GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF
K3-SURFACES

ALESSANDRA SARTI

ABSTRACT. In this paper we describe six pencils of K 3-surfaces which have large Picard-
number (p = 19,20) and contain each precisely five special fibers: four have A-D-E
singularities and one is non-reduced. In particular we describe these surfaces as cyclic
coverings of the K 3-surfaces of [BS]. In many cases using 3-divisible sets, resp. 2-divisible
sets of rational curves and lattice theory we describe explicitly the Picard-lattices.

0. INTRODUCTION

In the last years using various methods (toric geometry, mirror symmetry, etc.), many
families of K 3-surfaces with large Picard-Number and small number of special fibers have
been constructed and studied (see e.g. [D], [VY] and [Be]). In these notes using group
actions and cyclic coverings we describe six new families where the generic surface has
Picard-number 19 and we identifies four surfaces with Picard-number 20. These six pencils
are related to three families of K3-surfaces studied by Barth and the author in [BS], the
generic surface has Picard-number 19 and the pencils contain four surfaces with singularities
of A— D — FE type and p = 20 and one non-reduced fiber. The families arise as minimal
resolutions of quotients X7 /G,, were G,, is a special finite subgroup of SO(4, R) containing
the Heisenberg group and {X7}ep, is a G-invariant pencil of surfaces in IP3, the latter are
described in [S1] (we recall some facts in section 1). In section 1 and section 2 we describe
six normal subgroups H of G,, which contain the Heisenberg group, we describe the fix
points of H on X} and we show that the minimal resolutions are pencils of K3-surfaces
which contain five special surfaces. Then in section 3 we show that the new families are
certain cyclic coverings of the surfaces of [BS]. Then, by a classical result of Inose, [I, Cor.
1.2], they have the same Picard-number, hence the general surface in each of the six pencils
has Picard number 19 and we have four surfaces with Picard-number 20. In section 4 by
using the rational curves on the minimal resolutions and 2-divisible and 3-divisible sets of
rational curves, we describe completely the Picard-lattice of many of the surfaces.

I thank Wolf Barth for introducing me to cyclic coverings and for many useful discussions,
and the referee for pointing me out the paper [I] of Inose and for many suggestions improving
the presentation of the paper.

1. NOTATIONS AND PRELIMINARIES

There are two classical 2 : 1 coverings:
SU(2) - SO(3,R) and 0 : SU(2) x SU(2) = SO(4,R).

Denote by T,0 C SO(3,R), the rotation group of tetrahedron and octahedron, by Tv, 0
the corresponding binary subgroups of SU(2) and let G¢ := (T xT), Gg := 0(O x O). We
denote an element of SU(2) x SU(2) and its image in SO(4,R) by (p1,p2). Let X% = sg+Ag?

and X § = sg + A¢* denote the pencils of Gg- and of Gs-invariant surfaces in Ps, which are
1
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described in [S1], sg denotes a Gg-invariant homogeneous polynomial of degree six and sg
denotes a GGg-invariant homogeneous polynomial of degree eight, ¢ := a:% + 22+ 235+ x% is
the equation of the quadric Py x P; in P3. The base locus of the pencils X} are 2n lines
on the quadric, n in each ruling and each pencil contains exactly four nodal surfaces (cf.
[S1]). Now recall the matrix:

C = € 0(4,R),

cocor

co~o
|

oR oo

o oo

which operates on an element (p1,p2) € G1 X Ga by:

C_l(plaPQ)C = (PQ;Pl)-

Moreover we specify the following matrices of SO(4, R):

0 -1 0 0 0 0 -10

1 00 0 0 0 01
@U=19 00| @YV={1 o 00|

0 01 0 0 -1 0 0
1 -1 1 -1 1 -10 0
1 1 -1 -1 1 10 0

—1 =1

(p3,1) = 3 -1 1 1 -1 | (Ps, 1) v21 0 01 -1
1 1 1 1 0 01 1

Using these matrices the groups have the following generators:

Group ‘ Generators

G6 (QQa1)7(17QQ)7(p371)7(17p3)
Gs | (g2,1),(1,92), (p3,1),(1,p3), (P4, 1), (1,p4)

