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Abstract. In this paper we investigate when the generic member of a family of
complex K3 surfaces admitting a non–symplectic automorphism of finite order admits
also a symplectic automorphism of the same order. We give a complete answer to
this question if the order of the automorphism is a prime number and we provide
several examples and partial results otherwise. Moreover we prove that, under certain
conditions, a K3 surface admitting a non–symplectic automorphism of prime odd
order, p, also admits a non–symplectic automorphism of order 2p. This generalizes a
previous result by J. Dillies for p = 3.

0. Introduction

An automorphism of finite order n on a complex K3 surface is called symplectic if it
acts trivially on the holomorphic 2–form of the K3 surface and it is called purely non–
symplectic if it acts as a multiplication by a primitive n–th root of the unity. These
notions were introduced by V.V. Nikulin in the 80’s (cf. [N1]).
In [N1] the finite abelian groups G which act symplectically on a K3 surface are classi-
fied and it is proved that the existence of a primitive embedding of a certain negative
definite lattice ΩG (depending only on the group G) in the Néron–Severi group of a K3
surface X is equivalent to the fact that G acts symplectically on X. In [GS1], [GS2]
the lattice ΩG is computed for each finite abelian group G and, thanks to the Nikulin’s
result, the families of K3 surfaces admitting G as group of symplectic automorphisms
are described as families of LG-polarized K3 surfaces, for certain lattices LG.
On the other hand in [N2], [ArSa], [AST] families of K3 surfaces admitting a non–
symplectic automorphism of prime order and a certain fixed locus are classified. These
are also M -polarized K3 surfaces, for a certain lattice M depending on the order and
on the fixed locus of the automorphism. One of the aim of this paper is to bring these
two descriptions together.

In [G1] and [D] a particular phenomenon is described for certain groups of symplectic
and non–symplectic automorphisms respectively: each K3 surface admitting a partic-
ular group G as group of symplectic automorphisms (resp. non–symplectic automor-
phisms with a certain fixed locus), automatically admits a larger group H of sym-
plectic (resp. non–symplectic) automorphisms (see Theorems 1.2,1.3). In particular
this implies that the family of K3 surfaces admitting G as group of (non–)symplectic
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automorphisms coincides with the family of the K3 surfaces admitting H as group of
(non–)symplectic automorphisms. Due to these results it seems natural to ask:

Question 0.1. When does the generic member of a family of K3 surfaces admitting a
certain group G of automorphisms admit a larger group H of automorphisms?

A similar question was recently studied by K. Frantzen, [F], who considers K3 surfaces
with non–symplectic involution and studies actions of symplectic groups on the same
K3 surface. More precisely she considers a K3 surface admitting a symplectic action
by a group G in Mukai’s list [Mu] and a non–sympectic involution σ acting on X,
centralizing G and with Fix(σ) 6= ∅. She describes all K3 surfaces admitting such a
couple (G, σ) and she shows also that not all groups in Mukai’s list can occur.
These kind of investigations are related to the classification of the finite groups which
could act on a K3 surface (until now it does not exist a complete classification). The
paper is organized as follows. In Section 1 we generalize the results of Dillies (cf. [D])
assuming that the groups G and H both act non–symplectically on the K3 surface.
More precisely, let p be an odd prime number. Then, under some conditions on the fixed
locus of the non–symplectic automorphism of order p, we prove that a K3 surface admits
Z/pZ as group of non–symplectic automorphisms if and only if it admits Z/2pZ as
group of non–symplectic automorphisms (cf. Theorem 1.4). There are two exceptions,
in fact if the fixed locus of the automorphism of order p consists of isolated points and
p = 7, 11, then the same result is false (cf. Theorem 1.5).
We analyze next the case when G =< η > is a finite cyclic non–symplectic group and
H is generated by η and by a symplectic automorphism σ. Very much is known about
the groups 〈η〉 and 〈σ〉 and it turns out that the order o(σ) ≤ 8 and o(η) ≤ 66. Thus
the order 2 ≤ n ≤ 8 is possible for both η and σ. One can hence ask if there are
K3 surfaces having both the automorphisms σ and η with o(σ) = o(η). The answer
is positive and surprising, in the sense that in some cases the generic K3 surface with
non–symplectic automorphism also admits a symplectic automorphism of the same
order. By generic we mean that the non–symplectic automorphism acts trivially on
the Néron-Severi group of the K3 surface. With some abuse of terminology we call
generic also a K3 surface in a 0-dimensional family, satisfying the previous condition.
The main result of this paper is summarized in the following:

Theorem 0.1. Assume that X is a generic K3 surface with a non–symplectic auto-
morphism η of order p then :

• If p = 2 then X = X(r,a,δ) (the Nikulin invariants r, a, δ will be introduced in
Section 2) admits also a symplectic involution if and only if either δ = 1 and
a > 16 − r or δ = 0 and a > 16 − r or δ = 0 and a = 6, r = 10.

• If p = 3, then X admits a symplectic automorphism of order 3 if and only if
the fixed locus of η consists of n points and n − 3 curves with n ≥ 6.

• If p = 5, 7 then X does not admit a symplectic automorphism of the same order
(in particular, if p = 7 such an automorphism does not exist for any K3 surface
with a non symplectic automorphism of order 7, not only for the generic one in
a family).
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We give the proof in the Theorems 2.6, 3.1, 4.1, 5.1. We remark that the theorem
does not say anything about existence of special K3 surfaces with a symplectic and a
non-symplectic automorphism of the same order (at least if p 6= 7), indeed in Example
5.1 we describe a rigid K3 surface admitting both a symplectic and a non symplectic
automorphism of order 5.
We obtain complete results only in the cases that the order of the automorphism is a
prime number. Indeed the classification of families of K3 surfaces with non–symplectic
automorphisms of non prime order is not complete. However we show that there exist
no K3 surfaces admitting both a symplectic and a non–symplectic automorphism of or-
der 8 (cf. Table 2) and we show that there exists a 1-dimensional family of K3 surfaces
admitting both a symplectic and a non–symplectic automorphisms of order 4 (resp. 6)
(cf. Example 6.1, resp. Example 7.1). Moreover, in case of order 6, we show that the
generic member of a family of K3 surfaces admitting a non–symplectic automorphism
of order 6, does not admit a symplectic automorphism of the same order (cf. Theorem
7.1). The same result is proved for the order 4 if the dimension of the family is at least
2 (cf. Theorem 6.1).
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1. Automorphisms on K3 surfaces

Definition 1.1. Let X be a smooth complex surface. The surface X is a K3 surface if
the canonical bundle of X is trivial and the irregularity of X, q(X) := h1,0(X), is zero.
If X is a K3 surface, then h2,0(X) = 1. We choose a generator ωX of H2,0(X), which
is called the period of X.

The second cohomology group of a K3 surface, equipped with the cup product, is
isometric to a lattice, which is the unique, up to isometries, even unimodular lattice
with signature (3, 19). This lattice will be denoted by ΛK3 and is isometric to U ⊕

U ⊕ U ⊕ E8 ⊕ E8, where U is the unimodular lattice with bilinear form

[

0 1
1 0

]

and

E8 is the even negative definite lattice associated to the Dynkin diagram E8. The
Néron–Severi group of a K3 surface X, NS(X), coincides with its Picard group. The
transcendental lattice of X, TX , is the orthogonal lattice to NS(X) in H2(X, Z).

Definition 1.2. An isometry α of H2(X, Z) is an effective isometry if it preserves
the Kähler cone of X. An isometry α of H2(X, Z) is a Hodge isometry if its C-linear
extension to H2(X, C) preserves the Hodge decomposition of H2(X, C).
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Theorem 1.1. ([BR]) Let X be a K3 surface and g be an automorphism of X, then
g∗ is an effective Hodge isometry of H2(X, Z). Viceversa, let f be an effective Hodge
isometry of H2(X, Z), then f is induced by a unique automorphism of X.

If g is an automorphism on a K3 surface X, then g∗ preserves the space of the holo-
morphic 2-forms on X, and hence g∗(ωX) = λωX , λ ∈ C∗.

Definition 1.3. An automorphism σ on a K3 surface X is symplectic if σ∗ acts as the
identity on H2,0(X), that is σ∗(ωX) = ωX . Equivalently σ is symplectic if the isometry
induced by σ∗ on the transcendental lattice is the identity. An automorphism η of finite
order m is purely non–symplectic if η(ωX) = ζmωX , where ζm is a primitive m-th root
of unity.

In the following we will only say that an automorphism is non–symplectic but we mean
that it is purely non–symplectic.
In [N1] it is proved that for each finite group G of automorphisms on a K3 surface X,
there exists the following exact sequence:

(1) 1 −→ G0 −→ G
α

−→ Γm −→ 1

where α is the natural representation of G in H2,0(X) = CωX , and m is a positive
integer. Then Γm is cyclic of order m. If Γm 6= {1}, the K3 surface X is algebraic,
[N1, Theorem 3.1]. The group Γm has order m ≤ 66 and if m is a prime number, then
m ≤ 19 (cf. [N1]). A complete list of finite groups G0 acting symplectically on a K3
surface is given in [X] and consists of 79 groups. We observe that there are a priori many
possibilities for the groups G0 and Γm. However not all these possibilities correspond to
different families of K3 surfaces. Indeed the following two results show that requiring
a certain group of (resp. non–) symplectic automorphisms on a K3 surface X implies
that there is a bigger group of (resp. non–) symplectic automorphisms.

