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Abstract. In this paper we study K3 surfaces with a non-symplectic auto-

morphism of order 3. In particular, we classify the topological structure of the
fixed locus of such automorphisms and we show that it determines the action
on cohomology. This allows us to describe the structure of the moduli space

and to show that it has three irreducible components.

Introduction

An automorphism on a K3 surface is called non-symplectic if its natural repre-
sentation on the vector space of holomorphic two-forms is not trivial. In [20] and
[28] it was proved that a purely non-symplectic group of automorphisms is finite
and cyclic. All the orders of such groups have been determined in [18] by Machida
and Oguiso. In particular, the maximal order is known to be 66 and 19 if it is a
prime. Non-symplectic involutions have been studied in [22] and [30]. In [23] Ogu-
iso and Zhang showed that the moduli space of K3 surfaces with a non-symplectic
automorphism of order 13, 17 or 19 is zero dimensional. The case of order 11 has
been studied by the same authors in [24].

The fixed locus of a non-symplectic involution is known to be either empty or
the disjoint union of smooth curves and it is completely described. Moreover, the
action of the involution on the K3 lattice is well understood and only depends on
the topology of the fixed locus.

In this paper we intend to give similar results for a non-symplectic automorphism
of order 3 on a K3 surface X i.e. σ ∈ Aut(X) such that

σ3 = id and σ∗(ωX) = ζωX ,

where ωX is a generator for H2,0(X) and ζ is a primitive 3-rd root of unity.
We prove that the fixed locus of σ is not empty and it is the union of n ≤ 9

points and k ≤ 6 disjoint smooth curves, where all possible values of (n, k) are given
in Table 1.

The automorphism σ induces a non-trivial isometry σ∗ on the K3 lattice. The
fixed sublattice for σ∗ is contained in the Picard lattice and its orthogonal comple-
ment is known to be a lattice over the Eisenstein integers. Here we prove that the
isometry σ∗ only depends on the pair (n, k). The fixed lattice and its orthogonal
complement have been computed for any (n, k) and are listed in Table 2.

The type (n, k) gives a natural stratification of the moduli space of K3 surfaces
with a non-symplectic automorphism of order 3. As a consequence of the previous
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Figure 1. Fixed locus and fixed lattice

results, we prove that each stratum is birational to the quotient of a complex ball
by the action of an arithmetic group. In particular, we prove that there are 3 max-
imal strata of dimensions 9, 9, 6, corresponding to (n, k) = (0, 1), (0, 2), (3, 0). The
first two components also appear in [14], in particular the first one is known to be
birational to the moduli space of curves of genus 4.

In the first section we recall some basic properties of non-symplectic automor-
phisms of order three and their relation with lattices over the Eisenstein integers.

In section 2 we determine the structure of the fixed locus by generalizing a
method in [22] and [13]. More precisely, we determine algebraic relations between
n, k and two integers m,a which identify the fixed lattice of σ∗. All possible values
of these two pairs of invariants are given in Table 1 and represented in Figure 1
(the analogous diagram for non-symplectic involutions can be found in §2.3, [1]).

In section 3 we prove that each such configuration occurs i.e. it can be realized
by an order 3 non-symplectic automorphism on a K3 surface. This is done by means
of lattice theory, Torelli theorem and surjectivity theorem for the period map of K3
surfaces. The list of the corresponding invariant lattices and of their orthogonal
complements is given in Table 2.

In section 4 we describe projective models for K3 surfaces with non-symplectic
automorphisms of order 3. In particular, we show that for k > 1 all of them have a
jacobian elliptic fibration such that the automorphism acts as the identity on the
basis. Other models are given as complete intersections in P

4, quartic surfaces and
double sextics.

In the last section we describe the structure of the moduli space. The projective
models given in section 4 show that the moduli space is irreducible for given n, k or,
equivalently, that the action of the automorphism on cohomology is determined by
n, k. This result and lattice theory allow us to identify the irreducible components
of the moduli space.

Acknowledgements. We would like to thank Igor Dolgachev, Shigeyuki Kondō,
Bert van Geemen and Jin-Gen Yang for several stimulating discussions.
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1. Automorphisms and lattices

Let X be a K3 surface i.e. a simply connected smooth complex projective surface
with a nowhere vanishing holomorphic two-form ωX . An automorphism σ of X is
called non-symplectic if its action on the vector space H2,0(X) = CωX is not trivial.
In this paper we are interested in non-symplectic automorphisms of order three i.e.

σ3 = id and σ∗(ωX) = ζωX ,

where ζ is a primitive 3-rd root of unity.
The automorphism σ induces an isometry σ∗ on H2(X, Z) which preserves the

Picard lattice NX and the transcendental lattice TX of X

NX = {x ∈ H2(X, Z) : (x, ωX) = 0} TX = N⊥
X .

We will denote by N(σ) the invariant lattice

N(σ) = {x ∈ H2(X, Z) : σ∗(x) = x}.

In order to describe the action of the automorphism on cohomology, we first need
some preliminaries of lattice theory (see [21]). In what follows we will denote by
( , ) the bilinear form on a lattice. Recall that the discriminant group of a lattice
L is the finite abelian group AL = L∗/L, where L∗ = Hom(L, Z) and AL

∼= AL⊥ .