Denote by PG the image of a subgroup G C SO(4,R) in PGL(4,R). We define the types
of lines in P3 which are fixed by elements (p1,p2) € PG of order 2,3 or 4 in the following
way:

order |

2 3 4
type|MNR

1.1. Normal subgroups. In [S2] the author classifies all the subgroups of SO(4, R) which
contain the Heisenberg group V x V. Here we consider all the normal subgroups of Gg
and of Gg which contain the subgroup V x V, resp. Gg. We denote by H such a normal
subgroup, by o(H) its order and by i(H) = [G,, : H| the index of H in G,,. We list below
all the groups H and their generators, following the notation of [S2]. Moreover we do not
consider separately the groups H and C~'HC or, in general, groups which are conjugate
in O(4,R). The group T x T is in fact the same as Gg, but to avoid confusion we use this
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notation when we consider it as subgroup of Gs.

H C Gg | generators o(H) | i(H) || H C Gg | generators o(H) | i(H)
TxV (¢1,1),(1,41) | 96 3 OxT (q1,1),(1,q1) | 576 2
(p3,1) (p3,1),(1,p3)
(p47 1)
(TT) (¢1,1),(1,41) | 96 3 (00)" (q1,1),(1,¢q1) | 576 2
(g2,1), (1, 42) (p3,1),(1,p3)
(p3,p3) (P492, P1q2)
VxV | (q1,1),(1,q1) | 32 9 TxT |(q,1),(1,q1) | 288 |4
(g2,1),(1,42) (p3,1),(1,p3)

1.2. Fix-points. We analyze the different kind of fix-points for elements of the subgroups
PH C PG in the same way as in [BS]. Recall that the elements of the form (p,1) or (1,p)
have each two disjoint lines of fix points contained in one ruling, respectively in the other
ruling of the quadric (cf. [S1, 5.4 p. 439)]).

1) Fiz-points on the quadric. The subgroups G1 x 1 and 1 x Gy of PH operate on the two
rulings of the quadric and determine orbits of lines. We give the lengths of the orbits in
the following tables. In the first row we write the order of the element which fixes two lines
of the orbit:

order of (p,1) | 2 3 4 order of (1,p) | 2 3 4
TxXV 6 py— TxV 2292 — =
OoxT 12 8 6 OxT 6 4,4 —
(TT)' 6 - (TT) 6 - -
(00)" 6 8 - (00)" 6 8 -
VXV 2,22 — - VXV 22,2 — -
TxT 6 44 — TxT 6 44 —

In particular observe that in the case of the groups (T'T")" and (OO)” the meeting points of
the fix-lines of the two rulings of P; x IP; split into three orbits of length 12 and two orbits
of length 32, in the other cases these meeting-points form just one orbit.

2) Fiz-points off the quadric. We denote by Fp, the fix-group of a line L of P53 in PH and
by Hp, the stabilizer group of L in PH, i.e.

Fr:={h€ PH st. hr =z for all x € L}
Hy :={h€ PH st. hL =L}.

Moreover denote by ¢(L) the length of the H-orbit of the line L and by ¢ a representative
of a conjugacy class in H:

group TxV (TT) VxV
g (g, 1) (q¢1,92) (q1,93) | (q1,¢1) (q1,92) (aq1,93) (P3.p3) | (4 qy)
Fr Zs Zs Zs 7 Zs Zs Zs Zs
type M1 M2 M3 M1 MQ M3 N Mij
(L) 6 6 6 6 6 6 16 2
\HL|/|FL| | 4 4 4 4 4 4 1 4

Here we denote by g3 € SU(2) the product of ¢; and ¢. In the last column of the table
the sum runs over ¢,7 = 1,2,3. In this case we have nine distinct conjugacy classes with
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group OxT (00)" TxT
g (q1,¢1) (p3,p3) (Pag2,q2) | (Pa,ps) (p3,p3) (P5.p3) (Pag2,paq2) | (g2,92) (p3,p3) (P3,p3)
P, Z Zs Zo 7 Zs Zs 7 Zs Zs Zs
type M N M’ R N N! M M N N!
e(L) 18 32 36 18 16 16 72 18 16 16
Hi|/|Fo | 8 3 3 4 8 8 2 4 3 3

Remark 1.1. By taking the generator (p%,ps) for (I'T)' instead of (ps,ps) we find a group
(TT)" which is conjugate in O(4,R) to (TT)'.

as in the case of (TT)'.

