y = 0} has genus
seven and it is fixed by the involution, as well as the zero section and one rational component of
the fiber IV*. Thus the invariant of the fized locus of the involution are (go,ke) = (7,2). This
surface appears in [11, Table 3], with a non-symplectic automorphism of a different order.

Example 3.26. (Case C1(0,2)) Let us consider (X, 014), the elliptic K3 surface X with Weier-
strass equation given by

y? =2 +t2x + 110, t e P,
and the order 14 purely non-symplectic automorphism o14: (x,y,t) — (Crx, By, —(7t). Note that
X contains a fiber of type IV att = (1:0), a fiber of type I att = (0:1) and 14 singular fibers of
type I. The fized locus of o7 fixes one rational curve, the non-reduced component, and eight points,
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so this example falls under Case C. Because the involution oy fixes only three rational curves, we
see that 014 is of type C1 with (g2, k2) = (0,2).

Example 3.27. (Case C2(6,0)) Consider (X, 014), where X is the K3 surface with equation
v =a"s — t3(t — %) (t — 25%)

inP(4,2,1,1)(yt,2,5) and o14: (y,t,2,5) = (—y,t,(rx, s) is a purely non-symplectic automorphism
of order 14. One can see that the points (—1:1:0,0) and (1:1:0,0) are of type A;. Moreover,
at the point (0 : 0 : 0 : 1) we have a singularity of type Ag. Since o7 fizes the rational curve
C, = {x = 0} and eight points, this example falls under Case C. The only curve fized by the
involution oo is Cy, which has genus siz.

Example 3.28. (Case C3) Consider (X,014), the elliptic surface X with Weierstrass equation
v =22+t +1), te P
and the order 14 purely non-symplectic automorphism 14

0'14(377 Y, t) = (C?Z‘v _C:;ya C?t)
The singular fibers consist of a type I} fiber over t = (0: 1), a type IV fiber over t = (1:0), and
seven type II fibers (cusps). We call R the non-reduced component of the I} fiber. The involution
o9 fizes the zero section, the rational curve R and the 3-section C given by y = 0. The curve
C' passes through the center of the IV fiber and through the cusps, and so C has genus six by
Riemann-Hurwitz. Thus the invariants of the involution are (ga, ko) = (6,2) which corresponds to
Case C3. The fized locus of 014 consists of the curve R and six points.
Another example for Case C3 is given as follows. Let X be the K3 surface with equation

4yt + 2 4wt =0
and weights (7,4,2,1). Singularities can occur only at singularities of P(7,4,2,1) and one can see
that the point (0:1:0:0) is an As singularity and (0: ¢} :1:0),7 =1,3,5 is an Ay singularity.

f— .
7 Co
FIGURE 5. C3
After resolving the singularities, the curve Cy, := {w = 0} has genus zero, while the transform

of Cy := {x = 0} has genus siz. The automorphism o14 : (z,y,z,w) — (z,y, 2, (1aw) is a purely
non-symplectic automorphism of order 14 and it fixes the rational curve Cy,. Its square o7 fizes
Cy as well, so that this example falls under Case C. Moreover, the involution oo fizes Cy, and C,,
and the central fiber of the resolution of the Az (another rational curve). Therefore, 14 is of type
C3 and the invariants of the involution are (ga, ka) = (6,2).
Example 3.29. (Case D2) Let (X,014) be the K3 surface X with equation
y?=a"s —t3(t — s%)?

inP(4,2,1,1)y.+,2,s) and the order 14 purely non-symplectic automorphismo: (y,t,x,s) — (—y,t, (72, 5).

The points (—1:1:0,0) and (1:1:0,0) are of type Ay. Moreover, at the points (0:0:0: 1)
and (0:1:0:1), we have singularities of type Ag. Since o7 fizes two rational curves Cy and Ca,
appearing when x = 0, this example falls under Case D. The only curve fized by the involution oo
is Cy, which has genus three. See also [15, Section 7.3].

Example 3.30. (Case D3) Consider (X, 014), where X is the K3 surface with equation
22 = wly +y* + 27

in P(14,7,4,3)(z,y,2w) given in [4], and o14 the order 14 purely non-symplectic automorphism
014 (37, Y, =z, ’LU) = (—37, Y, =z, C'ﬂU)

We have the following: point (1:0:1:0) of type Ay; points (1:1:0:0) and (—1:1:0:0),
both of type Ag; and point (0:0:0:1) of type As (Figure 6).

Since o7 fizes the rational curves C, = {z = 0} and C,, = {w = 0}, we are in case D. The
involution oo fizes the curve C, = {x = 0} of genus 3 and two rational curves given by the
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| / / .
Cy
AN C:
FIGURE 6. D3

component of the A1 and one of the components of the As. The involution oo also exchanges the
two Ag points.

Example 3.31. (Case D8) Again, consider (X,p,014), the K8 surface together with the auto-
morphism from Ezample 3.20. If a = 0 and b is such that b = —%, it follows that X, contains
a fiber of type IT* at t = (1:0), a fiber of type Iy at t = (0: 1), and seven singular fibers of type
I,. The fized locus of 14 is of type DS.

Observe that the surface y?> = x® +t3x+ 1%, t € P! given in [22, Example 7.5] admits the purely
non-symplectic order 14 automorphism o4 : (x,y,t) — ((3x, —Cry, (3t) and corresponds to case

D8 as well.

4. ORDER 21

Purely non-symplectic automorphisms of order 21 on K3 surfaces have been classified in [11].
Here we present a new proof and a more detailed description of Brandhorst’s result. More precisely,
using the same kind of approach from the previous section, we show that the examples of [11, Table
3] fit the invariants of Table 6 below, and we prove:

Proposition 4.1. The fixed locus of a non-symplectic automorphism of order 21 on a K3 surface
18 mot empty and it consists of either:

(i) The union of Nay isolated points, where Noy € {4,7}; or
(i) The disjoint union of a rational curve and Nay isolated points, where Noy € {8,11}.

Moreover, all these possibilities occur, and a more detailed description is given in Table 6 below,
where o7 = a3y and o3 = 73;.

Fix(o91) Fix(o7) Fix(o3) Ezample
C(3,2,3) | Ru{ps,...,ps} RUA{p1,...,ps} C3 URU R U{p1,p2,ps} 4-4
0(37172) {p17"'up7} Ru{p1>~-~7p5aQ1aQ2>(13} O3UR U{phfh} 45
0(3;0;1) {plv"'apﬁl} Rl—l{pla"'7p8} C3|—|{p1} 46
3(3,3,4) RI_I{pl,...,pll} EURU{ph...,pg} CgURUR/uRHU{pl,...,p4} 47

TABLE 6. Order 21

In order to prove Proposition 4.1, we first note that, as we observed in Section 2, at any fixed
point a purely non-symplectic automorphism o921 of order 21 acts as multiplication by the matrix
A; 21 for some i, with

1+4 0
Ao = < 21 2“) , 0<i<10.
O 21

Thus, the holomorphic Lefschetz formula (2) applied to 021 gives us the following linear system
of equations:
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3me21 =3+ 4mi o — dmao gl — dmy o1 + 8mis 1
3WL7721 =3—- 5m1721 + 4m2,21 — 13TTL4721 + 17m5721

) ms 21 =1—2mq 21 +2mo 21 — dMy 21 + 6ms5 21
Mg 21 =3 —4my 21 +4ma 21 — 3M321 — 3My 21 + TMs 21
2mig21 =2 —3my21 + 3ma 21 — 2m3 21 — 3myg 21 + 6ms 21
6oro1 = mq21 + M2 21 — Mg 21 + 2Ms5 21

where ag; := > 1 — ¢g(C) and the sum is taken over all curves C' fixed by oo;.
Moreover, considering the non-symplectic automorphism o7 = o3, of order 7, we know that

mi21 +ms21 +Mmgo1 < Mmyy
ma21 +My21 +Mgo1 < Moy

mg o1 + Mio,21 <mgzyz

We note also that points of type Ag 21 and Az 2; lie on a curve fixed by o7 (but not fixed by o21)
and points of type A o1, where j = 2,3,5,6,8,9, lie on a curve fixed by o3 = ¢, (but not fixed
by o21). For this reason, we choose r = mg 21 + mr21. Using MAGMA, we obtain the following

four possibilities for the vector (mq 21, .., M10,21; @21, 7):
v; = (3,3,1,0,0,0,0,1,0,0;1,0) vy = (0,0,0,0,0,1,1,1,3,1;0,2)
U3 = (0707 1a 07 07 17 17 1a 07 05 07 2) Vg = (3a 2a 1) 17 17 3a 07 070707 1’ 3)

Furthermore, we observe the following:

Lemma 4.2. If the fized locus of 021 is described by one of the vectors vy, vs,vs, then the fized
locus of o7 = o3, is as in Case C of Table 1. If it is described by the vector vy, then the fized locus
of o7 is as in Case B.