Definition 1.1. Let E = Z[ζ] be the ring of Eisenstein integers. A E-lattice is a
pair (L, ρ) where L is an even lattice and ρ an order three fixed point free isometry
on L. If ρ acts identically on AL then L will be called E∗-lattice.

Remark 1.2. Any E-lattice L is clearly a module over E = Z[ζ] via the action

(a + ζb) · x = ax + bσ∗(x), a, b ∈ Z, x ∈ L.

Since ρ is fixed point free and E is a principal ideal domain, then L is a free module
over E i.e. L = Ee1 ⊕ · · · ⊕ Een, where e1, . . . , en is a free basis. Moreover, L is
equipped with a hermitian form H : L × L → E defined by H(z, w) = zAw̄, where
z, w ∈ En are coordinates with respect to the previous basis and Aij = (ei, ej).

Lemma 1.3.

• Any E-lattice has even rank.
• Any E∗-lattice is 3-elementary i.e. its discriminant group is isomorphic to (Z/3Z)⊕a

for some a.

Proof. The rank of a E-lattice is equal to 2m, where m is its rank over E .
Since ρ is fixed point free, then ρ2 + ρ + id = 0 on L. If x ∈ AL then ρ(x) = x

hence ρ2(x) + ρ(x) + x = 3x = 0. Thus AL is a direct sum of copies of Z/3Z. ¤

Note that, according to Lemma 1.3, to any E∗-lattice L we can associate the pair
m(L), a(L) where 2m(L) = rank(L) and a(L) is the minimal number of generators
of AL.

The following is a reformulation of [20, Theorem 0.1] and [18, Lemma 1.1] for
order three automorphisms.

Theorem 1.4. Let X be a K3 surface and σ be a non-symplectic automorphism of
order 3 on X. Then:

• N(σ) is a primitive 3-elementary sublattice of NX ,
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• (N(σ)⊥, σ∗) is a E∗-lattice
• (TX , σ∗) is a E-sublattice of N(σ)⊥.

Examples 1.1. In what follows we will adopt the standard notation for lattices:
U is the hyperbolic lattice and An,Dn, En are the negative definite lattices of
rank n associated to the corresponding root systems. The lattice L(α) is obtained
multiplying by α the form on L.

• The lattices U , E8, A2, E6, U(3) are 3-elementary lattices with a = 0, 0, 1, 1, 2
respectively.

• If L is a 3-elementary lattice of rank n with a(L) = a, then it can be proved that
the scaled dual L∗(3) is again a 3-elementary lattice with a(L∗(3)) = n − a. For
example, the lattice E∗

6 (3) is 3-elementary with a = 5.
• The lattice A2 is a E∗-lattice with order 3 isometry :

e 7→ f, f 7→ −e − f.

where e2 = f2 = −2, (e, f) = 1.
• The lattice U ⊕ U(3) is a E∗-lattice with order three isometry :

e1 7→ e1 − f1, e2 7→ −2e2 − f2,

f1 7→ −2f1 + 3e1, f2 7→ f2 + 3e2,

where e2
i = fi

2 = 0, (e1, e2) = 1, (f1, f2) = 3.
• The lattice U ⊕U has a structure of E∗-lattice induced by the natural embedding

U ⊕ U(3) ⊂ U ⊕ U .
• The lattices E6, E8 are E∗-lattices, see [5, §2.6, Ch.2] for a description of two

order three isometries on them.
• The Coxeter-Todd lattice K12 is a negative definite E∗-lattice of rank 12 with

a = 6 (see [6]). In fact this is a unimodular lattice over E i.e. Hom(K12, E) = K12.
In [11, Theorem 3] W. Feit proved that this is the only unimodular E-lattice of
dimension < 12 containing no vectors of norm 1.

Hyperbolic 3-elementary lattices have been classified by Nikulin [21] and Rudakov-
Shafarevich [26] (note that in this paper there is a misprint in the last condition of
the theorem).

Theorem 1.5. An even hyperbolic 3-elementary lattice L of rank r > 2 is uniquely
determined by the integer a = a(L). Moreover, given r and a ≤ r such a lattice
exists if and only if the following conditions are satisfied

r ≡ 0 (mod 2)
r ≡ 2 (mod 4) for a ≡ 0 (mod 2)
(−1)r/2−1 ≡ 3 (mod 4) for a ≡ 1 (mod 2)
r > a > 0 for r 6≡ 2 (mod 8)

For r = 2 binary forms are classified (see [3], [5]), in this case the unique definite
even 3-elementary lattices are A2 and A2(−1) (with a = 1) and the only indefinite
ones are U and U(3) (with a = 0 and a = 2).

2. The fixed locus

Let σ be an order three non-symplectic automorphism of a K3 surface and Xσ

be its fixed locus. The action of σ can be locally linearized and diagonalized at
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p ∈ Xσ (see §5, [20]). Since σ acts on ωX as the multiplication by ζ, there are two
possible local actions for σ

(

ζ2 0
0 ζ2

)

or

(

ζ 0
0 1

)

.

In the first case p is an isolated fixed point and σ acts as the identity on PTp(X).
In the second case p belongs to a curve in the fixed locus (the line x = 0). Hence

Lemma 2.1. The fixed locus of σ is either empty or the disjoint union of k smooth
curves and n points.

In this section we will relate the topological invariants n, k with the lattice in-
variants m,a defined in the previous section. Our approach generalizes a technique
in [13].