2. QUOTIENT SURFACES

2.1. Quotient singularities. We consider now the projections:

g XS — X$/H, 7w X5 — X$/H'

with H=TxV, (TT) ot VxV; H =0 x T, (0O0)" or T x T. In this section we run
the same program as in [BS], section 3 and describe the singularities of the quotients (for

the details cf. [BS]) .

The description of the fix points is similar

1) Fiz-lines on ¢. The image in the quotient of the lines of the base locus of the pencils X f

and X § and of the intersection points of the lines of the base locus are smooth. Observe
that the points of intersection of the lines of the base locus of the pencils form one orbit
under the action of T x V, V xV, O x T and T x T. In the case of the groups (T'T)" we
have three orbits and in the case of the group (OO)"” we have two orbits, as described in
1.2, this means that the lines in the quotient will meet three times and two times. Now we
consider the points of intersection of the lines of the base locus with the other fix-lines on

g. In the table below we do not write the groups (T'T)" and V' x V because they do not

have other fix-points on g other than the lines of the base locus. We denote by Fix(P) the
fix-group in PG of a point P. In the next table we write the length and the number of

orbits of fix-points, and we describe which kind of singularities do we have in the quotient:

group | TxV | OxT | (00)" | TxT
FIX(P) Zg X ZQ Z3 X Z2 Z4 X Z3 ZQ X Z3 ZQ X Z3 Z3 X ZQ Z3 X ZQ ZQ X Z3
length 8 48 24 48 48 48 24 24
number 6 1 2 2 1 1 2 2
sing. 6A2 1A1 2A3 2A1 1A1 1A1 2A1 2A1

2) Fiz-lines off q. Denote by o(L) the order of the fix-group F7, of L. The number of points

not on ¢ cut out on X7 by L is:




GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF K3-SURFACES

5

In the next table we show in each case length and number of Hp-orbits, the number and
type(s) of the quotient singularity (ies):

group TxV (TT) VxV
o(L) 2 2 22 2 2 3 2
type M1 M2 M3 M1 M2 M3 N Mij
length 4 4 4 4 4 4 1 4
number 1 1 1 1 1 1 6 1
singularities A1 A1 A1 A1 A1 A1 6A2 A1
group OxT (00)" TxT
o(L) 2 3 2 | 4 3 3 22 3 3
type M N M| R N N M| M N N
length 8 3 3 4 6 6 2 4 3 3
number 1 2 2 2 1 1 4 2 2 2
singularities A1 2A2 2A1 2A3 A2 A2 4A1 2A1 2A2 2A2

3) The singular surfaces. We denote by ns the number of nodes on the surfaces and by F
the fix-group of a node in H. In the table below, we give the number of orbits of nodes and
their fix-groups in PH, PH' and we describe the singularities in the quotient. We recall
[BS, proposition 3.1]:
Proposition 2.1. Let X be a nodal surface with F C SO(3) the fiz-group of the node. Then
the image of this node on X /H is a quotient singularity locally isomorphic with (CQ/F', where
F C SU(2) is the binary group which corresponds to F.

group TxV (TT) VxV
A M A2 A3 A4 Al A A3 A4 Al A2 A3 A4
ns 12 48 48 12 12 48 48 12 12 48 48 12
orbit 1 1 1 1 3 3 1 1 3 3 3 3
F ZQ X ZQ id id ZQ X ZQ T Z3 id ZQ X ZQ Z2 X Z2 id id ZQ X ZQ
lines 1M, — — 1M; |3M;, 1IN — 1M, 3M;; - —  3Mj
meeting 1M2 1M2 4N 1M2
1M, 1M, 1M,
sing. D4 A]_ A]_ D4 3E6 3A5 Al D4 3D4 3A1 3A1 3D4
group OoxT (00)" TxT
) M Ao Xa M M e A W M e s W
ns 24 72 144 96 24 72 144 96 24 72 144 96
orbit 1 1 1 1 2 1 1 2 2 1 1 2
F T TZoxZo 7o 73 0 Zs 7o  Ds T Zo id 73
lines |3M 1M 1M’ IN| B3R 1R 1M INWN)| 3M 1M — 1IN(N)
meeting | 4N 2M’' 4N(N') 3M | 4AN(N')
6.M
sing. EG D4 A3 A5 2E7 A7 A3 2D5 2E6 A3 A1 2A5