Theorem 1.2. ([G1]) A K3 surface admits Z/5Z as group of symplectic automor-
phisms if and only if it admits the dihedral group D5 of order 10 as group of symplectic
automorphisms.

Theorem 1.3. ([D]) If a K3 surface admits Z/3Z as group of non–symplectic auto-
morphisms and the fixed locus contains at least two curves or it consists exactly of two
points and one curve then it admits also the group Z/6Z as group of non–symplectic
automorphisms.

In [G1] a criterion is given which implies that a group G acts symplectically on a K3
surface if and only if a larger group H ⊃ G acts symplectically on it. Here we prove
that also in the non–symplectic case one can extend the result of Theorem 1.3.

Theorem 1.4. Let p = 5, 13, 17, 19. A K3 surface admits Z/pZ as group of non–
symplectic automorphisms if and only if it admits Z/2pZ as group of non–symplectic
automorphisms.
Let q = 7, 11. If a K3 surface X admits Z/qZ as group of non–symplectic automor-
phisms and the fixed locus of this automorphism contains at least one curve, then X
admits Z/2qZ as group of non–symplectic automorphisms.
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Proof. In [AST] the general member X of a family of K3 surfaces admitting a non–
symplectic automorphism η of prime order 5 ≤ p ≤ 19 is described for any possible
fixed locus of η. To prove the theorem, it suffices to show that this general member
admits a non–symplectic automorphism of order 2p. Let us now consider the following
2 constructions:

case A Let αp be an automorphism of P2 of prime order p 6= 2. Let Cαp
= V (fαp

(x0 :
x1 : x2)) be a family of sextic plane curves invariant for αp. Let Sαp

be the K3
surface obtained as double cover of P2 branched along Cαp

. A (possibly singular)
model of Sαp

⊂ WP(3, 1, 1, 1) is u2 = fαp
(x0 : x1 : x2). The automorphism

acting on WP(3, 1, 1, 1) as (u; (x0 : x1 : x2)) 7→ (u; αp(x0 : x1 : x2)) restricts to
an automorphism η of Sαp

. It has order p. It is now clear that the surface Sαp

admits also the automorphism β : (u; (x0 : x1 : x2)) → (−u; αp(x0 : x1 : x2)),
which is the composition of η with the covering involution and which has order
2p.

case B Let R be a K3 surface admitting an elliptic fibration with Weierstrass equation
y2 = x3 + A(t)x + B(t). If R admits an automorphism of prime order p 6= 2,
η : (x, y, t) → (ζa

px, ζb
py, ζc

pt), then it admits also an automorphism β : (x, y, t) →

(ζa
px,−ζb

py, ζc
pt) of order 2p.

The general member of the families of K3 surfaces with a non–symplectic automor-
phism of order 5 are described in [AST] as double covers of P2 and the non–symplectic
automorphism is induced by an automorphism of P2. So the non–symplectic automor-
phism of order 5 is constructed as η in case A. This shows that these K3 surfaces admit
also an automorphism of order 10, costructed as β in case A. Since the cover involution
is a non–symplectic automorphism of order 2, the automorphism β is a non–symplectic
automorphism of order 10.
In cases p = 13, 17, 19, the general member of the families and the non–symplectic au-
tomorphism of prime order p on it can be constructed as the automorphism η in case
B (cf. [AST]). The automorphism β in case B is an automorphism of order 2p on these
K3 surfaces. It is non–symplectic since it is the composition of two non–symplectic
automorphisms with coprime order. The situation is similar in cases p = 7, 11 if the
automorphism fixes at least one curve. �

1.1. Holomorphic Lefschetz formula for a non–symplectic automorphism of

order 14 and of order 22. The Theorem 1.4 does not describe any relation between
automorphisms of order p and of order 2p if p = 7, 11 and the non–symplectic auto-
morphism of order p fixes only isolated points. In order to describe this situation we
need a deeper analysis of the non–symplectic automorphisms of order 2p, p = 7, 11.
We can assume that η acts on ωX as the multiplication by ζm, m = 14 or m = 22. The
action of η can be locally linearized and diagonalized at a fixed point x ∈ Xσ (see [C]
and [N1, §5] ), so that its possible local actions are

Am,t =

(

ζt+1
m 0
0 ζm−t

m

)

, t = 0, . . . ,
m − 2

2
.

If t = 0 then x belongs to a smooth fixed curve for η, otherwise x is an isolated fixed
point. We will say that an isolated point x ∈ Xη is of type t (t > 0) if the local action
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at x is given by Am,t and we will denote by nt the number of isolated points of η of
type t.
The holomorphic Lefschetz formula [AtSi, Theorem 4.6] allows to compute the holo-
morphic Lefschetz number L(η) of η in two ways. First we have that

L(η) =
2

∑

i=0

(−1)itr(η∗|H i(X,OX)).

Since we have H2(X,OX) = H0,2 = H2,0 = CωX we obtain:

(2) L(η) = 1 + ζm−1
m .

On the other hand, we also have that

L(η) =
m−2
∑

t=1

nta(t) +
∑

i

b(Ci),

where the Ci are the η-fixed curves of genus g(Ci),

(3) a(t) :=
1

det(I − σ∗|Tt)
=

1

det(I − Am,t)
=

1

(1 − ζt)(1 − ζm−t+1)
,

with Tt the tangent space of X at a point of type t, and

(4) b(Ci) :=
(1 + ζm)(1 − g(Ci))

(1 − ζm)2
.

Denoting by h =
∑

(1 − g(Ci)) we can then write

L(η) =
m−2
∑

t=1

nta(t) + h
(1 + ζm)

(1 − ζm)2
.

If Xη is either empty or the union of two elliptic curves, then L(η) = 0, this is possible
only in case of involutions. By applying the holomorphic Lefschetz formula one obtains
the following results in the case that the order of the automorphism is 14 or 22 and
the automorphism η2 of order 7 or 11 has only isolated fixed points.
m = 14 . In this case by [AST, Theorem 6.3] the local actions at the fixed points of
η2 are

(

ζ2
7 0
0 ζ6

7

)

,

(

ζ3
7 0
0 ζ5

7

)

and there are two fixed points with local action of the first type and one fixed point
with local action of the second type. Observe that the automorphism η of order 14 has
only isolated fixed points too and in the first case the local action of η can be of type 1
or 5 and in the second case of type 2 or 4. Then η either fixes the three points fixed by
η2 or interchanges two points and fixes the third one. In any case we have h = n3 = 0.
By using the fact that the roots ζ i

14, i = 0, . . . , 5 are linearly independent over Q one
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get a system of equations (with MAPLE):


























3n1 − 3n2 − 5n4 + n5 = 7
8n1 − n2 + 3n4 − 2n5 = 7
6n1 + n2 − 3n4 + 2n5 = 7
4n1 + 3n2 − 9n4 + 6n5 = 7
9n1 + 5n2 − n4 + 3n5 = 7
6n1 + n2 − 3n4 + 2n5 = 7

Subtracting the first equation from the third we get n5 = −3n1 − 4n2 − 2n4. Since
ni ≥ 0, i = 1, 2, 4, 5, we obtain n1 = n2 = n4 = n5 = 0, which is impossible in any
other equation. Hence there are no non-symplectic automorhpisms of order 14 on K3
surfaces such that the square fixes isolated points.
m = 22 . In this case by [AST, Theorem 7.3] the local actions at the fixed points of
η2 are

(

ζ2
11 0
0 ζ10

11

)

,

(

ζ3
11 0
0 ζ9

11

)

.

Observe that the automorphism of order 22 must fix also these two points. Near to
the first fixed point the local action can be of type 1 or 9, near to the second one is of
type 4 or 6. In any case we have h = n2 = n3 = n5 = n7 = n8 = n10 = 0. By using
the fact that the roots ζ i

22, i = 0, . . . , 9 are independent over Q one get the system of
equations (with MAPLE):



























































5n1 − 8n4 + 2n6 + n9 = 11
24n1 − n4 + 3n6 − 4n9 = 11
10n1 − 5n4 + 15n6 + 2n9 = 11
18n1 − 9n4 + 5n6 + 8n9 = 11
15n1 − 2n4 + 6n6 + 3n9 = 11
12n1 + 5n4 + 7n6 − 2n9 = 11
20n1 + n4 − 3n6 + 4n9 = 11
6n1 − 3n4 + 9n6 + 10n9 = 11

25n1 + 4n4 + 10n6 + 5n9 = 11
15n1 − 2n4 + 6n6 + 3n9 = 11

Subtracting the 9th equation from the 7th, one get 13n6 + n9 + 5n1 + 3n4 = 0, which
gives n1 = n9 = n4 = n6 = 0 . This is impossible in any other equation. Hence there
are no non-symplectic automorhpisms of order 22 on K3 surfaces such that the square
fixes isolated points.