Theorem 2.2. The fixed locus of σ is not empty and it is the disjoint union of
n ≤ 9 points and k ≤ 6 smooth curves with:

a) one curve of genus g ≥ 0 and k − 1 rational curves or
b) k = 0 and n = 3.

Moreover, if rankN(σ)⊥ = 2m, then

m + n = 10 and g = 3 + k − n (in case a)).

Proof. Let σ, X, Xσ and N(σ) as before. By the topological Lefschetz fixed point
formula

χ(Xσ) = 2 + Tr(σ∗
|H2(X,Z)) = 2 + rank(N(σ)) + m(ζ + ζ2).

Since ζ + ζ2 + 1 = 0 and rank(N) = 22 − 2m this gives

(1) χ(Xσ) =

k
∑

i=1

X (Ci) + n = 3(8 − m),

where Ci are the smooth curves in the fixed locus. Besides, the holomorphic Lef-
schetz formula (Theorem 4.6, [2]) gives the equality

(2) 1 + Tr(σ∗
|H2,0(X)) =

1

6ζ
(

k
∑

i=1

X (Ci) − 2n) ⇐⇒ 2n −
k

∑

i=1

X (Ci) = 6.

The equations (1) and (2) imply m+n = 10, hence also n ≤ 9. Case b) immediately
follows from (2).

By the Hodge index theorem the Picard lattice NX is hyperbolic. This implies
that the fixed locus contains at most one curve C of genus g > 1 and that in
this case the other curves in the fixed locus are rational (since they belong to the
orthogonal complement of C).

If the fixed locus of σ contains at least two elliptic curves C1, C2, then they
are linearly equivalent and |C1| : X −→ P

1 gives an elliptic fibration on X. The
induced action of σ on P

1 is not trivial since otherwise σ would act as the identity
on the tangent space at a point in C1. Hence σ has exactly 2 fixed points in P

1,
corresponding to the fibers C1, C2 and there are no other fixed curves or points
in the fixed locus. This contradicts equality (2), hence the fixed locus contains at
most one elliptic curve. This completes the proof of a).

As a consequence, if g is the biggest genus of a curve in the fixed locus, (2) can
be written as g = 3 + k − n.
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The inequality k ≤ 6 follows from (2) and the Smith inequality (see [4])
∑

i≥0

dim Hi(Xσ, Z3) ≤
∑

i≥0

dim Hi(X, Z3).

¤

Corollary 2.3. An order 3 automorphism on a K3 surface is symplectic if and
only if its fixed locus is given by 6 points.

Proof. An order 3 symplectic automorphism on a K3 surface has exactly 6 fixed
points by [20, §5]. The converse follows from Theorem 2.2. ¤

Let a = a(N(σ)), then a more refined application of Smith exact sequences gives

Proposition 2.4. dimH∗(X) − dim H∗(X
σ) = 2a + m.

Proof. In what follows we will write σ for σ∗. Let g = id + σ + σ2 and h = id − σ
on H2(X, Z). If L+ = ker(h) and L− = ker(g), then

3a = o(H2(X, Z)/L+ ⊕ L−).

Since h2 = id − 2σ + σ2 = g over Z3, then the image of L+ ⊕ L− under the
homomorphism

c : H2(X, Z) −→ H2(X, Z3)

coincides with c(L−). Hence

a = dim H2(X, Z3) − dim c(L−).

We now express this number in a different way by applying Smith exact sequences
over Z3 (see Ch.III, [4]). In the rest of the proof the coefficients will be in Z3.

Let C(X) be the chain complex of X with coefficients in Z3. The automorphisms
g, h act on C(X) and give chain subcomplexes gC(X) and hC(X). We denote by
Hg

i (X), Hh
i (X) the associated homology groups with coefficients in Z3 as in [4,

Definition 3.2] and by X g(X),X h(X) the corresponding Euler characteristics. By
[4, Proposition 3.4] we have

Hg
i (X) ∼= Hi(S,Xσ),

where the second term is the homology of the pair (S,Xσ) where S = X/σ and Xσ

is identified to its image in S.
Let ρ = hi and ρ̄ = h3−i, with i = 1, 2. Then we have the exact triangles ([4,

Theorem 3.3 and (3.8)])

(3) H(X)

ρ∗

zzttttttttt

Hρ(X) // H ρ̄(X) ⊕ H(Xσ)

i∗

ggPPPPPPPPPPPP

(4) Hh(X)

h∗

zzttttttttt

Hg(X) // Hg(X)

i∗

ggOOOOOOOOOOO
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where h∗, i∗, ρ∗ have degree 0 and the horizontal arrows have degree −1. The two
triangles (2) and (4) are called Smith sequences, in particular they induce two exact
sequences

0 → Hg
3 (X)

γ3

→ Hh
2 (X) ⊕ H2(X

σ)
α2→ H2(X)

β2

→ Hg
2 (X)

γ2

→ Hh
1 (X) ⊕ H1(X

σ) → 0

0 → Hh
3 (X)

γ′

3→ Hg
2 (X) ⊕ H2(X

σ)
α′

2→ H2(X)
β′

2→ Hh
2 (X)

γ′

2→ Hg
1 (X) ⊕ H1(X

σ) → 0,

From exact sequence (2) with ρ = σ and sequence (4) follow ([4, Theorem 4.3])
the equalities of Euler characteristics

X (X) −X (Xσ) = X g(X) + X h(X) = 3X g(X).