Proof. We first observe that o7 cannot be of type A. Assume we are in Case A. We know that
Fix(o21) C Fix(o7). By the Riemann-Hurwitz formula, the genus one curve in Fix(o7) would
contain either none or three isolated points fixed by o1, and thus r = 0 or 3. But the cases with
these values of r both have as; = 1, which is not possible in Case A (recall that in Case A, a fixed
curve must have genus 1, as shown in Table 1).

Case D for o7 is not admissible either. In fact, if o7 is as in case D, then Fix(c7) contains two
rational curves. If they were both pointwise fixed by 91, this would give ag; = 2. If one curve is
pointwise fixed and the other one is invariant, then as; = 1 and » = 2. If both curves are invariant
but not pointwise fixed, then as; = 0 and r = 4. These cases do not appear among the admissible
ones. Therefore we conclude that o7 must fall under Case B or Case C.

We now observe that the situation described by the vector v, is only possible in Case B: since
r = 3 in this case, it means that there are three points on curves fixed by o7 and they are not fixed
by o21. Thus there must be an elliptic curve in Fix(o7). As we observed in Lemma 3.7, if o7 fixes
an elliptic curve and a rational curve as in Case B, the surface admits an elliptic fibration with a
fiber of type IT* and 14 fibers of type I;. Since the fiber of type I1* does not admit a symmetry
of order three, 027 fixes the central curve of this fiber and eight points that lie on it.

As for vector vy (respectively wv3), the fixed locus of o91 consists of seven (respectively four)
points. Thus o7 cannot belong to Case B, since by the previous remark, it would fix too many
points.

Assume now that we are in Case B and the vector v; describes the action of o2;. Then the fixed
locus of 091 is the union of a rational curve and eight points; since r = 0, the action of g2 on the
elliptic curve in Fix(o7) is a translation. But then the action should be a translation on the fiber
IT*, and this is not the case. O

At last, we are now in position to prove Proposition 4.1:

Proof of Proposition 4.1. Consider the induced action of 09; on H?(X,R) and recall the definition
of d; = dim H?*(X,R), fori=1,3,7,21.
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For each i+ = 3,7,21 we let x; denote the Euler characteristic of the fixed locus of o; = oF

applying the topological Lefschetz formula (3) to o291, 07 and o3, we obtain:

. By

X21 =2+dy —d7 —d3+dy
(10) X7 =2 (2da1 +d7) +2d3 + dy
X3 = 2—06de1 + 6d7 —d3 +dy
Moreover, we know that
22 = dim H?(X,R) = 12dy; + 6d7 + 2d3 + d;.

Combining these equations one gets the possibilities given in Table 7.

Type o7 | x7 | x21 | x3 | (d21,d7,ds,d1) | (m121,...,mi021,01,7) | Fix(oa1)
0] 10| 3 (1,0,1,8) (3,3,1,0,0,0,0,1,0,0,1,0) | RU 8 pts
¢ |1w0] 7o (1,0,2,6) (0,0,0,0,0,1,1,1,3,1,0,2) 7 pts
10 4 -3 (1,0,3,4) (0,0,1,07071,1,1,0,0,072) 4 pts
B 10 13| 6 | (L0,0,10) (3.2,1,1,1,3,0,0,0,0,1,3) | RU Lipts
TABLE 7.

Thus, it remains to look at the fixed locus of o3, which by [7] consists of N3 isolated fixed points,
a curve of genus g3 > 0, and k3 rational curves, where by [7, Theorem 2.2] the following relation
holds:

1—g3+ks=N;—3.

In particular, x5 = N3+ 2(1 — g3 + k3) = 3N3 — 6, and we can list the possibilities for (g3, k3, N3)
according to the value of Nj.

If x3 = 3, then N3 = 3 and by [7] we have the following possibilities for the invariants (gs, k3, N3)
of Fix(o3):

(93, k3, N3) = (=, —,3),(1,0,3),(2,1,3),(3,2,3).

Similarly,
e if y3 =0, then N3 = 2 and the possibilities are (gs, ks, N3) = (2,0,2),(3,1,2), (4,2, 2).
e if x5 = —3 then N3 = 1 and the possibilities are (g3, k3, N3) = (3,0,1), (4,1, 1).
e if x5 = 6, then N3 = 4 and the possibilities are: (g3, k3, N3) = (3,3,4),(2,2,4), (1,1,4), (0,0,4).

Next, we observe that we can actually eliminate most of these possibilities.

As in Lemma 3.12, the automorphism o9; acts with order seven on Fix(o3), and thus Cy, should
admit an automorphism of order seven. But if g3 > 2 and if ¢ is an automorphism of prime order
p, we must have p < 2g3 + 1. Then we may eliminate the case where g3 = 2.

A curve of genus four does not admit an automorphism of order seven by [23], and thus g3 # 4.

Finally, if x5 = 3, then Fix(o21) consists of a fixed rational curve plus eight points. Since
Fix(o21) C Fix(o3), using Riemann-Hurwitz we can also eliminate the triples (gs, ks, N3) =
(=,—,3),(1,0,3). The argument is similar for triples (gs, k3, N3) = (1,1,4), (0,0,4) with x5 = 6.

Therefore, the possible cases are the ones listed in Table 6. ]

Remark 4.3. Note that in the proof of Proposition 4.1, we have
rk S(O‘Ql) =d;, tk 5(0'7) = 2d3 + dq, 1tk 5(0'3) = 6d; + d;.

We end this section by showing the examples in [11] are indeed compatible with the invariants
of Table 6, as claimed.

Example 4.4. (Case C(3,2,3)) Let (X,021) be the following elliptic K3 surface with the non-
symplectic automorphism oa1 of order 21:

y2 = xB + 4t4(t7 - l)at € Pl 021 : ('/Ea yvt) = (C$C3-T7 C’?:%C?t)

The collection of singular fibers of the elliptic fibration consist of a fiber of type IV* overt =0,
a fiber of type I overt = oo, and T of type I1 over the zeros of t” — 1. The fived locus of o7 consist
of the central component R of the fiber IV*, six isolated points on the fiber IV* and two points on
the fiber I1 over t = co. The automorphism oo has the same fized locus as o7. The fized locus of
o3 consists of the zero section, the curve R and the 3-section y = 0, which has genus three and 3
additional points. _

In particular, the invariants of Fix(c3,),7 =1,3,7 are as in the first row of Table 6.
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Example 4.5. (Case C(3,1,2)) Let (X,021) be the following elliptic K3 surface with the non-
symplectic automorphism oo1 of order 21:

y2 = :ES + tg(t7 + 1)7t S Pl 021 : (x,y,t) = (C?CSxa <7y7 C?t)
The singular fibers of the elliptic fibration are I§+IV +T7II1. The fized locus Fix(o7) consists of the
central component R of the fiber I, four points on I, and four points on IV. The automorphism
091 does not fix R and only fizes isolated points. The automorphism o3 exchanges three of the non-
central components of the fiber I and acts on the remaining one, and thus (gs, ks, N3) = (3,1,2).
The conclusion is that the invariants of Fix(aél),j =1,3,7 are as in the second row of Table 6.