2.2. Rational curves. Let

M Y)\,H — X;\l/H

be the minimal resolution of the singularities of X7 /H. In the following table we give
the number of rational curves coming from the curves of the base locus of X} (denote it
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by v1) and from the resolution of the singularities. The latter are of three kinds: those
coming from the intersection points of the lines of the base locus with other fix-lines on
g, those coming from fix-points which are off ¢ and do not come from nodes of X7, and
those coming from the nodes. We denote their numbers by v», v3 and vy, then the total
number of rational curves is v := v; + 15 + v3 + 4. The configurations of some of the
curves are then given in the figures in section 6. In the table we write the discriminant, d,
of the intersection matrix too, this is easy to compute since we know the configurations of
the rational curves. Since in each case d # 0 the classes of the curves are independent in
NS(Yx u).

1. The smooth X7.

group | T xV (TT)Y VxV OxT (00)" TxT
vy 4 2 6 3 2 4
" 12 _ — 9 2 4
Vs 3 15 9 7 14 10
v 19 17 15 19 18 18
d 20.3%.5 23.36.5 213.5 2°0.33.7 -—28.32.7 —22.306.7

2. The singular X7 . In this case the surfaces X7 do not have extra singularities on g,
hence the number vy and vy remain the same as above and we do not write them again.

group TxV (TT)
A M o A3 A4 M o A3 A
Vs — 3 3 — — 3 15 12
Vs 4 1 1 4 18 15 1 4
v 20 20 20 20 20 20 18 18
d |—-2*.33.5 —26.33.5 —26.33.5 —2¢.33.5|-33.5 —26.33.5 —2¢.36.5 _22.36.5
group VxV OxT
A M Ao A3 A\ A\ Ao A3 A\
Vs - 9 9 — 2 4 5 3
vy 12 3 3 12 6 4 3 5
v 18 18 18 18 20 20 20 20
d |—210.5 —26.5 _92l6.5 _9l0.5)_94.32.7 _94.33.7 _25.33.7 _26.32.7
group (00)" TxT
p) A Ao A3 A A\ Ao A3 A\
Vs — 8 12 6 — 8 10 2
vy 16 7 3 10 12 3 1 10
v 20 19 19 20 20 19 19 20
d | —2%.7 27.32.7 28.32.7 _—28.7|—3%+.7 22.36.7 23.36.7 _9%¢.3%¢.7

2.3. K3-surfaces. Since the groups H and H' contain the subgroups V' x V' of Gg resp.
T x T of GGg the projections my and myr are ramified on the lines of the base locus of
the families X} with ramification index two and three. By using Hurwitz-formula and the
fact that in each case the previous rational curves are independent in the Neron-Severi
group, the same computation as in [BS, section 5] shows that the minimal resolutions of
the quotients are K 3-surfaces, a direct proof of this fact is given in the next section.
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3. Cycric COVERINGS

We give another description of the pencils of K3-surfaces by using cyclic coverings.
We consider the pairs G,, and H so that G,,/H is cyclic, in our cases either |G,,/H| = 3 or
|G,,/H| = 2, and we consider the map:

m: Xy/H — X}/G,

3.1. The general case. For the moment assume that X7 is smooth. The group G,/H
acts on the points of the fiber 7=!(P). If the point P is not fixed by G,,/H then the map
is 3:1or 2 :1 there. If P is fixed by G,,/H then we have a singularity on X7 /H, more
precisely an Ay or an A;, now the fiber 77! (P) is one point and the map has multiplicity
2 or 3 there (cf. [M2, Lemma 3.6 p. 80]). We have a rational map between the minimal
resolutions of XV'/H and XV /G,:

Y:¥m——— =Y,
which is 3 : 1 or 2 : 1. Observe that this map is not defined over the (—2)-rational curves
in the blow up of the singular points of X} /G,, which comes from fix-points of G, /H on
X7 /H. The surfaces Y) p are K3-surfaces as well and by [I, Cor. 1.2] these have the same
Picard-number p(Y) ) = p(Yx.q,)=19.
In this section we describe the map v by using cyclic coverings. For the general theory
about 2-cyclic coverings and 3-cyclic coverings we send back to the article [N] of Nikulin
and to the articles [M1] of Miranda and [T] of Tan. For the convenience of the reader
in Figure 1, section 6, we recall the configurations of (-2)-rational curves on the smooth
surfaces Y) ¢, and on Y) g, given in [BS].
By [BS, proposition 6.1] the following classes are 3-divisible in NS(Y) g ):
E ZZLI—L2+L4—L5—|—N1—N2+N3—N4+N5—N6+N7—N8,
L= Lll—LIQ-l-LﬁL—Lg-I-Nl — Ny + N3 — Ny — N5 + Ng — N7 + Ng,
and also:
L—L' =L —Ly+Ly—Ls— L} + LY — Ly + L + 2(N5 — Ng + N7 — Ng),
L+L =1, —L2+L4—L5—|—LI1 — I2+L£L— I5+2(N1—N2+N3—N4).
Making reduction modulo three we find the classes:
M 2:L1—L2+L4—L5— 11+L12— 21+LI5—(N5—N6+N7—N8),
M = Ll—L2+L4—L5+LII —L12+L£1—Lg—(N1—N2+N3—N4).

In NS(Y) g,) the following classes are 2-divisible:

L:=1Ly+ L3+ L5+ My + M3+ My + Ry + Rg,

L =L+ L+ L, + My + M3+ My + Ry + R3.
Consider also the classes £+ £’ and £ — £', which after reduction modulo two are the same
as:

M: =L+ L3+ Ls+ L+ L+ L§ + My + M.

These classes consist of six disjoint As-configurations of curves and of eight disjoint A;-
configurations of curves (according to [T] and [N]). These are the resolutions of Ay and A;
singularities of X7 /G,, which arise by doing the quotient of X}/H by G,,/H. We construct
the 3-cyclic coverings and the 2-cyclic coverings by using the divisors £, L', M, M’. We
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recall briefly the construction in the case of 3-cyclic coverings, then in the case of 2-cyclic
coverings it is similar. First to avoid to produce singularities, we have to blow up the
meeting points of the As-configurations. Call YAO’ G, the surface which we obtain after these
blow-ups. The meeting points are replaced by (—1)-curves and the two (—2)-curves become
now (—3)-curves. Denote by ¢ : Y)‘l’ G Y)?, a, the 3-cyclic covering with branching divisor
L, L or M, M’ then

Proposition 3.1. A configuration of curves on Y)?Ge :

-3 -1 -3

o ——e  ———— ¢

becomes a configuration:

on Y)\1 Ge-
Proof. We do the computation for one configuration of curves L; — Lo, this is the same in
the other cases. Denote again by L; and Ly the curves on Y7 G, Which now are (—3)-curves

and denote by F the exceptional (—1)-curve. By the properties of cyclic coverings we have
¢*L; = 3L;, where L; is the strict transform of L;. Then:

9(Li)* = (¢*Li)” = (degp) L7 = —9.

Hence (L;)? = —1. Since E-(L1—Ls) = 0 the map ¢ is not ramified on E and the restriction
¢,5 is 3 : 1 onto E. Hence we have ¢*E = E and E? = (¢*E)? = (degg)E? = 3E? = 3.
O

Our surface Y Gg 18 now no more minimal. By blowing down the (=1)-curves, the curve

E becomes also a (—1)-curve so we blow it down too. By construction the surfaces which
we obtain are minimal K3-surfaces and are exactly the surfaces Y) g which are obtained
as the minimal resolutions of X$/H, in fact we have a commutative diagram:

1 ¢ 0
Yiee —  Yags

v . N\
Yiu - VG
pN Ve

X$8/H 5  X$/Ge

The construction is similar in the case of 2-cyclic coverings of the surfaces Y) 4. This gives
another description of the families of K3-surfaces Y\ rxv, Y) (rry and Yx oxr1, Y) 00y @s
finite coverings of the families Y) g, and Y gq-

Remark 3.1. By using the divisors L and M’ on Yy g¢ for the coverings we obtain the
surfaces Y\ vxr and Yy (pryr and by taking the divisor L' on Y g, we obtain the surface
Y\ 1x0. We do not discuss these surfaces separately in the sequel.



GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF K3-SURFACES 9

3.2. The special cases. In these cases, the situation is a little more complicated. Now
in the counterimage m~(P) of some singular point P of X}/G,, coming from the A;-
singularities of X} we have singularities on X} /H too. In the following table we give the
singularities in the quotient X /G,, n = 6,8 and the type and the number of singularities
in the counterimage on X7'/H. As in [BS] we donte by 6,1,...,8,4 the special surfaces in
the families.

6,1 6,2 6,3 6,4 8,1 82 83 84
Gs | Bs As As FE¢ | Gs | Br Ds D; Ds
TxV D4 A1 A1 D4 OxT E6 D4 A3 A5
(TTY | 3Es 3As A, Dy | (00)'|2E; A; As 2Ds
VxV 3D4 3A1 3A1 3D4 TxT 2E6 A3 A1 2A5

By resolving the quotients we get a map like v as before and so again by the result of Inose
the minimal resolutions of the special K3-surfaces are K3-surfaces too with Picard-number
20. We can describe this map as before by using cyclic coverings. In the case of the special
surfaces in the family Y) g, we construct 3-cyclic covering as in the general case by using
the divisors £, L', M, M', which are in the case of the special surfaces 3-divisible too, cf.
[BS, 6.2]. By taking £ and £’ we obtain the special K3-surfaces in the families Y} rxv,
resp. Y yxr, by taking M and M’ we obtain the special K3-surfaces in the covering
Y\ (rry and Y) (rryr. In the case of the special surfaces in the family Y) g, we take the
divisors £, L', M and we do 2-cyclic coverings. By taking £ or £’ we find the singular
surfaces in the family Y) ox7 resp. Y) 7o and by taking M we find the singular surfaces
in the famlly Y)\,(OO)”-

4. PICARD-LATTICES

We compute the Picard-lattices of the general K3-surface in the families Y\ 7xv, Y) oxv
and of the special surfaces with p = 20 in each pencil. First we recall some facts. Denote by
W the lattice spanned by the curves of section 2, 2.2. If W is not the total Picard-lattice,
which we call NS there is an integral lattice W’ s.t. W C W' C NS with p := [W' : W]
a prime number. Denote by d(W), d(W') the discriminant of the lattices W, W’. Since
W' W) =dW)-dW')~! (cf. [BPV, Lemma 2.1, p. 12]) we find that p? divides the
discriminant of W. Denote by (W /WP the p-subgroup of (WY /W)CNSV/NS and denote
by T the transcendental lattice orthogonal to the Picard-lattice. Since the discriminant
groups TV /T and NSV /NS are isomorphic (cf. e.g. [BPV, p. 13 Lemma 2.5]), they have
the same rank which is < rk(7'). It follows that also tk(W"Y/W)? < rk(T).

Proposition 4.1. The Picard-lattices of the generic surface Y\ rxv and Yy oxT are gen-
erated by the 19 rational curves of section 2, 2.2 and the classes:

Ly —Ly+Ls—Ls+ L) —Ly+ L) — Ly + LY — Ly + Ly — Ly

3
L+ Ly+ Ly + LY+ L5+ LL+ My + My
«— 2 )
Ly + L3+ Ls+ Ill+ f»,'—l— 15/+M1+M3
= 2

NS o S et
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of NS(Yarxv), then the lattice has discriminant 2 -3 - 5; resp. the classes

_Li+L3+Ls+ L) 4—2L§+L’5+M1+M2
_ L - Lo+ Ly—Ly— LY+ LY — L)+ L+ Ny — No+ N3 — Ny
3

L
7T
ky .
3

of NS(Yxoxr), then the lattice has discriminant 23 -3 - 7.