Then, from the exactness of Smith sequences, Lemma 2.5 and Lemma 2.6 below we
have

dim H∗(X) − dimH∗(X
σ) = X g(X) + X h(X) − 2 dim H1(X

σ)
= dim Im(β2) + dim Im(β′

2)
= 2a + m.

¤

Lemma 2.5. X g(X) + X h(X) =
∑2

i=1(−1)i(dim Hg
i (X) + dimHh

i (X)).

Proof. From the exact sequence for the pair (S,Xσ) and sequences (3), (4) it follows

dimHg
0 (X) = dim Hh

0 (X) = 0,

dimHg
3 (X) = dim Hh

3 (X) = dim Hg
4 (X) = dimHh

4 (X).

This immediately implies the statement. ¤

Lemma 2.6. Im(α2) = c(L−), dim Im(α2) − dim Im(α′
2) = m.

Proof. By definition of the Smith exact sequence Im(α2) ⊂ c(L−). Conversely,
if x ∈ c(L−) then α′

2(β2(x) ⊕ 0) = g(x) = 0, hence (β2(x) ⊕ 0) ∈ Im(α′
2). By

definition the projection of γ3 on the second factor is the boundary homomorphism
of the sequence of the pair (S,Xσ) and this is injective since H3(S) = 0. It follows
that β2(x) = 0 i.e. x ∈ ker(β2) = Im(α2).

By the two exact sequences above and the homology vanishing in Lemma 2.5 it
follows that

dim Im(α2) − dim Im(α′
2) = hh

2 (X) − hg
2(X)

(in fact dimHg
1 (X) = dimHh

1 (X)). Because of sequence (4) and Proposition 2.2
this also equals X g(X) = m. ¤

Corollary 2.7. If k = 0 then m = a, otherwise 2g = m − a.

Proof. It follows from equation (1) in the proof of Proposition 2.2 and from Propo-
sition 2.4 since

dimH∗(X) = X (X) = 24,

dimH∗(X
σ) −X (Xσ) = 2h1(Xσ) = 4g.

¤

Note that g, m and a are functions of n, k:

g(n, k) = 3 + k − n
m(n, k) = 10 − n
a(n, k) = n + 4 − 2k.
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n k g(n, k) m(n, k) a(n, k)
0 1, 2 4, 5 10 2, 0
1 1, 2 3, 4 9 3, 1
2 1, 2 2, 3 8 4, 2
3 0, 1, 2, 3 ∅, 1, 2, 3 7 7, 5, 3, 1
4 1, 2, 3, 4 0, 1, 2, 3 6 6, 4, 2, 0
5 2, 3, 4 0, 1, 2 5 5, 3, 1
6 3, 4 0, 1 4 4, 2
7 4, 5 0, 1 3 3, 1
8 5, 6 0, 1 2 2, 0
9 6 0 1 1

Table 1. Fixed locus and fixed lattice

Theorem 2.8. The fixed locus of σ contains n points and k curves where n, k are
in the same row of Table 1.

Proof. By Theorem 1.5 and Corollary 2.7 we get

a ≤ min(m, 22 − 2m), a = 0 or a = 22 − 2m =⇒ m ≡ 2 (mod 4).

Then the result follows from Theorem 2.2 and Corollary 2.7. ¤

3. Existence

Let (T, ρ) be an E∗-lattice of signature (2, n− 2). Assume that T has a primitive
embedding in the K3 lattice LK3 and let N be its orthogonal complement in LK3.
In LK3 ⊗ C consider the period domain

Bρ = {ω ∈ P(T ⊗ C) : (ω, ω̄) > 0, ρ(ω) = ζω}.

If ω ∈ Bρ is a generic point, then by the surjectivity of the period map ([16], [25])
there exists a K3 surface X = Xω with a marking φ : H2(X, Z) → LK3 such that
P(φC(ωX)) = ω.

Proposition 3.1. The K3 surface X admits an order three non-symplectic auto-
morphism σ such that σ∗ = ρ on T up to conjugacy and

N(σ) = NX
∼= N, N(σ)⊥ = TX

∼= T.

Proof. We consider the isometry on N ⊕ T defined by (x, y) 7→ (x, ρ(y)). Since ρ
acts as the identity on AT , then this isometry defines an isometry ρ̄ on LK3. If
ω ∈ Bρ, then ρ̄(ω) = ζω and, if ω is generic, we can assume that there are no roots
in T ∩ ω⊥. Then the statement follows from [19, Theorem 3.10]. ¤

Proposition 3.2. For any n, k in the same row of Table 1 there exists a unique
3-elementary lattice T (n, k) of signature (2, 2m(n, k) − 2) with a = a(n, k). This
lattice is a E∗-lattice and has a unique primitive embedding in LK3.
The lattice T (n, k) and its orthogonal complement N(n, k) in LK3 are given in
Table 2.