Example 4.6. (Case C(3,0,1)) Let X be the K3 surface whose equation in P? is
r3x 4+ 2hry + Toxs 4+ 1o = 0.
This surface admits the purely non-symplectic automorphism of order 21

oo1 ¢ (0,21, T2, x3) — (G0, (Ba1, 2, (33)

whose fized locus consists of the four standard coordinate points. The fixed locus of o3 consists of
the genus three curve {x3 =0} N X and the pointp; = (0:0:0:1).

In particular, we see that the invariants of Fix(c3,),j = 1,3,7 are as described in the third row
of Table 6.

Example 4.7. (Case B(3,3,4)) Let (X,021) be the following elliptic K3 surface with the non-
symplectic automorphism oo1 of order 21:

y? =23 +t5(t7 —1),te Pl oo : (z,y,t) — (Cglx,gy,ggt).

The collection of singular fibers consists of a type 1I* fiber at t = oo and seven type I1 fibers over
the zeros of t7 + 1. The order seven automorphism o+ fizes the following: the smooth fiber E of
genus one over t = 0, the central component R of the IT* fiber, and eight isolated points on the
same fiber IT*. The automorphism o271 fixes R as well and acts on E as an automorphism of order
three, fizing three points. The fized locus of o3 consists of R, along with another rational curve in
the fiber IT*, the zero section, the genus three 3-section X N{y = 0}, and four isolated points on
the fiber IT*. ‘
Therefore, the invariants of Fix(a3,),7 = 1,3,7 are as in the fourth row of Table 6.
Another example of this type of automorphism is given by the following. Consider the equation
y? = 27 4+ 2%w + 2w in the weighted projective space P(10,7,3, ey 2w, and consider the order
21 automorphism
091 : (z,y, z,w) = (z,(3y, 2, (rw).
The curve Cy == {y = 0} has genus three and is fized by o3, and the curve Cy, = {w = 0} has genus

one and is fixed by o7. The rational curve fized by 021 is a rational component in the resolution of
the Ag singularity (1:0:0:0).

5. ORDER 28

We now prove a classification theorem for purely non-symplectic automorphisms of order 28
recovering the results in [11]. Our result is the following:

Proposition 5.1. The fixed locus of a purely non-symplectic automorphism of order 28 on a K3
surfaces is not empty and it consists of either:

(i) The union of Noy isolated points, where Noy € {3,5}; or

(it) The disjoint union of a rational curve and 10 isolated points.
Moreover, all these possibilities occur. The examples of [11, Table 3] fit the invariants of Table 8
below, which provides a more detailed description of the possible different fized loci of oog and its
powers.

Fix(o2s) Fix(o14) Fix(o7) Fix(o4) Fix(o2) Ezample
{ph...,ps} {pl,...,p5,p67p7} Eu{phpQ,pg} {q1,...,q7,p1}I_IR1I_IR2 CsUR1URs 5.3
{p1,p2,p3} {p1,...,p7} Eu{pi,q,q} Cs CsURi URsy 5.4

Ru{pl,...,plo} Ru{pl,...,plo,pll,]ﬁg} EURU{pl,...,pg} {pl,...,pg}URURl C6|_|R|_|R1|_|...|JR4 55

TABLE 8. Order 28
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Proof. As explained in Section 2, at any fixed point the automorphism oog acts as multiplication

it+1
by A; 28 = ( 28 28_1) for 0 <4 < 13, and we denote the number of points of type A; 25 by
28

m; 28.
The holomorphic Lefschetz formula (2) applied to oog gives us the following linear system of
equations

3meg,og = 3+ 4my 08 — 5Mig 08 — 4my o8 + 8mi 08

3mrog =3 — 5my 28 + 4maog — 13my 28 + 17ms5 28

mg o8 =1 — 2my 28 + 2mo 28 — Mg 28 + 6Mi5 28

Mo, 28 = 3 — 4mq 28 + 4mo o8 — 3M3 28 — 34 28 + TM5 28
2mip,28 = 2 — 3mq,28 + 3Ma 28 — 2M3 28 — 34 28 + 65 08
6arog = My 28 + Mo 28 — M4 28 + 2Ms5 28

where asg := > (1 — g(C)) and the sum runs over all curves C' which are fixed by oag.
Moreover, considering the automorphism o7 = 034 which has order seven, we further know that

m1,28 + M5 08 + Mg 28 + Mi228 < M7

Mg 28 + My 28 + Mg 2g + M1128 < Moy

mg3,28 + M10,28 <mg3z7
Note that

e points of type Ai3,0s lie on a curve fixed by o14 (but not by oas);
e points of type Az g, Ag2s and Ajs g lie on a curve fixed by o7 (but not fixed by oas);
o points of type A;j s, =3,4,7,8,11,12 lie on a curve fixed by o4 (but not fixed by oss).

Because of the observations listed above, letting r = mg g + m728 + M13,28 Wwe obtain the
following four possibilities for (mq os, ..., mM13 28; Q2g, T):
wy = (0,0,0,0,0,0,2,2,1,0,0,0,0;0,2) ws = (0,0,0,1,0,0,2,0,0,0,0,0,0;0,2)
we = (3,2,1,0,1,2,0,2,1,0,0,0,0;1,2) wy = (3,2,1,1,1,2,0,0,0,0,0,0,0; 1,2)

We now consider the induced action of oag on H?(X,R) and as in Section 2 we let
d; == dim H*(X,R),, i = 28,14,7,4,2,1
For each i = 2,4,7,14,28 we let x; denote the Euler characteristic of the fixed locus of the
power of gog which has order 7. Applying the topological Lefschetz formula (3) to oas, 014,07, 04
and oo we obtain:
X2 =2+diy—dr—da+d;
X14 =2+ 2dag —dyg —d7r —2dy +da +dy
(11) X7 =2 —2dog — dyg — d7 + 2dy + do + d;
X4 =2—6d14+6d7 —da+dy
X2 =2 —12dog + 6d14 + 6d7 — 2d4 + ds + dy
Moreover, we know that
22 = dim H2(X,R) = 12dsg + 6d14 + 6d7 + 2d4 + do + dy

Using (11) one gets the following possibilities, according to the four vectors w;:

w;i | X28 (d287---7d1) X14 | X7 | X4 | X2
w1 5 (1,1,0,1,0,2) 3 3 2| 4
(1,1,0,0,1,3) 7 3 -2 0
(1,0,1,0,0,4) 7 3 12 | 0
w2 14 - - - - -
w3 3 (1,1,0,1,0,1) 3 3 -4 | -4
(1,0,1,1,072) 3 3 10 | -4
(1,1,0,0,2,2) 7 3 -4 0
(1,0,1,0,1,3) 7 3 10| O
Wa 12 (1,0,0,0,0,10) 14 [ 10 | 12 | O

Observe that vector wy does not give any admissible case and x14 cannot be 3 by our classification
of Section 3. This implies either x7 = 10, the vector of types of points is ws and 014 = 035 is of
type B3 of Table 2 or (x14, X7, x2) = (7,3,0). In the latter case, 014 is of type A1(3,2) of Table 2
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and Fix(o2) = C3 U Ry U Rs. Recalling that Fix(o4) C Fix(o2) and that o4 acts with order 1 or
2 on Fix(o3), with Riemann-Hurwitz formula we can conclude that x4 € {—4,0,4,8,12}.

This leaves only the cases highlighted in gray.