Proof. 1. The discriminant of the lattice generated by the 19 curves is 2° - 33 - 5 hence we
can have 2-divisible classes or 3-divisible classes. The divisor L’ is 3-divisible since it is the
pull back of the divisor £’ on Y} ¢, which is 3-divisible too. And we cannot have more 3-
divisible classes. If there are no 2-divisible classes then the group (WV/W)? would contain
the classes My /2, My /2, M3/2, (L1+Ls+Ls+L +L5+L5) /2, (L1 +Ls+Ls+ LY +L5+LY) /2,
(Ly+Ls+Ly+ LY+ L5+ LY)/2 which are independent classes with respect to the intersection
form. Since the rank of (WY /W)?2 is less or equal as the rank of TV /T which is at most
three, it can not happen that we find five classes as before. Hence some combination of
them must be contained in the Neron-Severi group. So we have

1
5L+ Ly + Ls) + N (L + Ly + L5) + X'(L7 + Ly + L5) + m My + po Mo + pig M) € NS

for some parameters A\, X', Xy, o, 3 € Zo.

By Nikulin [N] such a 2-divisible set contains 8 curves. So putting \” = 0 and p3 = 0 we
get the divisor h1/2, putting X' = 0 and ps = 0 we get the divisor hy/2. The discriminant
of the lattice W together with these three classes now change into 2-3 -5, hence we cannot
have more torsion classes.

2. Again the class L is the pull back of the class M’ on Y), g, hence it is 2-divisible. If there
are no 3-divisible classes then the group (WY /W)3 would contain the classes N; — Ny /3,
N3 — N4/3 and (L1 — Lo + Ly — Ls + L} — LYy + L), — L§)/3 which are independent. By
specializing to the surfaces Y)\(i’;io and Y)S,Sé?)io we find also here these three independent
classes and so tk(WV/W)3 > 3. This is not possible in fact on these surfaces we have
rk(W)=20 which implies rk(W"/W)? < 2. This means that the three classes fit together
giving a 3-divisible class in N.S(Y, %)) and NS(Y,5) and so in NS(¥x0xr) (cf. [VGT,
Lemma 2.3]). O

In the same way as before we can compute the Picard-lattices of the special surfaces in the
families. We give the results leaving the proofs to the reader.

Proposition 4.2. 1. The Picard-lattice of the special surfaces in Y\ rxy and Y) oxr is
generated in all the cases but Y)f%QT by the curves of section 2, 2.2 and by the classes L' /3,

hi/2, ha/2, resp. L"/2, ki/3 of proposition 4.1. In the case of Y)\OxT the class:

L1+L3—|-L5—|-N1—|-C—I-N4—|—R2—I-M1
2

s a generator too, and they span the 20-dimensional Picard-lattice.

2. In the case of Y)fﬁ(’%;,) nd of Y)\G(;)T the class:

L _ Ni—Ny+ N3 —Ny+ N5 — Ng+ Ny — Ny + Ng — Nig + Niy — Nip
3 3
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is in the Neron-Severi group and in the case of Y)S(i(’;)T), the classes:

Ny +Ci{+ Ny+ N5+ Cy + Ng + My + Moy
2 b)

Ny +Ci1 + Ny+ Ng + Cs + Nig + My + Mg
2

are in the Neron-Severi group too. These together with the 20 curves of section 2, 2.2 span
the 20-dimensional Picard-lattice.

3. In the case of Y)fs(’é)o),, and Y)fs(’é)o),,, the class:

I_z__ My + My+ M3+ My+ Ry + R3 + R, + R}

2 2

1s in the Neron-Severi group and in the case of Y)fs(’é)o),, the class:

W Ri+2Ry+3R3+ R} + 2R}, + 3R + 2N, + 20 + 3M; + My + 2N3 + 2C5 + 3M3 + M,
4 4

is in the Neron-Severi group too.

Again these classes together with the 20 curves of section 2, 2.2 span the 20-dimensional
Picard-lattice.