Proof. It can be easily checked that any m,a in Table 1 is realized by one of the
lattices in Table 2. Any lattice T in Table 2 is a direct sum of E∗-lattices in Examples
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n k T (n, k) N(n, k)
0 1 U ⊕ U(3) ⊕ E8 ⊕ E8 U(3)

2 U ⊕ U ⊕ E8 ⊕ E8 U
1 1 U ⊕ U(3) ⊕ E6 ⊕ E8 U(3) ⊕ A2

2 U ⊕ U ⊕ E6 ⊕ E8 U ⊕ A2

2 1 U ⊕ U(3) ⊕ E6 ⊕ E6 U(3) ⊕ A2
2

2 U ⊕ U ⊕ E6 ⊕ E6 U ⊕ A2
2

3 0 U ⊕ U(3) ⊕ A5
2 U(3) ⊕ E∗

6 (3)
1 U ⊕ U ⊕ A5

2 U(3) ⊕ A3
2

2 U ⊕ U(3) ⊕ A2 ⊕ E8 U ⊕ A3
2

3 U ⊕ U ⊕ A2 ⊕ E8 U ⊕ E6

4 1 U ⊕ U(3) ⊕ A4
2 U(3) ⊕ A4

2

2 U ⊕ U ⊕ A4
2 U ⊕ A4

2

3 U ⊕ U(3) ⊕ E8 U ⊕ E6 ⊕ A2

4 U ⊕ U ⊕ E8 U ⊕ E8

5 2 U ⊕ U(3) ⊕ A3
2 U ⊕ A5

2

3 U ⊕ U(3) ⊕ E6 U ⊕ A2
2 ⊕ E6

4 U ⊕ U ⊕ E6 U ⊕ E8 ⊕ A2

6 3 U ⊕ U(3) ⊕ A2
2 U ⊕ E6 ⊕ A3

2

4 U ⊕ U ⊕ A2
2 U ⊕ E2

6

7 4 U ⊕ U(3) ⊕ A2 U ⊕ E6 ⊕ E6 ⊕ A2

5 U ⊕ U ⊕ A2 U ⊕ E6 ⊕ E8

8 5 U ⊕ U(3) U ⊕ E6 ⊕ E8 ⊕ A2

6 U ⊕ U U ⊕ E8 ⊕ E8

9 6 A2(−1) U ⊕ E8 ⊕ E8 ⊕ A2

Table 2. The lattices T (n, k), N(n, k).

1.1, hence it is also a E∗-lattice (by taking the direct sum of the isometries on each
factor).

By [21, Theorem 1.12.2] there exists a primitive embedding of T in LK3 if and
only if there exists a hyperbolic 3-elementary lattice N of rank 22 − 2m(n, k) and
a = a(n, k). This follows from Theorem 1.5.

Moreover, by [21, Corollary 1.12.3], the embedding of N in LK3 is unique, hence
the embedding of T in LK3 is also unique. ¤

Theorem 3.3. For any n, k in the same row of Table 1 there exists a K3 surface
X with a non-symplectic automorphism σ of order three such that

• Xσ contains n points, k curves and the biggest genus of a fixed curve is g(n, k),
• NX = N(σ) ∼= N(n, k) and TX

∼= T (n, k).

Proof. It follows from Proposition 3.1, Proposition 3.2 and Theorem 2.2. ¤

In what follows we will call Xn,k and σn,k a K3 surface and an automorphism as in
Theorem 3.3.
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4. Examples and projective models

We will start studying elliptic fibrations (see [17] for basic definitions and proper-
ties) on K3 surfaces with a non-symplectic automorphism of order 3 . The possible
Kodaira types for stable fibers and the action of the automorphism on them is
described by the following result in [31].

Lemma 4.1. Let X be a K3 surface with a non-symplectic automorphism σ of
order three and f : X → P

1 be an elliptic fibration. If F is a singular fiber of f
containing at least one σ-fixed curve, then it is one of the following Kodaira types:

• IV : F = F1 + F2 + F3 and F1 is the only fixed curve in F .
• In with n = 3, 6, 9, 12, 15, 18: F = F1 + · · · + Fn where Fi · Fi+1 = Fn · F1 = 1

and the σ-fixed curves in F are F1, F4, . . . , Fn−2.
• I∗n−5 with n = 5, 8, 11, 14, 17:

F = F1 + F2 + 2(F3 + · · · + Fn−2) + Fn−1 + Fn

where F1 · F3 = Fi · Fi+1 = Fn−2 · Fn = 1, 2 ≤ i ≤ n − 2 and the σ-fixed curves
are F3, F6, F9, . . . , Fn−2.

• IV ∗
: F = 3F1 +2F2 +F3 +2F4 +F5 +2F6 +F7 and F1 is the only σ-fixed curve

in F .
• III∗: F = 4F1 + 2F2 + 3F3 + 2F4 + F5 + 3F6 + 2F7 + F8 and F1, F5, F8 are the

only σ-fixed curves in F .
• II∗: F = 6F1 + 3F2 + 4F3 + 2F4 + 5F5 + 4F6 + 3F7 + 2F8 + F9 where F1, F7 are

the only σ-fixed curves in F .

We now show that any Xn,k admits an invariant elliptic fibration if the fixed
locus contains more than two curves

Proposition 4.2. If k > 1 then the K3 surface Xn,k is isomorphic to a jacobian
elliptic fibration with Weierstrass model

y2 = x3 + p12(t)

where p12(t) has exactly the following multiple roots

• n double roots if k = 2.
• one 4-uple root and n − 3 double roots if k = 3
• one 5-uple root and n − 4 double roots if k = 4
• one 5-uple root, one 4-uple root and n − 7 double roots for k = 5
• two 5-uple roots and n − 8 double roots for k = 6.

In these coordinates the non-symplectic automorphism σn,k is

(x, y, t) 7→ (ζx, y, t).