We now study the action of o4 on Fix(o2). If x4 = —4, then Fix(c4) = C3 and Ry and Ry are
exchanged by 4. If x4 = 12, then o4 can only fix rational curves and [8, Proposition 1] implies o4
fixes exactly two rational curves and 8 isolated points. |

Remark 5.2. As in the order 21 case, note that the following relations hold:
tk S(o7) =2dy+dos +dy, 1k S(o4) =6dy +dy, vtk S(02) =6(d1s+d7)+da+ds.
We now show the examples in [11, Table 3] are consistent with the invariants listed on Table 8.
Example 5.3. The elliptic K3 surface with Weierstrass equation
=2+t +1)x
admits the following order 28 purely non-symplectic automorphism

oas(z,y,t) = (x — (y/)*,ily — (y/x)°), G7t),

The elliptic fibration admits a smooth fiber over t =0, a fiber of type I1 over t = oo and 7 fibers of
type II over the roots of A = 4(t" 4+ 1)3. One can check the invariants of Fix(o3g),j = 1,2,4,14
are as in the first row of Table 8. In particular, the automorphism o154 = 034 is of type A1(3,2)
in our classification of Section 3. Moreover, given that Fix(o2) = C3 U Ry U Ra, we have that o4
does not exchange Ry and Ro and fizes the 8 tangential points of the fibers of type II lying on Cs.
Therefore, oag fizes the same three points in the fiber over t = oo and two additional points in
smooth fiber over t = 0.

Example 5.4. The elliptic K3 surface with Weierstrass equation
y? =23+ (¢ + )z, t € P

admits the following order 28 purely non-symplectic automorphism
oss(z,y,t) = (—z, iy, —(qt).

One can check that the invariants of Fix(odg),j = 1,2,4,14 are as in the second row of Table
8. In particular, the automorphism 014 = 035 is of type A1(3,2) in our classification of Section 3.
Given that Fix(og) = C3 U Ry U Ry, the automorphism o4 exchanges Ry and Ro and fizes Cs. As
a consequence, oog fixes the tangential point in the fiber of type II over t = oo and two additional
points in the smooth fiber.

Another example of this type of automorphism is given by the following. Consider the K3 surface
in P(7,3,2,2) which is the zero locus of the quasi-smooth polynomial 2% 4+ y*z + 27 +w". It admits
the purely non-symplectic automorphism of order 28

0'28(1:7:(/’ Z,U)) = (J?, Zy7 2, <71U)

Resolving the singularity of type As at (0 : 1 : 0 : 0) and the seven singularities of type Ay at
(0:0:¢,,1),i=1,3,...,13 we see that the different fized loci of the powers of oo are as in the
second row of Table 8.

Example 5.5. The elliptic K3 surface with Weierstrass equation
v =23+ +1t7, t e P
admits the order 28 purely non-symplectic automorphism

028 (l’, Y, t) = (_xa iyv _<7t)'

The elliptic fibration admits a smooth fiber over t = 0, a fiber of type II* over t = oo and 14
nodal curves over the roots of A = 4 + 27t1*. The automorphism 14 = 035 is of type B3 in our
classification in Section 3 and we can check the invariants of Fix(a%é),j = 1,4,14 indeed agree
with the third row of Table 8. Moreover, since Fix(os) = CeLURUR . .. Ry, we have that o4 fixes
two rational curves including R, two points in Cg and siz additional points in the other rational
curves. As a consequence, oag fixes R and ten additional points, two of them on the smooth fiber
overt = 0.
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6. ORDER 42

In [11], Brandhorst classifies purely non-symplectic automorphisms of order 42 on K3 surfaces.
Here, we provide a different and more geometric view of his result. We prove:

Proposition 6.1. The fized locus of a purely non-symplectic automorphism of order 42 on a K3
surfaces is not empty and it consists of either:

(i) The union of Nay isolated points, where Naj € {5,6}; or

(ii) The disjoint union of a rational curve and 9 isolated points.
Moreover, all these possibilities occur, and a more detailed description is given in Table 9 below.

Type 014 Fix(o42) Fix(o7) Fix(o21) Fix(o3) Ezample
Ci {p1,...,pe} Ru{pi,...,ps} RU{p1,...,ps} Cs URU R U{p1,p2,ps} 6.5
3 {p1,..,ps} RU{p1,...,ps} {p1,...,p7} Cs URU{p1,p2} 6.6
Bg R u{pl,...pg} EuRu{pl,...,pg} R U{pl,...pn} CgURUR/uR//U{pl,...p4} 67

TABLE 9. Order 42

Proof. Let 045 be a purely non-symplectic automorphism of order 42. Thus its square is a purely
non-symplectic automorphism of order 21 and we use the classification of Section 4.

Observe that isolated fixed points for o42 of type Asg 42 lie on curves fixed by 21 and not fixed
by 042. Thus, if 091 has invariants as in the first or fourth rows of Table 6, it must be the case
that magg 42 is either 0 or 2, according to the fact the the rational curve R C Fix(o21) is fixed by
049 OT not.

We also have the following inequalities
my42+mig a2 < My21, Mogotmigas < Mo21, M3g2t+mizae < M3 21, Magot+migaz < My 21,
ms 42+mis542 < M521, Mea2+Mig a2 < Me 21, M7a2+miz a2 < My 21, Mga2t+miz a2 < Mg 21,
Mg 42 + M11,42 < Mg 21, M10,42 < M1p,21
According to this, we look for possible solutions m = (my 42, ..., Mag 42; az) of the Lefschetz
holomorphic formula (2) applied to o42. Using MAGMA we get the following:

e if g9y is as in the first row of Table 6, there is no possible solution m with a4 = 1. If
ayg2 = 0 one gets the vector m = (0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,2;0). Thus
Fix(o42) consists of 6 isolated points, two of which are contained in the rational curve
fixed by oa;.

e if 09 is as in the second row of Table 6, then 4o is necessarily 0 and magg 42 = 0. There is
one solution m = (0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0;0). Thus Fix(c42) consists
of 5 isolated points.

e if 09; is as in the third row of Table 6, a4 is necessarily 0 and maog 42 = 0. There is no
solution in this case.

o if 09; is as in the fourth of Table 6, aso can be 0 or 1. If ass = 0 and mgpae = 2
there are no solutions. If ass = 1 and mgp 42 = 0 by MAGMA we get only one solution
(m1’42, <03 120,425 0442) = (3, 2, 1, 1, 1, 1, O, 0, 0, 0, O, O, 0, 0, 0, O7 O, 0, 07 0; 1). Thus FiX(0'42)
consists of a rational curve and 9 isolated points.

Thus, there are three possibilities for Fix(o42). As before, let d; == dim H?(X,R), for i =
42,21,14,7,6,3,2,1. We have
22 = 12d4o + 12da1 + 6d14 + 6d7 + 2ds + 2d3 + do + d;

By the topological Lefschetz formula (3) applied to the powers of o4 we get the following linear
system of equations
Xa2 =2—dso+do +dig—dr+dg—d3s—da+dy
X21 =2+dap+do —dig—dr —dg —ds+da+dy
X14 =24 (2ds2 + dia) — (2d2y + d7) — (2dg + d2) + 2d3 + dy
(12) X1 =2~ (2dag + 2da1 + dra + dr) + 2ds + 2d3 + dy + ds
X6 =2+ (6ds2 +dg) — (6d21 + d3) — (6d14 + dz) + 6d7 + dy
X3 =2 —(6dg2 + 6da1 + dg + d3) + 6d14 + 6d7 + d2 + dy
X2 =2— (12d4s + 6d14 + 2dg + d2) + 12da1 + 6d7 + 2d3 + d4
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Considering the different possible solutions we can compute the values of the Euler characteristics
of the fixed locus of 045 and its powers:

Type 014 | xa2 | Fix(oa2) | (daz,-...d1) | xo1 [ xaa | x7 | x6 | X3 | x2
C1 6 | Gpts | (10,001,026 | 10| 6 [10]13] 3 | -8
3 5 | 5pts | (1,0,0,0,0,1,15) | 7 | 8 [10]12] 0 |-6
B3 | 11 | RU9pts | (1,0,0,0,000,10) | 13 | 14 [ 10|18 | 6 | 0

Remark 6.2. Observe the following relations hold:
tk S(o) =d1 > 1, rk S(o7) =2dg+2d3 +ds +d1, 1k S(0o6) = 6d7 + di,
rk S(o3) = 6d14 + 6d7 + do2 +d1, 1k S(0o2) = 6(2de1 + d7) + 2d3 + dy.
Remark 6.3. The complete description of Fix(o3) follows from Proposition 4.1.