Assume now that X has a non-symplectic automorphism η of order 7 or 11 then with
the same notation as in the exact sequence (1) m is a multiple of 7 or 11. We show
then

Theorem 1.5. Assume that η has only isolated fixed points.
If X is a generic K3 surface with a non–symplectic automorphism of order seven then
G0 = {1} and m = 7.
If X is any K3 surface with a non–symplectic automorphism of order eleven then
G0 = {1} and m = 11.
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Proof. Assume first that X is generic. Then we have that TX = U(7) ⊕ U ⊕ E8 ⊕ A6,

NS(X) = U(7) ⊕ K7 in the case of the order 7 (where K7 ≃

[

−4 1
1 −2

]

) and TX =

U ⊕ U(11) ⊕ E8 ⊕ E8, NS(X) = U(11) in the case of the order 11. In both cases
rank(NS(X)) < 8 so by [N1] or [MO, Lemma 1.2] we have G0 = {1}. Since X has
an automorphism of order p = 7, 11, we can write m = pn and one sees immediately
that n ≤ 6 (cf. [N1], [Z]). Let h denote a generator of G (since G0 = {1}, G = Γm is
cyclic) then η = hn′

and the fixed loci h(Xη) ⊂ Xη and Xh ⊂ Xη, in particular the
fixed locus of Xh consists of isolated points (in fact Xh is not empty since h is not an
involution).

p = 7 . The only possible values are m = 7, 14 because only in these cases the Euler

function ϕ(m) divides the rank of the transcendental lattice which is 18. We must
exclude the case m = 14. Let Xη = {P1, P2, P3} be the fixed points of η on X. Then
Xh consists either of one point or of three points. By using the Lefschetz fixed point
formula for an automorphism of order 14 as done at the beginning of the section, one
sees that this is not possible.
p = 11 . The possible values are n = 11, 22, 33, 44, 66. If n = 33, 44, 66, the K3 surface

is unique (see [K2]), and our family is 1-dimensional, so this is not possible. We are
left to exclude the case m = 22. Let Xη = {P1, P2}, since Xh is not empty it must be
equal to Xη. Again using the Lefschetz fixed point formula, here for an automorphism
of order 22 as done at the beginning of the section, one sees that this is not possible.
Consider now any K3 surface with non–symplectic action by an automorphism of order
11. Since the Euler function of 11 is 10, the rank of the transcendental lattice can be
only 10 or 20. If it is 20 and m = 33, 44, 66 the K3 surfaces are described in [K2] and
the fixed locus of the automorphism of order eleven is one point and one elliptic curve.
If m 6= 33, 44, 66 we argue in the same way as in the generic case. We now assume that
the rank of the transcendental lattice is 10. Since rank(NS(X)) = 12 by [N1] the only
possibility is that G0 is generated by a symplectic involution ι. Observe that as before
the case m = 22 is not possible, hence m = 11 and so G has order 22. If G is a cyclic
group of order 22 then ι and η commute and so the fixed locus of ι which are eight
isolated fixed points must be permuted or fixed by η. This is not possible since η has
order eleven and has only two isolated fixed points. If G is the dihedral group of order
22 then the product η ◦ ι has order two but the action on the holomorphic 2-form is
the multiplication by an eleventh root of unity, which is not possible. Hence G0 = {1}
and m = 11. �

Remark 1.1. In the paper [OZ], Oguiso and Zhang study the case of a K3 surface
with a non–symplectic automorphism of order eleven, they show the same result as
Theorem 1.5 for p = 11. We gave here a uniform proof for both p = 7 and p = 11.



On symplectic and non–symplectic automorphisms of K3 surfaces 9

2. K3 surfaces with a symplectic and non–symplectic automorphisms

of the same order

Here we recall some basic facts on symplectic and non–symplectic automorphisms.
One important point is that one can associate some lattices to an automorphism with
a given fixed locus.

Definition 2.1. ([N1, Definition 4.6]) We say that G has a unique action on ΛK3 if,
given two embeddings i : G →֒ Aut(X), i′ : G →֒ Aut(X ′) such that G is a group
of symplectic automorphisms on the K3 surfaces X and X ′, there exists an isometry
φ : H2(X, Z) → H2(X ′, Z) such that i′(g)∗ = φ ◦ i(g) ◦ φ−1 for all g ∈ G.

Theorem 2.1. ([N1, Theorem 4.7]) Let G be a finite abelian group acting symplectically
on a K3 surface. Then G has a unique action on ΛK3, hence the lattice ΩG := (ΛG

K3)
⊥

is uniquely determined by G, up to isometry.

By theorem 2.1 the definition of the lattice ΩG is independent of X (up to isometries).
Thus ΩG is defined as an abstract lattice (for example ΩZ/2Z ≃ E8(2), [vGS]).

Theorem 2.2. ([N1, Theorem 4.15]) Let G be a finite abelian group. A K3 surface
X admits G as group of symplectic automorphisms if and only if the lattice ΩG is
primitively embedded in NS(X).

The lattices ΩG are computed in [GS1], [GS2] for each abelian group G. The fixed
locus of a symplectic automorphism of prime order does not depend on the K3 surface
on which the automorphism acts and it consists of a finite number of points. The
situation is different for the non–symplectic automorphisms. The possible fixed loci of
a non–symplectic automorphism of prime order on a K3 surface are listed in [N2] in
the case of involutions and in [AST] in the other cases.

Definition 2.2. Let l be a prime number. A lattice is called l-elementary if its dis-
criminant group is (Z/lZ)a for a certain non negative integer a. We then call a := l(L)
the length of L.
Let L be a 2-elementary lattice, then one defines the invariant δ of L to be equal to 0
if the discriminant form of L takes values in Z and equal to 1 otherwise.

We recall the following results on l-elementary lattices :

Theorem 2.3. ([N3, Theorem 3.6.2]) An indefinite even 2-elementary lattice is uniquely
determined by δ, its signature and the integer a.

This can be generalized by the following theorem which gives also special results in the
hyperbolic case:

Theorem 2.4. ([RS],[AST, Theorem 1.1]) An even, indefinite, p-elementary lattice
of rank r for p 6= 2 and r ≥ 2 is uniquely determined by its signature and the integer
a.
For p 6= 2 a hyperbolic p-elementary lattice with invariants a, r exists if and only if the
following conditions are satisfied: a ≤ r, r ≡ 0 (mod 2) and

{

for a ≡ 0 (mod 2), r ≡ 2 (mod 4)

for a ≡ 1 (mod 2), p ≡ (−1)r/2−1 (mod 4)
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and r > a > 0, if r 6≡ 2 (mod 8).

Finally we recall some results on non–symplectic automorphisms:

Theorem 2.5. ([N1], [N2], [ArSa], [AST]) Assume that a K3 surface X has a non-
symplectic automorphism η of finite order m. Then we have :

1) The Euler function ϕ(m) divides rank(TX).
2) The lattice H2(X, Z)η is a hyperbolic lattice and is primitively embedded in

NS(X).
3) Let the order of η be a prime number p, then the lattice H2(X, Z)η is a p-

elementary lattice and the fixed locus Fix(η) determines uniquely the invariants
r and a of the lattice H2(X, Z)η.

As a consequence of the previous results one obtains that if X is a K3 surface admit-
ting a non–symplectic automorphism η of prime order p, the fixed locus determines
H2(X, Z)η uniquely if p is odd and gives at most two possible choices for H2(X, Z)η

if p = 2. Here we want to analyze K3 surfaces, X, admitting both a non–symplectic
automorphism and a symplectic automorphism of the same order. This order is at most
8, in fact if Z/nZ is a group of symplectic automorphisms on a complex K3 surface,
then n ≤ 8 (cf. [N1]). Since X admits G := 〈σ〉 as a group of symplectic automor-
phism, we have ΩG ⊂ NS(X) (cf. Theorem 2.2). The lattice ΩG, characterizing K3
surfaces admitting G as a group of symplectic automorphisms, is negative definite. The
K3 surfaces with non-symplectic automorphism of finite order are always algebraic (cf.
[N1, Theorem 3.1]), hence the Néron–Severi group of X contains a class with a positive
self-intersection and so rank(NS(X)) ≥ rank(ΩG) + 1. These observations lead us to
Table 2, where the possible rank of the Néron-Severi group and of the transcendental
lattice for a K3 surface having a symplectic and a non-symplectic automorphism of the
same order m are given. The rank of the transcendental lattice determines the number
of moduli of the family of K3 surfaces :

m rank(NS(X)) rank(TX) moduli
2 ≥ 9 ≤ 13 ≤ 11
3 14, 16, 18, 20 8, 6, 4, 2 3, 2, 1, 0
4 16, 18, 20 6, 4, 2 2, 1, 0
5 18 4 0
6 18, 20 4, 2 1, 0
7 − − −
8 − − −

Table 1. K3 surfaces with symplectic and non–symplectic automorphism

We recall the contruction of a space parametrizing K3 surfaces with non-symplectic
automorphism η of prime order p (cf. [DK], [K1]). We denote by η∗ the operation of η
on H2(X, Z). By Nikulin (cf. [N1, Theorem 3.1]) the eigenvalues of η on TX ⊗ C are
ζ, . . . , ζp−1, where ζ is a primitive p-root of unity. The value 1 is not an eigenvalue of
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η. Hence one has a decomposition in eigenspaces:

TX ⊗ C = Tζ ⊕ . . . ⊕ Tζp−1 .

Put

B = {z ∈ P(Tζ) : (z, z) = 0, (z, z̄) > 0}

and

Γ = {γ ∈ O(TX) : γ ◦ η∗ = η∗ ◦ γ}.

It is easy to see that B is a complex ball of dimesion (rank(TX)/(p − 1)) − 1 for p ≥ 3
and it is a type IV Hermitian symmetric space of dimension rank(TX) − 2 if p = 2.
Then the generic point of B/Γ corresponds to a K3 surface with a non–symplectic
automorphism η′ of order p and η′∗ = η∗. There is a birational map from B/Γ to the
moduli space of K3 surfaces with a non–symplectic automorphism of order p (see [DK]
and [AST] for a more detailed description). A similar construction holds also if the
order of η is not a prime number. One must consider the decomposition of TX ⊗C into
eigenspaces corresponding to primitive m–roots of the unity and the dimension of the
moduli space is (rank(TX)/ϕ(m)) − 1. From these remarks it follows:

Theorem 2.6. There are no K3 surfaces having both a symplectic and a non–symplectic
automorphism of the same order n if n = 7, 8 and there are at most countable many
K3 surfaces having a symplectic and a non–symplectic automorphism of order 5.