Conversely, for any k > 1, a jacobian fibration with the above properties is a K3
surface and the automorphism σn,k has fixed locus of type (n, k).

Proof. If k = 2 then by Proposition 3.2 the Picard lattice of X = Xn,k is isomorphic
to U ⊕ An

2 . Hence X has a jacobian elliptic fibration f : X → P
1 with n reducible

fibers with dual graph Ã2.
The isometry σ∗ acts as the identity on NX , thus it preserves f and any of its

reducible fibers. Since either there are n > 2 reducible fibers or g(n, k) > 1 then σ
acts as the identity on P

1 i.e. any fiber of f is σ-invariant and the section is in the
fixed locus of σ. In particular, any fiber of f has an automorphism of order 3 with
a fixed point.
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The Weierstrass model of f can be given by an equation of type

y2 = x3 + a(t)x + b(t).

By the previous remark the functional invariant j(t) = a(t)3/∆(t) is equal to zero
i.e. a(t) ≡ 0 and the action of σ is (x, y, t) 7→ (ζx, y, t). Moreover, the reducible
fibers of f are of Kodaira type IV and there are 12 − 2n other singular fibers of
type II. Up to a change of coordinates in P

1, we can assume that all singular fibers
are in P

1\∞ i.e. that deg(b(t)) = 12. Note that simple roots of b(t) give type II
fibers and double roots give type IV fibers (see [17] or [15]). This gives the result.

For k > 2 we can still see from N(n, k) in Table 1 that X has a jacobian elliptic

fibration with fibers of type Ã2, IV ∗ and II∗. By the previous arguments and
Lemma 4.1 we find that their j-invariants are zero and we can write the Weierstrass
equations as before, recalling that 4-uple roots of b(t) give type IV ∗ fibers and
5-uple roots give type II∗ fibers.

The last statement follows easily by Lemma 4.1. ¤

If g(n, k) > 0, we will denote by Cn,k the curve in the fixed locus of σn,k with such
genus.

Corollary 4.3. If k > 1 then Cn,k is hyperelliptic.

Proof. If k > 1 then, by Proposition 4.2, Xn,k has a jacobian elliptic fibration and
the section is in the fixed locus. Since σn,k fixes 3 points on each fiber of the elliptic
fibration, then C is a double section and f|C is a double cover to P

1. ¤

Let φn,k : Xn,k −→ P
g(n,k) ∼= |Cn,k|

∨ be the morphism associated to |Cn,k|.

Lemma 4.4. There is a projective transformation σ̃n,k of P
g which preserves

Im(φn,k) and such that φn,k ◦ σn,k = σ̃n,k ◦ φn,k. For a suitable choice of coor-
dinates

σ̃n,k(x0, . . . , xg−1, xg) = (x0, . . . , xg−1, ζxg).

Proof. Since σn,k fixes Cn,k, then it preserves |Cn,k|, hence it induces a projectivity

σ̃n,k of |Cn,k|
∨ which fixes pointwisely the hyperplane H such that φ−1

n,k(H) = Cn,k.

If we choose coordinates such that H = {xg = 0}, then σ̃n,k is of the above form. ¤

Remark 4.5. If g(n, k) = 1 then φn,k is an elliptic fibration. The automorphism

σ̃n,k has exactly two fixed points p, q ∈ P
1 such that φ−1

h (p) = Cn,k and φ−1
h (q)

is a reducible fiber. By [7] this is of Kodaira type I0 if n = 3 and I∗3(n−4) for
n = 4, . . . , 8.

Remark 4.6. The curve C0,2 is a hyperelliptic curve of genus 5 and by [27] φ0,2 :
X0,2 → P

5 is a degree two morphism onto a cone over a rational normal quartic
branched along a cubic section B and the vertex of the cone. Since the branch
curve is invariant for the action of σ̃, then B has an equation of the form

F3(x0, . . . , x4) + bx3
5

where b is non zero and (0, . . . , 0, 1) is the vertex of the cone. Conversely, the
double cover of the cone branched along the generic section with this equation and
the vertex is a K3 surface with an automorphism σ0,2.

The surface X0,2 can be also obtained as the triple cover of the Hirzebruch surface
F6 branched along the disjoint union of the exceptional curve e with e2 = −6 and
a curve in | 12f + 2e |, where f is the class of a fiber.
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In what follows Fi, Gi will denote homogeneous polynomials of degree i and b, c, d
are non-zero complex numbers.

Proposition 4.7. If (n, k) = (0, 1), (3, 0), (3, 1) then Xn,k is isomorphic to the
complete intersection of a quadric and a cubic in P

4 with equations of the form

• X0,1 :

{

F2(x0, . . . , x3) = 0
F3(x0, . . . , x3) + bx3

4 = 0

σ0,1(x0, . . . , x3, x4) = (x0, . . . , x3, ζx4)

• X3,0 :

{

F2(x0, x1) + bx2x3 + cx2x4 = 0
F3(x0, x1) + dx3

2 + G3(x3, x4) + x2F1(x0, x1)G1(x3, x4) = 0

σ3,0(x0, x1, x2, x3, x4) = (x0, x1, ζ
2x2, ζx3, ζx4).

• X3,1 :

{

x3F1(x0, x1, x2) + x4G1(x0, x1, x2) = 0
F3(x0, x1, x2) + G3(x3, x4) = 0

σ3,1(x0, x1, x2, x3, x4) = (x0, x1, x2, ζx3, ζx4).