Remark 6.4. The possible values of xg obtained in the proof of Proposition 6.1 and the classifi-
cation in [13] allow us to also completely describe Fix(og). The description is as follows:

If 042 is as in the first row of Table 9, then we must have mag = 10 and mi6 = 1. Moreover,
o¢ fizes 1 rational curve. With our notations, there are 8 fixed points under og¢ lying on Cs, og
fizes p1, it also fizes R and it has 2 more fized points lying on R'.

Now, if 042 is as in the second row of Table 9, then mo ¢ = 8 and my ¢ = 2. Moreover, o fizes
1 rational curve. There are 8 points fixred under og lying on Cs, og¢ fizes p1 and pa, and it also
fizes R.

Finally, if 042 is as in the last row of Table 9, then ma s = 10 and my,6 = 4. Moreover, os fizes
2 rational curves. There are 8 points fived under og lying on C3, o¢ fixes p1,...,D4, it also fizes
R and R' and it has 2 more fized points lying on R".

Observe that Proposition 6.1 is compatible with [11]. In fact the examples in [11, Table 3] agree
with the invariants listed on Table 9, as we describe below:

Example 6.5. The K3 surface is the same as in Example 4.4, see [11]. On the same elliptic
fibration y* = x3 + 4t*(t” — 1) the order 42 automorphism o4 is given by

042 © (Iv Y, t) — (C$C3x’ 7§$y7 <7t)
The automorphism 42 acts on the fiber of type IV* as a reflection, moving two legs and leaving
the third invariant. Thus on the fiber IV* 049 fixes J isolated points. The 2 isolated points fized

by 021 on the cuspidal fiber over t = oo are fized by o42 too. In particular, the invariants of
Fix(0)5),7 = 1,2,3,6,7,14,21 are as in the first row of Table 9.

Example 6.6. The K3 surface is the same as in Example 4.5, see [11]. On the same elliptic
fibration y* = 23 +t3(t" 4+ 1) the order 42 automorphism o4 is given by

042 © (1'7 Y, t) — (C’?C3I7 7§7y7 g?t)

One can check that the invariants of FiX(UiQ),j =1,2,3,6,7,14,21 are as in the second row of
Table 9.

Example 6.7. The K3 surface is the same as in Example 4.7, see [11]. On the same elliptic
fibration y* = 23 +5(t" 4+ 1) the order 42 automorphism o4 is given by

042 ({E, Y, t) = (442255, Cz2yv CiZst)
On the fiber I11* o490 fixes 8 isolated points and the central component R. It also fizes 1 point on

the elliptic curve E over t = 0. Therefore, the invariants of Fix(aiz),j =1,2,3,6,7,14,21 are as
in the third row of Table 9.

7. NOT PURELY NON-SYMPLECTIC AUTOMORPHISMS

As we observed in Section 2, a not purely non-symplectic automorphism f is such that its action
on the period wx is given by multiplication by a non-primitive n-th root of unity (different from
1). As a consequence, at least one power of f is symplectic.

The following are well known results about symplectic automorphisms on K3 surfaces. First,
by [27], a symplectic automorphism can only fix isolated points, and its order must be less than or
equal to eight. Moreover, according to the possible orders:
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Lemma 7.1. (see [16, Prop 1.1],[17, Prop. 5.1], [27]) Given a symplectic automorphism g on a
K3 surface, the number N of isolated fized points and the rank of the invariant lattice S(g) are
shown in the following table.

ord(g) | N |tk S(g) | ord(g) | N | tk S(g)
2 8 14 6 2 6
3 6 10 7 3 4
4|4 8 § | 2 2
5 4 6

In this section we will provide a complete classification of not purely non-symplectic automor-
phisms of orders 14,21, 28 and 42 according to which powers of the automorphisms are assumed
to be symplectic.

7.1. Order 14. Let 014 be a non-symplectic automorphisms of order 14 such that either o7 = 03,
or oy = o1, are symplectic. We will study the two cases separately.

7.1.1. o7 symplectic. When the square of 014 is symplectic we prove:

Proposition 7.2. Let 14 be a non-symplectic automorphism of order 14 on a K3 surface X such
that o7 = o3, is symplectic. Then Fix(o14) consists of 3 isolated points and the possible values of
(d14,d7,d2,dy) are (2,1,2,2),(3,0,3,1). In the first case, Fix(o2) consists of a curve of genus 3,
while in the second case, it consists of a curve of genus 10. Moreover, both possibilities occur.

Proof. By Lemma 7.1, the fixed locus of o7 consists of 3 isolated points and since Fix(o14) C
Fix(o7), it follows that the number Ny4 of isolated points fixed by o014 is at most 3. Now, by
Lemma 7.1, we also know the invariant lattice of o7 has rank 4. Therefore, by Remark 3.8, we
further know ds + di = 4 and dy4 + d7 = 3. Moreover, by the topological Lefschetz formula (3)
(applied to o14) we have

X14 = N1y =2+ dyy —d7 — da + dy.

Further observing that we must have do > 0 and d; > 0, these give the following list of possibilities
for (di4,d7,d2,dy; N1a):
(0,3,1,3;1),(1,2,1,3;3),(1,2,2,21),(2,1,2,2;3),(2,1,3,1;1), (3,0, 3,15 3).

As in Section 3.1, using (7) and [28], we can compute X5 and the possible invariants (go, k2)
of the fixed locus of o3. These are listed in Table 10 below. In particular, we observe that if
(d1a,d7,dz2,d1) = (0,3,1,3), then we would have o = 22, which is impossible by [28].

Ny | dis dy do di| xo (g2, k2)
1 0 3 1 3| 22 -
111 2 2 2|8 [(6),(25)(1,4),(03)
1|2 1 3 1]-6| (62),051)(4,0)
301 2 1 3/10] (26),(1,5),(04)
32 1 2 2/|-41](63),052),(41),(3,0)
313 0 3 1/-18 (10,0)

TABLE 10.

With computations similar to the ones of Section 3.2, we can actually eliminate many of the
other possibilities. In fact we see we must have that Fix(c14) = Fix(o7) consists of 3 isolated
points and Fix(o2) consists of either a curve of genus 3 or a curve of genus 10. The existence of

both cases is shown in the following examples.
O

Example 7.3. Let f(zo,71,%2) = 2321 + 2322 + 2320 and consider the K3 surface
Xpi={(z0:21: 22 x3) : 25 = o, 21,22)} C P2

This surface carries the order 14 automorphism o14 : (xo : T1 @ T @ x3) — (C?zo : C$$1 2 (rxo
—z3). We have Fix(c14) = {(1:0:0:0),(0:1:0:0),(0:0:1:0)} and Fix(c7) is given by the
curve {x3 = 0}, which has genus three. Note that o2 is symplectic.
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Example 7.4. Let X be the surface in P(3,1,1,1)5 . ..w given as the zero locus of 2 4+ Pz +
25w+ w’y. X admits the action of the order 14 automorphism

014 : (Ivyaz7w) = (7I7C’?y7<’?25<$w)

whose square is symplectic and fizes the three points {(0:1:0:0),(0:0:1:0),(0:0:0:1)}.
The fized locus of o2 is the genus 10 curve {x =0} N X.