Proof. The first assertion follows from the Table 2 and the last one is a consequence of
the structure of the moduli space, which in this case is 0-dimensional. �

Proposition 2.1. Let η be a non–symplectic automorphism of finite order m on a K3
surface X such that the action of η on NS(X) is the identity. Let σ be a symplectic
automorphism of finite order n on the same K3 surface X. Then η and σ commute
and η ◦σ is an automorphism of order lcm(m,n) acting on the period of the K3 surface
as η.

Proof. By assumption η acts as the identity on the Néron–Severi group NS(X) and σ
acts as the identity on the transcendental lattice TX (cf. [N1]). Hence the actions of
η∗ and σ∗ on NS(X)⊕TX (and so on H2(X, Z)) commute. Since η∗ ◦σ∗ is an effective
Hodge isometry on H2(X, Z), by the global Torelli theorem, it is induced by a unique
automorphism on X (which is η ◦ σ). But η∗ and σ∗ commute, hence η∗ ◦ σ∗=σ∗ ◦ η∗

which is induced by a unique automorphism on X, i.e. by σ ◦ η. So η ◦ σ = σ ◦ η.
Let ωX be the period of the K3 surface X. So (η ◦ σ)∗(ωX) = η∗(ωX) = ζmωX where
ζm is a primitive m-root of unity. Moreover since η and σ commute, η ◦ σ is an
automorphism of order lcm(m,n). �

With respect to the fixed locus we have the following trivial property:

Lemma 2.1. If two automorphisms η and σ commute, then η(Fix(σ)) ⊂ Fix(σ) and
viceversa σ(Fix(η)) ⊂ Fix(η). In particular if η and σ are two automorphisms on a K3
surface as in Proposition 2.1, then the fixed points of σ are either fixed or permuted by
η.
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3. Order two

We recall that ΩZ/2Z ≃ E8(2). Moreover the invariant lattice of a non-symplectic
involution is identified by three invariants (r, a, δ), where r is the rank of the lattice,
a is its length and δ ∈ {0, 1}. We call S(r,a,δ) the 2-elementary lattice with signature
(1, r − 1) and invariants (r, a, δ). If a non-symplectic involution η acts trivially on the
Néron–Severi group of a K3 surface, then the Néron–Severi group coincides with some
S(r,a,δ) and hence r is the Picard number of the surface. In the following X(r,a,δ) will be
a K3 surface with a non–symplectic involution η acting trivially on the Néron–Severi
group and such that NS(X(r,a,δ)) ≃ S(r,a,δ).

Proposition 3.1. Assume that X(r,a,δ) admits also a symplectic involution, then

i) r ≥ 9,
ii) a ≥ 16 − r,
iii) if a = 16 − r, then r = 10, a = 6, δ = 0.

Proof. By [N1], if r = ρ(X(r,a,δ)) ≤ 8, then X(r,a,δ) does not admit a symplectic involu-
tion.
In order to prove ii) we can assume r > 8 (by i)) and r ≤ 16 (otherwise the implica-
tion is trivial, because a is a non negative integer). Since X(r,a,δ) admits a symplectic
automorphism, there exists a primitive embedding ϕ : E8(2) → NS(X(r,a,δ)). Let

L := ϕ(E8(2))
⊥NS(X(r,a,δ)) , so NS(X(r,a,δ)) is an overlattice of finite index of E8(2) ⊕ L

(we identify E8(2) with its immage ϕ(E8(2))). The rank of L is r − 8. The length of
E8(2)⊕L is 8+l(L). To obtain an overlattice of E8(2)⊕L such that E8(2) is primitively
embedded in it, one has to add divisible classes of type (ei + li)/2, where ei ∈ E8(2),
li ∈ L, ei/2 ∈ E8(2)∨/E8(2) and li/2 ∈ L∨/L. If one adds a divisible class to the lattice
E8(2)⊕L the length of the lattice decreases by two. The maximal number of divisible
classes we can add is l(L) (in fact since r ≤ 16 we get rank(L) ≤ 8, so l(L) ≤ 8), so the
minimal possible length of an overlattice of E8(2) ⊕ L such that E8(2) is primitively
embedded in it, is 8 + l(L) − 2(l(L)) = 8 − l(L). The length of L cannot be greater
then the rank of L, hence 8 − l(L) ≥ 8 − rank(L) = 8 − (r − 8) = 16 − r. Hence if
X(r,a,δ) admits a symplectic involution, r ≥ 9 and a ≥ 16 − r.
To prove iii) we can assume r ≤ 16 (otherwise a is negative but there exists no K3
surface X(r,a,δ) with a negative value of a). Let a = 16 − r. Then the lattice L is
such that rank(L) = l(L), so we can choose a basis of L, {li}i=1,...r−8, such that {li/ni}
are generators of the discriminant group L∨/L. Moreover we are adding exactly r − 8
classes to E8(2) ⊕ L to obtain NS(X(r,a,δ)) (because a = 16 − r, so it is the minimal
possible). Hence there are r − 8 elements in E8(2), called ei, i = 1, . . . r − 8, such that

vi := (ei + li)/2 ∈ NS(X(r,a,δ)).

Since vi ∈ NS(X(r,a,δ)), we have v2
i ∈ 2Z and vivj ∈ Z. Recalling that e2

i ∈ 4Z and
eiej ∈ 2Z we obtain

v2
i =

e2
i + l2i

4
∈ 2Z implies l2i ∈ 4Z and vivj =

eiej + lilj
4

∈ Z implies lilj ∈ 2Z

and so L = M(2) for a certain even lattice M . Since NS(X(r,a,δ)) is a 2-elementary
lattice of length a, |d(NS(X(r,a,δ)))| = 2a = 216−r. The discriminant of the overlattice
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of E8(2) ⊕ L ≃ E8(2) ⊕ M(2) obtained adding the r − 8 classes (ei + li)/2 is (28 ·
2r−8d(M))/22(r−8) = 216−rd(M). So |d(M)| = 1, i.e. M is a unimodular lattice.
Moreover it is clear that M has signature (1, r − 9). This, together with the condition
r ≤ 16, implies that M ≃ U , r = 10 and hence a = 6. Let us now compute the
discriminant form of NS(X(r,a,δ)). We recall that it is an overlattice of (E8 ⊕ U)(2).
The discriminant group of NS(X(r,a,δ)) is generated by a linear combination, with
integer coefficients, of the elements generating the discriminant group of (E8 ⊕ U)(2).
Since the discriminant quadratic form of (E8⊕U)(2) takes values in Z, the discriminant
quadratic form of NS(X(r,a,δ)) takes value in Z too, so δ = 0. �

Proposition 3.2. i) If X(r,a,1) admits a symplectic involution and the surface X(r+1,a+1,1)

exists, then it admits also a symplectic involution.
ii) If X(r,a,1) admits a symplectic involution and the surface X(r+1,a−1,1) exists, then it
admits also a symplectic involution.

Proof. A K3 surface W admits a symplectic involution if and only if E8(2) is primitively
embedded in NS(W ) or, equivalently, if and only if its transcendental lattice TW is
primitively embedded in E8(2) ⊕ U ⊕ U ⊕ U ≃ E8(2)⊥ΛK3 . By the assumptions on
X(r,a,1), E8(2) is primitively embedded in NS(X(r,a,1)) ≃ S(r,a,1).
The lattice S(r,a,1) ⊕ 〈−2〉 is an even 2-elementary lattice with invariant r′ = r + 1,
a′ = a+1, δ = 1 and its signature is (1, r′−1). These data identify uniquely its isometry
class and so we have that S(r,a,1) ⊕ 〈−2〉 ≃ S(r+1,a+1,1). Since E8(2) is primitively
embedded in S(r,a,1), it is also primitively embedded in S(r+1,a+1,1). This proves that
X(r+1,a+1,1) admits a symplectic automorphism.
Let T(r,a,1) := TX(r,a,1)

(observe that it is well defined since, by the Theorem 2.3, T(r,a,1)

is uniquely determined by (r, a, 1)), we observe that rank(T(r,a,1)) = 22 − r and the
length of T(r,a,1) is a. By the assumptions on X(r,a,1), the lattice T(r,a,1) is primitively
embedded in E8(2)⊕U⊕U⊕U . Let us consider the 2-elementary even lattice T(r+1,a−1,1),
identified by the data rank(T(r+1,a−1,1)) = 21 − r, l(T(r+1,a−1,1)) = a − 1 , δ = 1 and
signature (2, 19 − r). It is clearly isometric to the transcendental lattice of the K3
surface X(r+1,a−1,1). We have T(r,a,1) ≃ T(r+1,a−1,1) ⊕ 〈−2〉. Since T(r,a,1) is primitively
embedded in E8(2) ⊕ U ⊕ U ⊕ U , the lattice T(r+1,a−1,1) is primitively embedded in
E8(2) ⊕ U ⊕ U ⊕ U , hence X(r+1,a−1,1) admits a symplectic involution. �

Remark 3.1. Let X(r,a,δ) be a K3 surface admitting a non–symplectic involution η,
and let Y = X/η. If α is an automorphism of Y which leaves invariant the branch
curve of the double cover X → Y , then α lifts to two automorphisms, α′, α′′, of X
where α′′ = ηα′. Observe that if α is an involution, then the group generated by α′ and
α′′ is isomorphic to Z/2Z×Z/2Z and contains a symplectic involution. In the following
two examples we construct explicitly K3 surfaces with non–symplectic involution η and
quotient surface Y = X/η. In particular in both the examples the automorphism α of
Y has order two. In Example 3.1 the surface Y is P2 and in Example 3.2 the surface
Y is an Enriques surface.