The discriminants of the Picard-lattices then are:

Y 1xv Y\ (rry
6,1 6,2 6,3 6,4 6,1 6,2
d|-3-5]-22.3.5|-22.3.5|-3-5[-3-5[—-22-3-5
Yy oxr Y 00y
8,1 8,2 8,3 8,4 8,1 8,4

d| 2277|2237 —23-3-7|—22-7| —22.7| —2%-7

4.1. More cyclic coverings. Now we can construct the 3-cyclic covering of Y) rxy, by
using the 3-divisible classes I’ and the 2-cyclic coverings of Y\, oxT, by using the 2-divisible
class L"”. We can do this for the general surface in the pencil and for the special surfaces
too, in this case we obtain another description of the families Y yxy and Yy 7x7. In
particular also in these cases the general surface in the family has Picard-number 19 and
we have four surfaces with Picard-number 20. The description of the Picard-lattices of the
surfaces with p = 20 is given in the following proposition (again, we leave the proof to the
reader):

Proposition 4.3. The classes
L2—L4—|—Lg—Lll+N1—N2+N3—N4+N5—N6+N7—Ng
3 7
Ly—Ly+ Ly — L1+ Ny — Ny — N3 + Ny + N5 — Ng — N7 + Ny
3

are in NS(Y)SSTLBT) and in NS(Yf%fBT). Moreover the class

Ny + Ci + Ny + N5 + Cy + Ng + My + M,
2
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is in NS(v,5%

the 20-dimensional Picard-lattices of the surfaces Y)\(EE‘,’})BT and Y)\(STAQT. Then the lattices

have discriminant —7, resp. —2% - 7.

r) too. These classes together with the rational curves of section 2, 2.2 span

5. FINAL REMARKS

1. In the section 4 we identify explicitly the Picard-lattice of some K3-surfaces. It is our
next aim to compute the transcendental lattices orthogonal to the Picard-lattices to classify
the K3-surfaces. In particular by a result of Shioda and Inose, cf. [SI], K3-surfaces with
p = 20 are classified by means of their transcendental lattice.

2. By a result of Morrison, cf. [Mo], each K3-surface with p = 19 or 20 admits a so called
Shioda-Inose structure. This means that there is a Nikulin-involution, an involution with
eight isolated fix-points and the quotient is birational to a Kummer-surface. It would be
desirable to have an explicit description of this structure for our surfaces.

3. We do not describe the quotients 3-folds P3/G,,, P3/H, H a normal subgroup of G,,. It
would be interesting to have a global resolution of these spaces and to see our K 3-surfaces
as smooth pencils on the smooth 3-folds.

6. FIGURES: CONFIGURATIONS OF RATIONAL CURVES

In this section we give the configurations of rational curves on the surfaces with Picard-
number 19 and 20. In the case of the singular surfaces of the families Y 7wy and Y) oxr

also the curves L;, L, and L! are contained on the surfaces, but we do not draw again the

4) 3)

3 3 (67 (65
picture. Moreover the configurations of curves on the surfaces Y)\,Txv and Y,\,Txv are the

same as on the surfaces Y/\(6T’1>2V resp Y/\(6T’2>2V so again we draw only one picture.

pSWeR Yy cs
Ly Loy L3 Ly Ly Ly Lo L3 Ly Ls
[ L | L [ L L L]
L' L L! L L L' L L L L
i o’ 3 @t °’ A~ o’ o’ 1 @b

My

[
Ny Ny Nj Ny M, M, Ny Ny
o—O0 o—0 [ (] o—©
N5 Ng Ny Ng M3 My Ry Ry R3
o—O o—O [ [ J o—O0—©

Fig. 1
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Y\ rxv
oo 7
L, L, Is ILO L L, L M
° ° ° o' o
Ls 0M3
Fig. 2
M, C M3 M, C M
-—I—c e o
°
My My
(6,1) (6,4) (6,2) (6,3)
Y,\,TxV(YA,TxV) Yy rov (Y3 pov

M,

N1 Ny N3 N,
1 V2 V3 LV

C M

(8,2)
Yy oxr

M, C My Ry
o—e—9o o

Ni Ny N3 Ny
o o o o

(8,3)
Yy oxr

Fig. 3

Yy oxT
Ly Ly Ls
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Lo
N, N, Ny N,
N, N, C N3 N,
oo I o o
° Ry °
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8,1
Y or
N, Ny C N
M, My, Ry
e o o
(8,4)
Y)\,OXT
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[ @ @ @ L ] o ® I @ L ] [ @ @ L L ]
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No Nig C3 Niy N ! !
.9 .10'3 '11'12 MQ MQ
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[ ] ® ® ® [ ]
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[ L 4 [ I [ I L [ L L
M, M,
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