7.1.2. 09 symplectic. We now consider what happens when the involution o7, is symplectic and
0%, is non-symplectic. About the fixed loci of 014 and its powers, we can prove the following:

Proposition 7.5. Let 014 be a non-symplectic automorphism of order 14 on a K3 surface X and
assume the involution o9 = UI4 is symplectic. Then Fiz(c14) consists of N14 < 8 isolated points
and the possible values of N14 and (dy14,d7,ds,dy) are given in Table 11 below, together with x7 in
each case.

Nu | dis dr dy di| xz
1 0o 1 8 8|17
8 1 1 2 8|10
1 1 2 2 2|8

TABLE 11.

Proof. By [27], the fixed locus of the symplectic involution oy consists of 8 isolated points. Since
Fix(o14) C Fix(o3), it follows that N14 < 8. The invariant lattice of o5 has rank 14 by Lemma
7.1, thus 6d; + d; = 14 and 6d14 + d2 = 8 by Remark 3.8. Moreover, by the topological Lefschetz
formula (applied to 014) we have

X(FiX(O’M)) = N14 =2 + d14 - d7 - d2 + dl.

Further observing that we must have d; > 0 and d; > 0, this gives the above list of possibili-
ties, that is, if the involution o9 is symplectic one has 3 possibilities for (di4, d7,ds,d;), namely
(0,1,8,8),(1,1,2,8),(1,2,2,2). O

According to [12, Table 3] there are four different deformation families of K3 surfaces with these
automorphisms. Assuming general conditions, i.e. that the Picard lattice of the surface coincides
with S(o7), we prove the following Lemma which complements Proposition 7.5 (and Table 11).

Lemma 7.6. Let 014 be a non-symplectic automorphism of order 14 on a K3 surface and assume
the involution oy = o], is symplectic. Under the assumption that the Picard lattice agrees with
S(o7) we have that the order seven automorphism o7 = o3}, cannot be of type T (here we are

referring to the notation in Table 1). In particular, o7 must fiz a curve.

Proof. Since the K3 surface admits a symplectic involution, the transcendental lattice Tx must be
primitively embedded in Eg(2) @U @ U @ U [18]. By assumption, Tx = T(o7), and we see that o7
cannot be of type , since in that case T'(o7) = U(7) @ U & Eg & Ag. O

As a consequence of the Lemma, the four deformations families given in [12, Table 3] correspond
to families of type A, B, C and D. One can check Table 11 to know Ny4 in each case.

We now exhibit two examples of possibilities in Table 11: one belonging to case C, corresponding
to the second line of Table 11, and one belonging to case A and corresponding to the third line of
Table 11. Observe that in both cases, the K3 surfaces appear also in the classification of Section
3, showing that these surfaces admit both a symplectic and non-symplectic involution.

Example 7.7. (Case C) Let us consider the elliptic K3 surface X with Weierstrass equation
given by y* = a3 + t2x + 19, t € PL. The automorphism o14: (2,y,2,t,8) — (CGrz, =2y, —(qt) is
a non-symplectic automorphism of order 14 and oo is symplectic. Note that Fix(o14) consists of 8
points.

Example 7.8. (Case A) Let X be the elliptic K3 surface given by an equation of the form
y? = z(2® +t" +1),t € PL. Then X admits the order 1j purely non-symplectic automor-
phism o : (x,y,t) — (z,—y,(st) described in Example 3.21, which corresponds to case A1 with
(g2, ko) = (3,2) in our classification of Section 3. Composing 0? = o7 : (x,y,t) — (z,y,(rt) and
the translation

T (xvyvt) = ((y/x)2 -, (y/.’E)3 - yat)
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by the 2-torsion section produces an automorphism of order 14, say o, which is not purely non-
symplectic. By construction, ¢ = 7 and T is symplectic. The invariants of @ are as in the third
row of Table 11.

7.2. Order 21. Let 021 be a non-symplectic automorphism of order 21 such that either o7 = o3,
or o3 = 0§, are symplectic. Again, we will study the two cases separately.

7.2.1. o7 symplectic.

Proposition 7.9. If 091 is a non-symplectic automorphism of order 21 on a K8 surface X, then
o7 cannot be symplectic.

Proof. By contradiction, assume o7 is symplectic. Then, by Nikulin, the fixed locus of o7 consists
of 3 isolated points. Since Fix(o91) C Fix(o7), 021 is acting with order three on Fix(o7). So
Fix(o91) consists of No; = 0 or Noy = 3 isolated fixed points.

Now, because the invariant lattice of o7 has rank 4 (Lemma 7.1), we also know d3 +dy = 4 and
do1 + d7 = 3. Moreover, by the topological Lefschetz formula (3) (applied to 021,07 and o3) we
have

X21 = Noit =2+dy —dy —ds+dy
X7 =2—(2dy +d7)+2d3+d; =3
x3 =2—6(do1 —dy) —d3+dy
By Remark 4.3 and further observing that ds, d; > 0 these give the possibilities for (ds1, d7, ds, d1)

and y3 shown in Table 12, but since x5 = N3 4+ 2(1 — g3 + k3) = N3+ 2(N3 — 3) = 3N3 — 6 we can
eliminate all cases.

Nai | (do1, d7,ds,dy) | xs

3 (2,1,2,2) -4

3 (1,2,1,3) 10

3 (3,0,3,1) -18
TABLE 12.

7.2.2. o3 symplectic. Similarly, we can prove:

Proposition 7.10. Let 21 be a non-symplectic automorphism of order 21 on a K38 surface X and
assume o3 is symplectic. Then Fix(o21) consists of exactly Noy = 6 isolated points and the only
possible values for (de1,dr,ds,dy) are (1,1,0,4). Moreover, Fix(o7) is as in case A of Table 1 and
such an automorphism exists (see Example 7.11).

Proof. By Lemma 7.1 , the fixed locus of o3 consists of 6 isolated points. Since Fix(o921) C Fix(o3),
it follows that Fix(oo1) consists of Noy < 6 isolated fixed points. The invariant lattice of o3 has
rank 10 by Lemma 7.1, so we also know 6d7; + d; = 10 and 6d2; + d3 = 6. Further observing that
dr,d; > 0, the topological Lefschetz formula (3) (applied to o921, 07 and o3) gives (da1, d7,ds,d;) =
(1,1,0,4), No; = 6 and x7 = 3.

Note that since Fix(o21) = {6 pts} C Fix(o7), the above implies o7 is of type A. That is,
Fix(o7) = F U3 pts and we must have three fixed points under o9; lying on E. ([

Example 7.11. In P(3,2,1,1) we consider the surface
x2w+xy2+yw5+z7 =0
with the order 21 automorphisms
o211 (2, y, 2, w) = (C32, 3y, (72, G3w)

The order 7 automorphism oz is non-symplectic and fizes the genus 1 curve {z = 0} and 3 more
points on the resolutions of the singularities (1:0:0:0) and (0:1:0:0), of type As and Ay respectively.
The automorphism o7 = og is symplectic.
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7.3. Order 28. Let 038 be a non-symplectic automorphisms of order 28. We will prove in what
follows that no power of o8 can be symplectic.

Proposition 7.12. If osg is a non-symplectic automorphism of order 28, then oag is purely non-
symplectic. In other words, no power of oag is symplectic.

Proof. We will assume some power of ogg is symplectic. Since there are no symplectic automor-
phisms of (finite) order bigger than 8 by [27], we have to consider three posibilities:

Case I 07 = 035 is a symplectic automorphism of order 7; or
Case I 04 = 05 is a symplectic automorphism of order 4; or

Case Il oy = o3 is a symplectic involution.

Observe that in this last case, 04 = 0lg is also symplectic.
We refer to Section 5 for the definition of (das, di4, d7, dy, d2,d1) and recall the relations given
in Remark 5.2:

rk S(O’7)=2d4+d2+d1, rk 5(04):6d7+d17 rk 5(02):6(d14+d7)+d2+d1.