Example 3.1. The case r = 9, a = 9, δ = 1. Let X be a K3 surface with NS(X) ≃
ZL⊕E8(2), and L2 = 2. By [vGS], X admits a symplectic involution ι (indeed there is
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a primitive embedding of E8(2) in NS(X)) and a projective model as double cover of P2

branched along the sextic D6 := V (f6(x1, x2)+ax2
0f4(x1, x2)+bx4

0f2(x1, x2)+x6
0), where

the fd are homogeneous polynomials of degree d in x1, x2. The symplectic involution is
induced by the involution ιP2 : (x0 : x1 : x2) 7→ (−x0 : x1 : x2) of P2 (cf. [vGS]). More
precisely if the equation of X is u2 = f6(x1, x2) + ax2

0f4(x1, x2) + bx4
0f2(x1, x2) + x6

0 in
WP(3, 1, 1, 1), then ι acts on WP(3, 1, 1, 1) as (u : x0 : x1 : x2) → (−u : −x0 : x1 : x2).
The fixed locus of ιP2 is a line, which intersects the sextic in six points pi, i = 1, . . . , 6,
and a point q = (1 : 0 : 0). This induces eight fixed points on X.
The K3 surface X admits also a non–symplectic automorphism ν which is the covering
involution (i.e. it is the restriction to X of (u : x0 : x1 : x2) → (−u : x0 : x1 : x2)).
By construction ι acts as −1 on E8(2) ⊂ NS(X) and as +1 on the polarization L
and on the transcendental lattice. The covering involution ν preserves the class of the
polarization and acts as −1 on its orthogonal complement. Let η be the composition
ν ◦ ι, so it is induced on X by (u : x0 : x1 : x2) → (u : −x0 : x1 : x2). The fixed locus
of η is the genus 2 curve u2 = f6(x1, x2) (the curve in X associated to x0 = 0).
On the lattice ZL ⊕ E8(2) ⊕ TX →֒ H2(X, Z) we have the following action of these
involutions:

ZL⊕ E8(2)⊕ TX

ι +1 −1 +1
ν +1 −1 −1
η +1 +1 −1

The non-symplectic automorphism η acts trivially on the Picard group and hence the
surface X and the involution η gives a model for the general member of the family
of K3 surfaces with a non–symplectic involution η with H2(X, Z)η ≃ 〈2〉 ⊕ E8(2) (or,
which is the same, of the family of K3 surfaces with a non–symplectic involution with
fixed locus a curve of genus 2).
We observe that Fix(ι) 6⊂ Fix(η) and Fix(η) 6⊂ Fix(ι).

Example 3.2. The case r = 10, a = 10, δ = 0. Let us consider a K3 surface X such
that NS(X) ≃ U(2) ⊕ E8(2). It is well known that X admits an Enriques involution,
i.e. a fixed point free involution. It is also clear that E8(2) →֒ NS(X), hence this K3
surface admits also a symplectic involution. In [BPV, Chapter V, Section 23] a 10-
dimensional family of K3 surfaces admitting an Enriques involution is presented. Since
the dimension of the family of K3 surfaces admitting an Enriques involution is 10
dimensional, the generic member of the family described in [BPV, Chapter V, Section
23] is the surface X. It admits a 2:1 map to P1 × P1. Let us consider the involution
ιP1×P1 : ((x0 : x1); (y0 : y1)) → ((x0 : −x1); (y0 : −y1)). It has four isolated fixed points
p1 = ((0 : 1); (0 : 1)), p2 = ((0 : 1); (1 : 0)), p3 = ((1 : 0); (0 : 1)), p4 = ((1 : 0); (1 : 0)).
Let D4,4 be the curve

ax4
0y

4
0 + bx4

0y
2
0y

2
1 + cx4

0y
4
1 + dx2

0x
2
1y

4
0 + ex2

0x
2
1y

2
0y

2
1 + fx2

0x
2
1y

4
1 + gx4

1y
4
0 + hx4

1y
2
0y

2
1 + lx4

1y
4
1

+mx3
0x1y

3
0y1 + nx3

0x1y0y
3
1 + ox0x

3
1y

3
0y1 + px0x

3
1y0y

3
1 = 0,

i.e. the invariant curve under the action of ιP1×P1 . The double cover of P1×P1 branched
along D4,4 is the K3 surface X. As in the previous example one obtains an equation
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of X as u2 = D4,4. The following three involutions act on X:

ι : (u : (x0, x1) : (y0 : y1)) → (u : ιP1×P1((x0 : x1) : (y0 : y1))),
ν : (u : (x0, x1) : (y0 : y1)) → (−u : ((x0 : x1) : (y0 : y1))),

η : (u : (x0, x1) : (y0 : y1)) → (−u : ιP1×P1((x0 : x1) : (y0 : y1))),

where ι is a symplectic automorphism fixing the eight points which are the inverse image
(with respect to the double cover) of the four poits pi, ν is the covering involution and
η is the Enriques involution. We observe that η = ι ◦ ν. On the lattice U(2)⊕E8(2)⊕
TX →֒ H2(X, Z) we have the following action of these involutions:

U(2)⊕ E8(2)⊕ TX

ι +1 −1 +1
ν +1 −1 −1
η +1 +1 −1

The non–symplectic involution η fixes the lattice U(2) ⊕ E8(2) ≃ NS(X).

Example 3.3. The case r = 10, a = 8, δ = 0. Let us consider the K3 surface X
admitting an elliptic fibration with Weierstrass equation y2 = x3 + A(t2)x + B(t2). It
is clear that it admits two non–symplectic involutions: ν : (x, y; t) → (x,−y; t) and
η : (x, y; t) → (x, y;−t). We observe that ν acts only on the fibers and η only on the
basis. The Néron–Severi group of X is isometric to U ⊕ E8(2) and the Mordell–Weil
lattice of the fibration is isometric to E8(2) ([G2]). The involution ν acts as −1 on each
fiber and preserves the class of the fiber and the class of the zero section. In particular
it acts as +1 on the copy of U and as −1 on its orthogonal complement. The involution
η preserves the class of the fiber (it sends fibers to fibers) and the class of each section
(because it acts only on the basis). So η is a non–symplectic involution acting trivially
on the Néron–Severi group. The composition η◦ν is a symplectic automorphism acting
as −1 on E8(2), i.e. on the Mordell–Weil lattice.

Example 3.4. The case r = 10, a = 6, δ = 0. Let us consider the elliptic fibration
with equation y2 = x(x2 + a(t)x + b(t)), with deg(a(t)) = 4 and deg(b(t)) = 8. It
has 8 reducible fibers of type I2 and its Mordell-Weil group is isometric to Z/2Z.
Hence it admits a symplectic automorphism of order 2, which is the translation by
the 2-torsion section. Its Néron–Severi is isometric to U ⊕ N , where N is the Nikulin
lattice (cf. [vGS, Proposition 4.2]). We recall that the Nikulin lattice is a rank 8 even
negative definite lattice and its discriminant form is the same as the discriminant form
of U(2)3. Hence the invariants of the Néron–Severi lattice are r = 10, a = 6, δ = 0,
and it admits a symplectic involution. We observe that it clearly admits also a non–
symplectic involution η : (x, y, t) → (x,−y, t). It acts trivially on the Néron–Severi
group and its fixed locus are two rational curves (the zero section and the 2-torsion
section) and one curve of genus 3, the bisection x2 + a(t)x + b(t) = 0, which is a 2 : 1
cover of P1 branched in the eight zeros of a(t)2 − 4b(t) = 0.

Example 3.5. Elliptic fibration with a 2-torsion section. In the following table
we list certain elliptic K3 surfaces. Each of them is the generic member of a family of K3
surfaces with a non–symplectic involution associated to certain values of (r, a, δ) and the
non–symplectic involution acting trivially on the Néron–Severi group is η : (x, y, t) →
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(x,−y, t) (i.e. it acts as −1 on each smooth fiber of the fibration). Moreover each of
these elliptic K3 surfaces admits a 2-torsion section (cf. [S]), and hence a symplectic
involution, which is the translation by this 2-torsion section (Example 3.4 is a particular
case of this construction). We will denote by k the number of rational curves fixed by
η and by g the genus of the non rational curve fixed by η (the computation of g and k
is similar to the one done in Example 3.4).

(r, a, δ) singular fibers Mordell–Weil lattice k g
(10, 6, 0) 8I2 + 8I1 Z/2Z 2 3
(14, 4, 0) III∗ + 5I2 + 6I1 Z/2Z 5 2
(14, 6, 0) I∗

2 + 6I2 + 4I1 Z/2Z 4 1
(18, 0, 0) I∗

12 + 6I1 Z/2Z 9 2
(18, 2, 0) 2III∗ + 2I2 + 2I1 Z/2Z 8 1
(18, 4, 0) 4I∗

0 Z/2Z 8 −

In both the cases (18, 0, 0) and (18, 2, 0) the symplectic involution is in fact a Morrison–
Nikulin involution, i.e. a symplectic involution switching two copies of E8 in the Néron–
Severi group (cf. [Mo], [vGS]). The elliptic fibration given in case (18, 0, 0) is described
in details in [CD]. The case (18, 2, 0) is a particular member of the family described in
Example 3.2, some of its elliptic fibrations and involutions are described in [HS].