Conversely, for generic Fi, Gj , b, c, d, the above equations define K3 surfaces and
the fixed locus of σn,k is of type (n, k).

Proof. The fixed locus of σ0,1 only contains the curve C0,1 of genus 4. Assume
that E is an elliptic curve on X intersecting C0,1, then σ0,1 preserves E and has
exactly 3 fixed points on it by Riemann Hurwitz formula, thus (C0,1, E) = 3. By
[27, Theorem 5.2] this implies that the morphism φ0,1 is an embedding of X0,1 in
P

4 as the complete intersection of a quadric and a cubic hypersurface. Since both
hypersurfaces are σ̃0,1-invariant, then they have an equation of the above form and
σ0,1 = σ̃0,1.

According to Proposition 3.2, the Picard lattice of X3,0 is isomorphic to U(3)⊕
E∗

6 (3). Let e, f be the standard basis of U(3) and h = e+f . The morphism associ-
ated to h is an embedding as the intersection of a quadric and a cubic hypersurface
in P

4. Moreover, σ3,0 induces a projectivity σ̃ of P
4. Since σ3,0 has only isolated

fixed points, then σ̃ has no fixed hyperplane or planes. Hence, up to a choice of
coordinates, we can assume that σ3,0 and the two hypersurfaces have equations of
the above form.

According to Proposition 3.2, the Picard lattice of X3,1 is isomorphic to U(3)⊕
A3

2. Let e, f be the basis of U(3) as before and ei, e
′
i, i = 1, 2, 3 be the standard

basis of A3
2. The class h = 2e + f −

∑3
i=1(ei + e′i) gives an embedding as the

complete intersection of a quadric and a cubic hypersurface. The equations of X3,1

and σ3,1 can be determined as before.
The last statement follows from easy computations. ¤

Remark 4.8. It is clear from the equations in Proposition 4.7 that the surface
X0,1 is the triple cover of a quadric branched along a curve of genus 4. Also the
converse is true, as proved by Kondō in [14]. In fact [14, Theorem 1] states that the
moduli space of K3 surfaces X0,1 is birational to the coarse moduli space of curves
of genus 4.
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Proposition 4.9. If (n, k) = (1, 1), (4, 1) then Xn,k is isomorphic to a smooth
quartic in P

3 with equations of the form

• X1,1 : F4(x0, x1, x2) + F1(x0, x1, x2)x
3
3 = 0

σ1,1(x0, . . . , x3) = (x0, x1, x2, ζx3)

• X4,1 : F4(x0, x1) + F3(x2, x3)F1(x0, x1) = 0

σ4,1(x0, x1, x2, x3) = (x0, x1, ζx2, ζx3).

Conversely, for generic Fi’s, the above equations define K3 surfaces and σ1,1, σ4,1

have fixed locus of type (1, 1) and (4, 1) respectively.

Proof. The fixed locus of σ1,1 is the union of the curve C1,1 of genus 3 and an
isolated point. By Riemann Hurwitz formula the intersection of C1,1 with any
elliptic curve on X1,1 is either zero or three. Hence, by [27, Theorem 5.2], φ1,1 is
an embedding of X1,1 in P

3. Since Im(φ1,1) is invariant for the action of σ̃1,1 we
find that its equation is of the above form.

According to Proposition 3.2, the Picard lattice of X4,1 is isomorphic to U(3)⊕
A4

2. Let e, f be the basis of U(3) as before and ei, e
′
i, i = 1, 2, 3, 4 the standard

basis of A4
2. The class h = 2e + f −

∑4
i=1(ei + e′i) gives an embedding as a smooth

quartic surface in P
3. The equations of X4,1 and σ4,1 can be determined as before.

The last statement follows from easy computations. ¤

Remark 4.10. If g(n, k) = 3 and n ≥ 2 then Cn,k is hyperelliptic by Proposition
4.3, hence by [27] φn,k is a rational map of degree 2 onto a quadric Q. Since Q
is invariant for σ̃n,k in Lemma 4.4, then Q is a cone and φn,k is branched along
a quartic section B and the vertex. The rational curves orthogonal to Cn,k are
contracted to the vertex of the cone and give a singular point of B of type A1 for
n = 2, A4 for n = 3 and A7 for n = 4.

The following was proved in [7].

Proposition 4.11. The surface X2,1 is isomorphic to the double cover of P
2

branched along a smooth plane sextic with equation

F6(x0, x1) + F3(x0, x1)x
3
2 + bx6

2 = 0

and
σ2,1(x0, x1, x2) = (x0, x1, ζx2).

Conversely, for generic Fi’s and b, the above equation defines a K3 surface and σ2,1

has fixed locus of type (2, 1).

Proof. The morphism φ2,1 is a double cover of P
2 branched along a smooth plane

sextic by [27]. Note that σ̃2,1 (Lemma 4.4) fixes pointwisely the line x2 = 0 and
the point p = (0, 0, 1).