We now study the three cases separately.

Case I If o7 is a symplectic automorphism of order 7, the action of o7 on the period wx of X
is trivial. Therefore ojswx = C4wx, which implies that dy = dim H?(X,R)¢, > 1. Then
(014)*wx = twx and since there are no symplectic automorphisms of finite order bigger
than 8 by [27], then (014)*wx = —wx. By Lemma 7.1, the fixed locus of a symplectic
automorphism of order 7 consists of 3 isolated points. Since Fix(o9s) C Fix(o7), then oag
only fixes isolated points and their number is Nog < 3. Moreover, 028 acts with order 1,2
or 4 on Fix(o7), hence Nog = 1 or 3. By Lemma 7.1, rk S(o7) = 4; it follows by the above
formulas and (11) that

2dy +do+dy =4
6(2d28+d14—|—d7) =18
Xo8 = Nog =2 +dyy —d7 —da +dy

This gives the following list of possibilities for (dsg, d14,d7, d4, d2, d1):

(1,0,1,1,1,1),(0,1,2,1,1,1),(0,0,3,1,0,2),(1,1,0,1,1,1),
(13) (0,2,1,1,1,1),(1,0,1,1,0,2),(0,1,2,1,0,2).

Moreover observe that oy4 is non-symplectic, o7 is symplectic and o7 = (014)2. Thus
we can use the classification of not purely non-symplectic automorphisms of order 14 given
in Proposition 7.2. In this case, the possible values of (a’,¥,c,d') = (d14,d7,d2,dy) are
(2, 1, 2, 2), (3, 0, 3, 1) and the relations with (dgg, d14, d77 d4, dg, dl) are

dog :a', d14+d7:b/, C/:d47 d/:dz—l-dl.

The vectors in (13) do not satisfy the above conditions, thus it is not possible for o7 to be
symplectic.

Case II Assume o4 is symplectic. Since ojwx = wx, then ojgwx = (ywx, which implies d7 > 1.
By Lemma 7.1, the fixed locus of o4 consists of 4 isolated points. Since Fix(c2g) C Fix(oy),
it follows that oag only fixes Nag isolated points with Nog < 4. Moreover, oog acts with
order 1 or 7 on Fix(c4), hence Nog = 4. By Lemma 7.1, rk S(o4) = 8, thus it follows from
the above formulas and (11) that

6d; +d; =8
12dag + 6d14 + 2dy + do = 14
Xog8 = Nog =2+ diy—dr —do+dy =4

The only solution is (dss, d14,d7,ds,d2,d1) = (0,1,1,4,0,2). Observe that in this case
0'%8 = 014 is non-symplectic. By (11), we can compute x14 = —6 and this is impossible
since by [9], the Euler characteristic of the fixed locus of a non-symplectic automorphism
of order 14 is bigger than 0. Thus there are no possibilities for (das, d14,d7, dy, d2, d1) and
hence o4 can’t be symplectic.
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Case IIT We now show that there is no K3 surface with a non-symplectic automorphism osg such
that o4 = ol is non-symplectic and oo = olg is symplectic. Assume the involution oy is

symplectic and o4 is non-symplectic. Thus
* * 1 *
OoWx = Wx, OagWx = (|uWx, O wx # wx.

Thus we are interested in odd ¢’s, such that ojwx = —wx. In particular, di4 > 1. By
Lemma 7.1, the fixed locus of o3 consists of 8 isolated points and since Fix(c2g) C Fix(o2),
it follows that osg only fixes Nog isolated points and Nog < 8. Moreover, gog acts on
Fix(o2) with order 1, 2, 7 or 14; it follows that either Nog is even or Nog = 1. By Lemma
7.1, tk S(o2) = 14, thus it follows from the above formulas and (11) that

6d14 +6d7 +ds +d; =14
12dog + 2dy = 8
X28 = Nog =24diy—dyr —da+dy =4

This gives the following list of possibilities for (das, d14,d7,dy, da,dy):
(14) (0,2,0,4,1,1),(0,1,1,4,1,1),(0,2,0,4,0,2),(0,1,1,4,0,2),(0,1,0,4, 5, 3).

Moreover, observe that o14 is non-symplectic, o9 is symplectic and oy = (014)7. Thus we
can use the classification of not purely non-symplectic automorphisms of order 14 given
in Proposition 7.2. In Proposition 7.5 we found three possible vectors (a’,b',c/,d") =
(di4,d7,do, dy):
(0,1,8,8), (1,1,2,8), (1,2,2,2)
and the relations with (das, d14,d7,d4, ds2,d;1) are, as before,
dog = a’,d14 +d; = b/,C/ = d4,d/ =dsy + d;.

The vectors in (14) do not satisfy the above conditions, thus it is not possible for o3 to be
symplectic.
Therefore, we proved that a non-symplectic automorphism of order 28 is necessarily
purely non-symplectic.
|

7.4. Order 42. Let 042 be a non-symplectic automorphism of order 42. We will prove in what
follows that oi3 = o3 can be symplectic, but any other power o%,, where k = 6,7 or 21 must be
non-symplectic. Note that there are no symplectic automorphisms of (finite) order bigger than 8
by [27].

We first prove the following:

Proposition 7.13. Let 042 be a non-symplectic automorphism of order 42 on a K3 surface X, and
assume o3 = ot is symplectic. Then Fiz(o4s) consists of 2 or /4 isolated points. In the first case
Fix(o14) is as in case A2(9,0) of Table 2; and, in the second, it is as in case A1(9,1). Moreover,

both cases exist (see Example 7.14 and Example 7.15).

Proof. Let 0 = 049. If 0'* = 05 is symplectic. Then 02 = 09 is a non-symplectic automorphism
of order 21 such that o}, is symplectic. Therefore, we can apply Proposition 7.10 to conclude that
091 fixes exactly 6 points and o7 = ¢ is of type A of Table 1.

Now, if we let a = dys + d21,b = dig + d7, ¢ = dg + d3,d = da + dy, and d; = dim H?*(X,R),, for
i=42,21,14,7,6,3,2, 1, then Proposition 7.10 also gives us (a,b,¢,d) = (1,1,0,4).

Combining the above with the Topological Lefschetz formula (3) applied to the powers of o as
in (12) (and imposing the relations in Remark 6.2) gives the following list of possible values for
(ds2,do1,d14,d7, dg, ds3, dz, dy):

(1707 1’ 0) O? 07 2’ 2)7 (1707 1’ 0’ 07 07 17 3)

Note that o*w = (},w for some 1 < i < 13, and if i is even (resp. i = 7), then o7 (resp. o2)
is symplectic, but the latter is impossible by Proposition 7.10 and Lemma 7.1. Thus, ¢ is odd
(#£7) and dy4 > 1. In other words, 03 = 014 is purely non-symplectic of order 14. In particular,
x2 € {0,—16, —14}, by Proposition 3.1.

In addition, note also that using (12), the first vector gives us (xa2,X21, X145 X7, X65 X3, X2) =
(2,6,5,3,2,6,—16), while the second gives (x42, X21, X14, X75 X6, X3, X2) = (4,6,7,3,4,6, —14).
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Therefore, Fix(o) consists of 2 or 4 isolated points. In the first case, 014 is of type A(9,0) of
Table 2 and, in the second, 014 is of type A(9,1). O

Example 7.14. InP(4,2,1,1), s we consider the K3 surface given by
22+ 5Tt + yt 4 ytt
with the order 42 automorphism

042 : ($7yaz7w) = (_$7yac7<.3ta<-??s)'

The order 14 automorphism o14 is purely non-symplectic of type A2(9,0), i.e. o7 fives the genus
1 curve {s = 0} and 3 points, two of them on the resolutions of the singularities of (1: —1:0:0)
and (1 :1:0:0) of type Ar. Moreover, we have that oo fizes a genus 9 curve {x = 0}. The
automorphism o'* = o3 is symplectic.