Theorem 3.1. The K3 surface X(r,a,1) admits a symplectic involution if and only if
a > 16 − r.
The K3 surface X(r,a,0) admits a symplectic involution if and only if either a > 16 − r
or a = 6, r = 10.

Proof. By Proposition 3.1, a > 16 − r is a necessary condition to have a symplectic
involution on X(r,a,1). By the Example 3.1 the surface X9,9,1 admits a symplectic
involution. By Proposition 3.2 ii), this implies that X9+k,9−k,1, k = 0, . . . , 9 admits
a symplectic involution. By the Proposition 3.2 i), this implies that X9+k,9+k,1, k =
0, 1, 2 admits a symplectic involution and hence X9+h,9−h,1, X10+h,10−h,1, X11+h,11−h,1,
h = 0, . . . , 9 admit a symplectic involution. This proves the first statement, because
all the acceptable values of r, a such that a > 16 − r are of types X9+k+h,9−k+h,1,
k = 0, . . . , 9, h = 0, 1, 2.
By Proposition 3.1 if X(r,a,0) admits a symplectic automorphism, then a > 16 − r or
a = 6, r = 10. The viceversa is proved in the examples 3.2, 3.3, 3.4, 3.5. �

4. Order three

Theorem 4.1. Let X be a K3 surface with a non–symplectic automorphism of order
3, η, acting trivially on the Néron–Severi group. If rank(NS(X)) := ρ(X) < 14, then
X does not admit a symplectic automorphism of order 3.
The surface X admits a symplectic automorphism of order 3 if and only if the fixed
locus of η consists of n points and n − 3 curves and n ≥ 6.

Proof. The first statement follows from Table 2. In [ArSa] it is proved that the families
of K3 surfaces with a non–symplectic automorphism η of order 3 are identified by
the fixed locus of the automorphism, in particular by the pair (n, k) where n is the
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number of fixed points and k is the number of fixed curves. The families of K3 surfaces
admitting a non–symplectic automorphism η of order 3 such that the rank of the
Néron–Severi group is greater than 14 are the families associated to the pairs (n, n−3),
(m,m − 2) with 6 ≤ n ≤ 9 and 6 ≤ m ≤ 8.
Moreover, it is proved that the generic member of a family of K3 surfaces admitting
such an η with fixed locus (n, n − 3), 6 ≤ n ≤ 9, has transcendental lattice Tn:

T6 := U ⊕ U(3) ⊕ A2
2, T7 := U ⊕ U(3) ⊕ A2, T8 := U ⊕ U(3), T9 := A2(−1).

By Theorem 2.2 it sufficies to show that ΩZ/3Z is primitively embedded in the Néron–
Severi group of the K3 surfaces Xn with transcendental lattice Tn. The lattice ΩZ/3Z and
its orthogonal complement in the K3 lattice ΛK3 are computed in [GS1]. In particular
it is proved that Ω⊥

Z/3Z
≃ U ⊕ U(3)2 ⊕ A2

2 and ΩZ/3Z = K12(−2) (the Coxeter-Todd

lattice of rank 12). Comparing the lattices Ti, i = 6, 7, 8, 9 and Ω⊥

Z/3Z
, one notices that

Ti ⊂ Ω⊥

Z/3Z
, so T⊥

i ⊃ ΩZ/3Z.

Thus the Néron–Severi lattices of the surfaces admitting a non–symplectic automor-
phism with fixed locus (6, 3), (7, 4), (8, 5), (9, 6) contains the lattice ΩZ/3Z and hence
admits a symplectic automorphism of order 3.
The generic member of a family of K3 surfaces admitting such an η with fixed locus
(m,m − 2), 6 ≤ m ≤ 8, has transcendental lattice T ′

m := U ⊕ U ⊕ A8−m
2 . We observe

that T ′

m is primitively embedded in T ′

m−i, i = 1, 2. We show that the unimodular lattice
T ′

8 ≃ U ⊕U is not primitively embedded in U ⊕U(3)2 ⊕A2
2 ≃ (ΩZ/3Z)⊥, indeed assume

the contrary, then there exists a lattice L such that U ⊕U ⊕L ≃ (ΩZ/3Z)⊥. This would
implies that L is a 3-elementary lattice of rank 6, signature (1, 5) and discriminant
group equal to (Z/3Z)6. By Theorem 2.4, there exists no such a lattice, hence T ′

8 is not
primitively embedded in Ω⊥

Z/3Z
. Since T ′

8 is primitively embedded in T ′

7 and T ′

6, also

T ′

7 and T ′

6 cannot be primitively embedded in (ΩZ/3Z)⊥. Thus ΩZ/3Z is not primitively
embedded in the Néron–Severi group of the generic K3 surface with a non–symplectic
automorphism η with fixed locus (m,m − 2), 6 ≤ m ≤ 8. �

In [ArSa] the generic member of the families of K3 surfaces admitting a non–symplectic
automorphism η of order 3 with fixed locus given by n points and n − 3 curves is de-
scribed as an isotrivial elliptic fibration. In [GvG] the generic member of such families
with 6 ≤ n ≤ 9 is described by a different isotrivial elliptic fibration. Here we con-
sider the description given in [GvG] and we show that the generic member of these
families also admits a symplectic automorphism of order 3. Moreover, since the non–
symplectic automorphism and the symplectic automorphism commute we obtain that
their composition is a non–symplectic automorphism of order three on the surface. We
will analyze it later.
Let us consider now the K3 surface Sf admitting an elliptic fibration with equation

Sf : y2w = x3 + f 2
6 (τ)w3, τ ∈ C(5)

where f6(τ) is a polynomial of degree three with at most double zeros. In [GvG] it is
proved that these surfaces can be obtained by a quotient of the product surface Eζ×Cf

by an automorphism of order three, where Cf is a curve with equation z3 = f6(τ) and
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Eζ is the elliptic curve with equation v2 = u3 + 1.
The surfaces Sf clearly admits the non–symplectic automorphism of order three

η : (x : y : w; t) 7→ (ζx : y : w; t).

By the equation of the elliptic fibration it is clear that it admits always the following
sections

s : τ 7→ (0 : 1 : 0; τ), t1 : τ 7→ (0 : f6(τ) : 1; τ) t2 : τ 7→ (0 : −f6(τ) : 1; τ).

The sections t1 and t2 are 3-torsion sections, indeed for a fixed value τ of τ they
correspond to inflectional points of the elliptic curve y2w = x3 + f 2

6 (τ)w3. This implies
that the K3 surface Sf admits a symplectic automorphism σ of order three induced by
the translation by the section t1 (cf. [GS2]). Hence these K3 surfaces admit both a
non–symplectic automorphism and a symplectic automorphism of order three.

4.1. Fixed locus (6, 3). Let us assume that f6(τ) has six zeros of multiplicity one.
Up to projectivity, one can assume that three of the zeros of f6(τ) are in 0, 1 and ∞,
so the elliptic fibration on Sf is

E6 : y2 = x3 + τ 2(τ − 1)2(τ − λ1)
2(τ − λ2)

2(τ − λ3)
2.

We observe that this family has three moduli. The singular fibers are six fibers of type
IV (i.e. three rational curves meeting in one point). The sections s, t1 and t2 meet the
singular fibers in different components. Let us denote by Cj

i , i = 0, 1, 2 the rational

components of the j-th singular fibers with Cj
0 · s = 1, Cj

1 · t1 = 1, Cj
2 · t2 = 1.

The non-symplectic automorphism η fixes the sections s, t1, t2 (since it fixes the base of
the fibration). Moreover since the curves in the fixed locus of η are smooth and disjoint
(cf. [ArSa]) η can not fix the components of the reducible fibers, because they meet the
sections, but the curves Cj

i are invariant under η and so η has two fixed points on each

of them. One is the intersection between the curves Cj
i and the sections, the other is

the intersection point of the three rational curves Cj
i in the same reducible fiber.

Summing up the fixed locus of η is made up of three rational curves (s, t1, t2) and six
isolated points (the singular points of the six fibers of type IV ). Hence the family of
K3 surfaces admitting the fibration E6 is a (sub)family of the family of K3 surfaces ad-
mitting a non–symplectic automorphism of order three with fixed locus of type (6, 3).
The dimension of that family is three (cf. [ArSa]) and the dimension of the family of
K3 surfaces with equation E6 is 3 too, hence these two families coincide. In fact the
moduli space M6,3 is irreducible as shown in [ArSa].

The symplectic automorphism σ acts as a translation by the three torsion section. In
particular it preserves the fiber of the fibration and acts on the sections and on the
components of the reducible fibers in the following way:

s 7→ t1 7→ t2, Cj
0 7→ Cj

1 7→ Cj
2 , j = 1, 2, 3, 4, 5, 6.

Clearly, it fixes the singular point of the reducible fibers, and this is exactly Fix(σ)
since a symplectic automorphism of order three on a K3 surface fixes exactly 6 isolated
points (cf. [N1]).
In particular we observe that Fix(σ) ⊂ Fix(η) and the isolated fixed points of η are
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exactly the same as the isolated fixed points of σ.

Let us now consider the automorphism η ◦σ, which is a non–symplectic automorphism
of order 3.
By [ST, pp. 29–31], σ acts in the following way, if xP 6= 0:

σ(xP : yP : 1; τ) =
(

(yP−f6(τ))2−x3
P

x2
P

:
(

yP−f6(τ)
xP

) [

xP − (yP−f6(τ))2

x2
P

]

− f6(τ) : 1; τ
)

.