The last statement follows from easy computations. ¤

Remark 4.12. If g(n, k) = 2 and n > 2 then it can be proved that φn,k is a degree
two morphism to P

2 branched along a plane sextic as in Proposition 4.11 with b = 0
i.e. p = (0, 0, 1) is singular. One can show that if F3 has no multiple roots, then p is
of type D4. If F3 has exactly a double root q, then p is of type D7 if F6(q) 6= 0 and
of type D10 if F6(q) = 0 is a simple root. This completes [7, Proposition 3.3.18].
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5. The moduli space

We denote by Mn,k the moduli space of K3 surfaces with an order three non-
symplectic automorphism with n fixed points and k fixed curves i.e. the space of
all pairs (Xn,k, σn,k).

Proposition 5.1. Mn,k is irreducible.

Proof. In propositions 4.2, 4.7, 4.9 and 4.11 we proved that the surface Xn,k is
isomorphic to the general element of an irreducible family of surfaces and that the
automorphism σn,k is uniquely determined. This gives the result. ¤

Let ρ be an order 3 isometry such that (T, ρ) is a E∗-lattice and consider the
period domain Bρ as in section 3. Since T has signature (2, 2m − 2) it is easy to
see that Bρ is isomorphic to a (m − 1)-dimensional complex ball. Let

Γρ = {γ ∈ O(T ) : γ ◦ ρ = ρ ◦ γ}.

Theorem 5.2 (§11, [8]). The generic point of Mρ = Bρ/Γρ parametrizes pairs
(X,σ) where X is a K3 surface and σ an order 3 non-symplectic automorphism on
X with σ∗ = ρ up to isometries.

Corollary 5.3. For any n, k there is a unique isometry ρn,k such that T (n, k) is a
E∗-lattice and Mn,k is birational to Mρn,k

.

Proof. Observe that Mρ is irreducible. Then the result follows from Proposition
5.1 and Theorem 5.2. ¤

According to Theorem 3.3, T (3, 0) = U ⊕ U(3) ⊕ A5
2. By Theorem 1.5 we also

have an isomorphism T (3, 0) ∼= A2(−1) ⊕ K12, where K12 is the Coxeter-Todd
lattice.

Proposition 5.4. If K12 is a primitive E-sublattice of T (n, k) then (n, k) = (0, 3).

Proof. Let B be the orthogonal complement of K12 in T = T (n, k). Since K12 is a
unimodular E-lattice then K12⊕B = T . In fact, assume on the contrary that there
exist a ∈ K12, b ∈ B, n ∈ Z such that (a + b)/n ∈ T/(K12 ⊕ B). Let H be the
hermitian form defined on a E-lattice as in Remark 1.2, then the homomorphism

φ : K12 −→ E , x 7→ H(x, (a + b)/n) = H(x, a/n)

belongs to Hom(K12, E) and not to K12, giving a contradiction.
Since the lattice K12 is negative definite and T has signature (2, 20 − s) then

rankB ≥ 2. Moreover a(T ) ≥ 6, hence rankT⊥ ≥ 6 and rankB ≤ 4.
If rankB = 2 then B is a rank one positive definite E∗-lattice. A direct compu-

tation shows that B ∼= A2(−1), hence T ∼= T (3, 0).
If rankB = 4 then a(T ) = 6 (since rankT⊥ = 6), hence B is a unimodular

lattice of signature (2, 2). By [21, Corollary 1.13.3] B ∼= U ⊕ U . Assume that
K12⊕U⊕U admits a primitive embedding in LK3. Then its orthogonal complement
is a hyperbolic 3-elementary lattice of rank 6 with a = 6. This lattice does not exist
by Theorem 1.5, hence this case can not occur. ¤

Remark 5.5. The Coxeter-Todd lattice also appears in connection to symplectic
automorphisms of order 3 on K3 surfaces. In [12, Theorem 5.1] it is proved that the
orthogonal complement of the fixed lattice of such automorphisms is isomorphic to
K12.
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Theorem 5.6. The moduli space of K3 surfaces with a non-symplectic automor-
phism of order 3 has three irreducible components which are the closures of

M0,1, M0,2, M3,0.

Proof. By Proposition 4.2 it is clear that all moduli spaces Mn,k with k > 1 are in
the closure of M0,2.

By Remark 4.8 a K3 surface in M0,1 is the triple cover of a quadric surface
Q branched along a genus 4 curve C. It is easy to check that, if C has singular
points of type A1 then the triple cover of Q branched along C has rational double
points of type A2 and its minimal resolution is still a K3 surface with an order
3 non-symplectic automorphism. For example, if C is generic with a node, then
the associated K3 surface has an order three automorphism which fixes the proper
transform of C and one point (coming from the contraction of a component of
the exceptional divisor over the node). In fact the Picard lattice isomorphic to
U(3)⊕A2, where A2 is generated by components of the exceptional divisor. Hence
we are in case n = 1, k = 1. Similarly, by taking C with n = 1, . . . , 4 singularities
of type A1, we obtain cases (n, 1).

As a consequence of Proposition 5.4, M3,0 is not contained in any other Mn,k,
hence it gives a maximal irreducible component of the moduli space. ¤

Remark 5.7. It follows easily from Proposition 4.2 that M0,2 is birational to the
moduli space of 12 (non ordered) points in P

1.
In §4, [14] S. Kondō describes the relation between the two components M0,1

and M0,2 (in fact the second component contains jacobians of the first one) and
relates the arithmetic groups Γ0,1,Γ0,2 with those appearing in Deligne-Mostow’s
list [9].

The moduli space M5,2 has been studied in [10], in particular it is proved to be
birational to the moduli space of cubic surfaces.
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