Example 7.15. In P(5,3,1,1), ;s we consider the K3 surface given by
z® +sTy+yPt+ 10
with the order 42 automorphism

042 : (fvyasz) = (_x7<3y7t7<7c323)'

The order 14 automorphism o14 is purely non-symplectic of type A1(9,1), i.e. o7 fizes the genus
1 curve {s = 0} and 3 points, two of them on the resolutions of the singularities of (0:1:0:0)
of type Ay. Moreover, we have that oo fizes a genus 9 curve {x = 0} and a rational curve. The
automorphism o'* = o3 is symplectic.

In contrast, we further prove:

Proposition 7.16. Let 049 be a non-symplectic automorphism of order 42 on a K3 surface X.
Then o¥, is non-symplectic for k = 6,7,21.

Proof. By contradiction, assume ¢ = 049 is a non-symplectic automorphism of order 42 such that
one of the powers 0¥, is symplectic with k = 6,7 or 21. That is, assume there exists a k € {6,7,21}
such that the action of ¢ on wx is given by multiplication by (; for some 1 < i < k.

k = 6 If 0% = o7 is symplectic, then 02 = g9; is a non-symplectic automorphism of order 21 such
that o3, is symplectic. But this contradicts Proposition 7.9.

k =7 If 07 is symplectic, then o' is also symplectic. And since Fix(c) C Fix(c”) C Fix(o!4),
the proof of Proposition 7.13 implies we must have

(d427d217 d147 d77d61 d37 d27d1) = (1707 1) 070707 27 2)

where d; = dim H?(X,R), for i = 42,21,14,7,6,3,2,1. But for this vector we do not have
d7 > 1. Therefore, 0”7 cannot be symplectic.

k = 21 Finally, assume 02! = g5 is symplectic. Then o*wy = (};wx for some 1 < i < 20. Ifi =7,
then o® is symplectic, which is impossible by [27]. If i = 3, then ¢ would be symplectic,
which we showed is not possible (case k = 7). Therefore, do; > 1.

Now, observe o2 = o7, so that we can use our classification results from Section 7.1 to
conclude o5 cannot be symplectic.

More precisely, applying Proposition 7.5, and letting a = d4s + d14,0 = d21 + d7,c =
dy + dg,d = d3 + dy, we find that the possible values of (a,b,¢,d) are (0,1,8,8),(1,1,2,8)
or (1,2,2,2). But for these three vectors, if we use (12) and Remark 6.2 together with the
fact that do1,d1 > 1, x2 = 8, x42 < 8 and

22 = 12(d42 + d21) + 6(d14 + d7) + 2(d6 + dg) +dy + dy
then we find no possible solutions for (dy2, da1, d14,d7, dg, d3, d2, dy).

8. THE NERON-SEVERI LATTICE

We conclude with a description of the Néron—Severi lattice of a K3 surface X admitting a
purely non-symplectic automorphism o = o, of order n = 14,21, 28 or 42. Under the assumption
of generality we have:

(15) r=rk NS(X)=22—d, - ¢(n)
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and using the results obtained in the previous sections we are able to describe NS(X) in every
case. Since the invariant lattices S(o?) are all primitively embedded in NS(X) by [27, Section 3],
if we can find one power i such that the corresponding invariant lattice has the expected rank r,
then we can conclude we have equality S(c') = NS(X).
We will call a pair (X, 0,,) satisfying (15) as above a general pair and we will use the classification
of automorphisms of prime orders in [9] and [28] in order to describe explicitly the lattices NS(X).
Our results are presented in Propositions 8.1 and 8.4 below:

Proposition 8.1. Let (X,014) be a general pair. For each possibility listed in Table 5, with the
exception of case C1(0,2) (see Remark 8.3), the Néron—Severi lattice NS(X) is as in Table 13
below.

X14 | X7 | X2 | (dia,d7,d2,d1) NS(X)
A 7 1 5 4] (5013 S =Ua K-
atl 71 s 0| (2104 (o)
A2 5 [ 3 1-16] (3022 S =U o K-
Bl 17 1 10] 0 (20,0,10) S(o7) = U @ Es
Ci| 6 110] 51 (20.4.6) S(o7) = U(7) & Es
ce| 4 [ 10]-10] (2,0.5.5) S(o7) =U(7) & Ex
o3 s [10] 6| (2,037 S(07) =U(7) @ Es
D2l 3 17| 4| (1,088 | S0 =Uo Esd Aq
D3| 7 [ 17| 0 | (1,0,6,10) |S(o7)=U® Es® Ag
D8 13 [ 17| 6 | (1,0,5,13) | S(o7) =U @ Es @ Ag

TABLE 13.

Proof. For n = 14, one has ¢(14) = 6 and by Remark 3.8, rk S(07) = d2 +d;,1k S(02) = 6d7 +d;.
By (15) one has

L] ifd14 == 3, rk NS(X) =4

e if dyy =2,k NS(X) = 10;

o if diy =1, tk NS(X) = 16.
and we get that the Néron—Severi lattice N.S(X) is as in Table 13. O

Remark 8.2. If 0 = 014 is a purely non-symplectic automorphism of order 14 on a K38 surface
X such that o is of type D, then NS(X) = S(0?). In fact, we know that r = rk NS(X) > 16 =
tk S(0?), hence the rank ¢ of the transcendental lattice NS(X)* is at most 6. But since { must be
divisible by ¢(14) = 6, it must be the case that £ =6 and r = 16.

Remark 8.3. For a general pair (X,014) such that Fix(o14) is of type C1(0,2), none of the
invariant lattices S(ot,) have the expected rank. Thus we are nmot able to compute the Néron—
Severi lattice of the general K3 surface in this case.

When n = 21, 28 or 42, we have that p(21) = ¢(28) = p(42) = 12 and for all cases d,, = 1, thus
rk NS(X) =22 — 12 = 10. We prove:

Proposition 8.4. If n = 21,28 or 42, the description of the lattice NS(X) for a general pair
(X, 0,) is as follows:

(i) If n = 21, the possibilities are shown in the following table:

Type 21 | X21 | x7 | x3 | (d21,d7,d3,dy) NS(X)

0328 [ 10 10] 31 (1.0.1.8) S0 =U(&Es
C(3.1.2) | 7 [10] 0 (1,02.6) | S(or)=U(T) & Es
C3,0.1) | 4 [10] =31 (1,0.34) | S(on) =U(7) & Es

B(3,534) | 153 [ 10| 6 (1,0,0,10) S(o7) =U @ Es

(1) Similarly, if n = 28 we have the following table of possibilities:
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Type 014 | X2 | X4 | X7 | X214 | x28 | (dos,d1a,d7,ds,d2,dr) | NS(X)
A1(3.2) | 012 3] 7| 5 (1,0.1,0,0.4) S(02)
A1(32) [0 4 3| 7] 3 (1,1,0,0.2,2) S(09)
B3(6,5) | 0| 12| 10| 14 | 12 (1,0,0,0,0,10) S(02)
(iti) And if n = 42 we have:
Type 014 | x21 | X7 | X3 | (da2,d21,d14,d7,ds, d3, do, dy) NS(X)
C1_ 10110 3 (1,0,0,0.1,0,2,6) S(o7) = U(7) & Es
3 7 110 0 (1,0,0,0,1,1,1,5) S(o7) =U(7) & Es
B: | 13 | 10] 6 (1,0,0.0,0,0,0,10) S(o7) =U & Es
Proof. 1t follows from Remarks 4.3, 5.2 and 6.2. ]

Remark 8.5. We observe that when n = 28 and Fix(o14) is of type A1(3,2), then the 2-elementary
lattice S(o2) has invariants (r,a) = (10,6). But, a priori, the invariant § is not unique. By [18,
Theorem 0.1], we have that 6 = 0 if and only if X also admits a symplectic involution.
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