If xP is zero, then we obtain the sections s, t1 and t2 and we described before the action
on them. Finally we obtain

(η ◦ σ)(xP : yP : 1; τ) =
(

ζ
(yP−f6(τ))2−x3

P

x2
P

:
(

yP−f6(τ)
xP

) [

xP − (yP−f6(τ))2

x2
P

]

− f6(τ) : 1; τ
)

.

One can directly check that this automorphism fixes the curve C : x3 = −4f6(τ)2.
This curve is a 3-section for the fibration. Since C is a 3:1 cover of P1 totally ramified
over the zeros of f6(τ), by the Riemann-Hurwitz formula we obtain that g(C) = 4. No
curves of the singular fibers are fixed by η ◦ σ (indeed they are not invariant under σ
and they are invariant under η), so in the fixed locus of η ◦ σ there is only one curve,
i.e. C, and this curve has to meet the singular fibers in their singular point (C can
not meet one component of the fiber in a point which is not on the other components,
because the components Cj

i are not invariant under η ◦ σ). So the non–symplectic
automorphism η ◦ σ of order three has fixed locus of type (0, 1) and the fixed curve
is of genus 4. In particular this implies that the family of K3 surfaces admitting a
non–symplectic automorphism of order 3 with fixed locus (6, 3) is a subfamily of the
family of the K3 surfaces admitting a non-symplectic automorphism of order 3 with
fixed locus (0, 1). This can be directly checked comparing the transcendental lattices
of the generic member of these two families, c.f. [ArSa]. One can prove similarly that
η2 ◦ σ is a non–symplectic automorphism of order 3 with fixed locus (0, 1) too.

4.2. The other cases. In the following table we give the results obtained for different
choices of the polynomial f6 (they can be proved as in case (6, 3)). In all the cases the
curves fixed by η are rational curves, the points fixed by σ are isolated fixed points also
of η and the curve fixed by η ◦ σ is the trisection x3 = −4f6(τ)2.

f6(τ) Singular fibers Fixed locus η Fixed locus η ◦ σ
τ 2(τ − 1)2(τ − λ1)

2(τ − λ2)
2(τ − λ3) 6IV (6, 3) (0, 1)

τ 2(τ − 1)2(τ − λ1)
2(τ − λ2)

2 4IV + IV ∗ (7, 4) (1, 1)
τ 2(τ − 1)4(τ − λ1)

4 2IV + 2IV ∗ (8, 5) (2, 1)
τ 4(τ − 1)4 3IV ∗ (9, 6) (3, 1)

(6)

5. Order five

Theorem 5.1. The generic members of the families of K3 surfaces with a non–
symplectic automorphism of order 5 cannot admit a symplectic automorphism of order
5.
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Proof. By Table 2 the generic member (in the sense given in the introduction) of a
family of K3 surfaces admitting both a symplectic and a non–symplectic automorphism
of order 5 has a the transcendental lattice of rank 4. By [AST] this implies that the
transcendental lattice of the generic member of the family is isometric to U ⊕ H5,

where H5 ≃

[

2 1
1 −2

]

. If there exists a primitive embedding of U ⊕H5 in U ⊕U(5)⊕

U(5) ≃ (ΩZ/5Z)⊥, then there exists a rank 2 sublattice M of U ⊕U(5)⊕U(5) such that
U ⊕H5⊕M is an overlattice of finite index of U ⊕U(5)⊕U(5). In particular the length
l of the discriminant group of U ⊕ H5 ⊕ M has to be greater or equal to the length m
of U ⊕U(5)⊕U(5). The discriminant group of U ⊕U(5)⊕U(5) is (Z/5Z)4, so m = 4.
The discriminant group of U ⊕H5 is Z/5Z and the length of M is at most its rank, i.e.
2, so l ≤ 3. Hence there exists no pimitive embedding of U ⊕H5 in U ⊕ U(5)⊕ U(5) .
�

Clearly the previous proposition does not implies that there exist no K3 surfaces with
both a non–symplectic and a symplectic automorphism of order 5, but that if there
exists such a K3 surface, it is not the generic member of a family of K3 surfaces
with a non–symplectic automorphism. The following example proves that there exist
K3 surfaces with both symplectic and non–symplectic automorphism of order 5. By
Table 2 we know that these K3 surfaces are rigid and the rank of their transcendental
lattice is 4. In the previous sections we constructed K3 surfaces admitting a non-
symplectic automorphism of order p = 2, 3 and a symplectic automorphism of the same
order commuting with the non-symplectic one. To construct the following example we
again require that the non-symplectic automorphism and the symplectic automorphism
commute.

Example 5.1. The generic member of a family of K3 surfaces with a non–symplectic
automorphism of order 5 with four isolated fixed points as fixed locus, is a double cover
of the plane ramified over a sextic C in the family C:

a1x
6
0 + a2x

3
0x1x

2
2 + a3x

2
0x

3
1x2 + x0(a4x

5
1 + a5x

5
2) + a6x

2
1x

4
2 = 0

and the non-symplectic automorphism η is induced by the automorphism of P2

η̄(x0 : x1 : x2) = (x0 : ζx1 : ζ2x2).

This preserves each sextic in C. The generic sextic is smooth and Fix(η̄) = {(1 : 0 :
0), (0 : 1 : 0), (0 : 0 : 1)}, since two points are on the sextic, Fix(η) consists of exactly
four distinct points. The automorphisms of order 5 of P2 preserving the sextic and
commuting with η̄ are (x0 : x1 : x2) 7→ (ζax0 : ζbx1 : ζcx2).
To obtain a symplectic automorphism we consider those authomorphisms with ζa, ζb, ζc

equal to permutations of 1, ζ, ζ4 leaving invariant some sextic in the family. The only
possibility is σ̄ : (x0 : x1 : x2) 7→ (x0 : ζx1 : ζ4x2) and we obtain the family:

x0(a1x
5
0 + a4x

5
1 + a5x

5
2) = 0.

The automorphisms of P2 commuting with σ̄ are only diagonal matrices, hence we
obtain a number of parameters equal to zero, as expected. In fact there are three
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possibilities for the branch sextic (not isomorphic to eachother):

x0(x
5
1 + x5

2 + x5
0) = 0

x0(x
5
1 + x5

2) = 0
x0(x

5
0 + x5

1) = 0
x6

0 = 0

The last one is a multiple line, so the double cover is not a K3 surface. The second
case are six lines: five meeting at (1 : 0 : 0) and one line not passing through this point.
The third case are six lines meeting at (0 : 0 : 1). The double cover in these cases is
not a K3 surface (the singularity is not simple). There remains only one case. Hence
the K3 surface S is a double cover of P2 branched over the sextic

x0(x
5
1 + x5

2 + x5
0) = 0,

which admits both a symplectic automorphism σ induced by σ̄ and a non–symplectic
automorphism of order 5. The K3 surface S admits also other non–symplectic auto-
morphisms of order 5:
• ν, induced by the automorphism ν̄ : (x0 : x1 : x2) 7→ (x0 : ζx1 : x2) of P2, it fixes a
curve of genus 2 (the pullback of the line x1 = 0) and a fixed point (the pullback of
the point (0 : 1 : 0));
• µ induced by µ̄ : (x0 : x1 : x2) 7→ (ζx0 : x1 : x2), it fixes one rational curve (the pull
back of the line x0 = 0, which is contained in the branch locus) and 5 points (on the
exceptional curve of the blow up of the singular points of the branch curves).

Remark 5.1. The moduli space of K3 surfaces admitting a non–symplectic automor-
phism of order 5 has two irreducible components, corresponding to K3 surfaces with a
non–symplectic automorphism of order 5 fixing only isolated points or fixing at least
one curve. The K3 surface S is in the intersection of these two components, indeed
it admits a non–symplectic automorphism η of order 5 fixing only isolated points and
non–symplectic automorphisms ν and µ, of order 5, fixing at least one curve.

Remark 5.2. Observe that the symplectic automorphism σ and the non–symplectic
automorphism η fix the same four points. This is a consequence of Lemma 2.1.

6. Order four

By Table 2, if a K3 surface admits both a symplectic and a non–symplectic auto-
morphism of order 4, the rank of its transcendental lattice is 6, 4, 2. Each of these
transcendental lattices correspond to the generic member of a family of K3 surfaces
admitting a non–symplectic automorphism of order 4, and the dimension of these fam-
ilies is respectively 2, 1, 0. We denote these families by M2, M1 and M0 respectively.

Theorem 6.1. The generic member of the family M2 does not admit a symplectic
automorphism of order 4.

Proof. Let S be the generic member in the family M2 and η be the non-symplectic
automorphism of order 4. It acts on the transcendental lattice with eigenvalues i and
−i and on the Néron–Severi group with eigenvalues 1 and −1 (cf. [N1]). Thus η2 acts
on the transcendental lattice with eigenvalue −1 and on the Néron–Severi lattice with
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eigenvalue 1. This implies that TS is a 2-elementary lattice. Suppose that S admits
also a symplectic automorphism of order 4. Then TS ⊂ (ΩZ/4Z)⊥. The discriminant
group of Ω⊥

Z/4Z
is (Z/2Z)2 × (Z/4Z)4 and its rank is 8 (cf. [GS2]). If TS admits a

primitive embedding in Ω⊥

Z/4Z
, then there exists a rank 2 lattice L such that Ω⊥

Z/4Z
is

an overlattice of finite index of TS ⊕ L. The length of Ω⊥

Z/4Z
over Z/4Z is 4, but the

length of TS ⊕ L over Z/4Z is at most two, TS being a 2-elementary lattice and L
a lattice of rank 2. Hence it is impossible to find a lattice L such that Ω⊥

Z/4Z
is an

overlattice of finite index of TS ⊕L, thus the general member of a 2-dimensional family
of K3 surfaces admitting a non–symplectic automorphism of order 4 does not admit a
symplectic automorphism of order 4. �

Proposition 6.1. The K3 surface in the zero dimensional family of K3 surfaces admit-
ting a non–symplectic automorphism of order 4, whose square fixes ten rational curves,
admits a symplectic automorphism of order 4.

Proof. There exists only one family of K3 surface admitting a non–symplectic involution
fixing 10 rational curves, this family is rigid and its transcendental lattice is 〈2〉2. A
model for this K3 surface is given in [V]: it is a 4 : 1 cover of P2 branched along four
lines, so up to a choice of coordinates on P2, it has an equation of type

w4 = xy(x − z)(y − z).

The cover automorphism is the non–symplectic automorphism of order 4 whose square
fixes ten rational curves (cf. [G3]) . The automorphism of P2 given by (x : y : z) 7→
(x−z : x : x−y) preserves the branch locus of the 4 : 1 cover (permuting the lines) and
induces the automorphism of the surface (w : x : y : z) 7→ (w : x− z : x : x− y). It is a
symplectic automorphism (this can be shown computing the action on the holomorphic
2–form). �

Remark 6.1. The full automorphisms group of the surface in Proposition 6.1 is com-
puted in [V].

Example 6.1. Let us now consider the family of elliptic K3 surfaces:

E4 : wy2 = x3 + xw2(at8 + bt4 + c).

We observe that this elliptic fibration has a 2-torsion section t 7→ (0 : 0 : 1; t) and 8
fibers of type III (i.e. two tangent rational curves) over the zeros of at8 + bt4 + c.
Moreover we observe that this elliptic fibration is isotrivial and the generic fiber is
isomorphic to the elliptic curve v2 = u3 + u which admits an automorphism of order 4
with two fixed points.
It is easy to see that one can assume that a = c = 1 (it is enough to consider the
transformation (y, x) 7→ (λ3y, λ2x) and to divide by λ6 to put one of the parameters
equal to one and then to consider a projective transformation of P1 to put the other
parameters equal to one), hence this family is 1–dimensional. It admits the dihedral
group D4 of order 8 as group of symplectic automorphisms (cf. [G2]) which is generated
by:

σ4 : (x : y : w; t) 7→ (−x : −iy : w; it) ς2 : (x : y : w; t) 7→ (
x

t4
: −

y

t6
: w;

1

t
).
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In particular this implies that NS(E4) contains primitively the lattice U ⊕ΩD4 , where
U is generated by the classes of the fiber and of the zero section of the fibration, which
are invariant classes for the action of σ4 and ς2. Hence rank(NS(E4)) ≥ rank(U) +
rank(ΩZ/4Z) = 2 + 15 and rank(TX4) ≤ 5. Since the family X4 is a one dimensional
family, we deduce that rank(TE4) = 4. The K3 surface X4 clearly admits the non–
symplectic automorphism of order four

η : (x : y : w; t) 7→ (−x : iy : w; t).

The automorphisms η and σ4 commute, hence their composition is a non–symplectic
automorphism of order 4. The automorphism σ4 fixes two points (t = 0, t = ∞) on the
base. The fibers over these points are smooth. It is easy to see that σ4 has two fixed
points on each of these two elliptic curves and the automorphism σ2

4 fixes four points
on each of them. The automorphism ς2 has eight fixed points, four on the elliptic curve
over t = 1 and four on the elliptic curve over t = −1.
By using standard arguments on elliptic fibrations on K3 surfaces we can compute the
fixed locus of the order 4 non–symplectic automorphisms obtained by the composition
of the automorphisms described before. We resume the fixed loci in the following table.
In particular n4 is the number of the isolated fixed points of the automorphism of order
4, k4 (resp. k2) is the number of rational curves fixed by the automorphism of order
4 (resp. by its square), g4 (resp. g2) is the genus of the non rational curve(s) fixed by
the automorphism of order 4 (resp. by its square), r2 is the number of curves of genus
g2 fixed by the square of the automorphism.

automorphisms n4 k4 g4 k2 g2 r2

η 8 2 − 2 3 1
η ◦ σ4, η ◦ σ3

4 4 0 1 0 1 2
η ◦ σ2

4, η ◦ ς2, η ◦ ς2 ◦ σi
4, i = 1, 2 4 0 − 2 3 1

7. Order six

We recall that a K3 surface admits a non–symplectic automorphism of order 6 if and
only if it admits a non–symplectic automorphism of order 3 (cf. [D]). We have the
following

Theorem 7.1. Let X be a generic K3 surface with a non–symplectic automorphism
of order 3. Then X does not admit a symplectic automorphism of order 6.

Proof. If X admits a symplectic automorphism of order 6, σ6, then it admits also a
symplectic automorphism, σ2

6, of order 3. By Theorem 4.1, X must be in the families
of K3 surfaces admitting a non–symplectic automorphism of order 3 with fixed locus
(n, n − 3), for 6 ≤ n ≤ 9.
Observe that to prove the theorem it is enough to show that ΩZ/6Z is not contained in
U ⊕E2

8 ⊕A2, which is the Néron–Severi group of the generic K3 surface S admitting a
non–symplectic automorphism of order 3 with fixed locus (9, 6). Assume the contrary:
if S admits a symplectic automorphism of order 6, then ΩZ/6Z is primitively embedded
in U ⊕ E2

8 ⊕ A2. Arguing (as in proof of Propostion 3.1) on the length and on the
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rank of these two lattices one obtains that there is no primitive embedding of ΩZ/6Z in
U ⊕ E2

8 ⊕ A2. �

It is however possible that there exist families of K3 surfaces admitting both a sym-
plectic and a non–symplectic automorphism of order 6 and by Table 2 these families
have at most dimension 1. Here we provide an example of such a family. We recall
that the moduli space of the K3 surfaces admitting a non–symplectic automorphism
of order 3 (and hence of order 6) has 3 irreducible components M0, M1, M2, where
Mj is the family of K3 surfaces admitting a non–symplectic automorphism of order 3
fixing j curves (cf. [ArSa]). Moreover we recall that the rank of the transcendental lat-
tice of a K3 surface admitting both a symplectic and a non–symplectic automorphism
is at most 4. Here we construct a 1-dimensional family of K3 surfaces with both a
symplectic and a non–symplectic automorphism of order 6. This family is a subfamily
of M1 and M2.

Example 7.1. Let E6 be the family of K3 surfaces

E6 : y2w = x3 + (at12 + bt6 + c)w3.

We observe that this elliptic fibration has 12 fibers of type II (i.e. a cuspidal rational
curve) over the zeros of (at12 + bt6 + c), that it is isotrivial and the generic fiber is
isomorphic to the elliptic curve v2 = u3 + 1 which admits an automorphism of order 3
with three fixed points. It is easy to see that one can assume that a = c = 1. So this
family depends on one parameter. In particular this implies that rank(TE6) = 4.
It admits the symplectic automorphisms (cf. [G2])

σ6 : (x : y : w; t) 7→ (ζ2
6x : −y : w; ζ6t), ς2 : (x : y : w; t) 7→ (

x

t4
: −

y

t6
: w;

1

t
).

Moreover it clearly admits the non–symplectic automorphisms

η : (x : y : w; t) 7→ (ζ2
6x,−y : w; t)

and

ν : (x : y : w; t) → (x : y : w; ζ6t).

The automorphism η and σ commute, hence their composition is a non–symplectic
automorphisms of order 6, in particular ν = η5 ◦ σ6. The automorphism σ6, σ2

6 and σ3
6

fix each the points t = 0, t = ∞ on the basis of the fibration. The fibers over these
points are smooth and the automorphisms fix 2, 6 respectively 8 points on them. The
automorphism ς2 has eight fixed points, four on the elliptic curve over t = 1 and four
on the elliptic curve over t = −1.

By using standard arguments on elliptic fibrations, we compute the fixed locus of the
order 6 non–symplectic automorphisms obtained by the composition of the automor-
phisms described before. We resume the fixed loci in the table below. We denote by
n6 the number of the isolated fixed points of the automorphism of order 6, by k6 (resp.
k3, k2) the number of rational curves fixed by the automorphism of order 6 (resp. by
its square, by its cube), by g6 (resp. g3, g2) the genus of the non rational curve(s) fixed
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by the automorphism of order 6 (resp. by its square, by its cube), by r2 the number of
curves of genus g2 fixed by the cube of the automorphism.

automorphisms n6 k6 g6 n3 k3 g3 k2 g2 r2

η, ν ◦ σ5
6 = η5 12 1 − 0 1 5 1 10 1

ν = η5 ◦ σ6, η ◦ σ6 3 0 1 3 0 1 0 1 2

η ◦ σ2j
6 , j = 1, 2, ν ◦ σi

6, i = 1, 3, 4 5 0 − 3 0 1 1 10 1
η ◦ σ3

6, ν ◦ σ2
6, ς2 ◦ η, ς2 ◦ η5, ς2 ◦ ν, ς2 ◦ ν5 6 0 − 0 1 5 0 1 2

We observe that the automorphisms ηj ◦ σh for h = 1, . . . , 5, j = 2, 3, 4 are not purely
non–symplectic.
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