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Abstract. In this paper, we consider a stochastic anisotropic model for
trabecular bone x-ray images. In [1], a fractal analysis based on isotropic
Fractional Brownian Fields was proposed to characterize bone microar-
chitecture. However anisotropy measurement is of special interest for the
diagnosis of osteoporosis [7]. We propose to model trabecular bone radio-
graphs by operator scaling Gaussian random fields which are anisotropic
generalizations of the Fractional Brownian Field. We construct consis-
tent estimators for these models and apply them on trabecular bone
x-ray images. Our first results suggest that these models are relevant for
this modeling.

1 Introduction

Texture analysis is a challenging issue of Image Processing, which is often raised
in medical applications. There are several types of texture approaches. Among
stochastic approaches, fractal analysis has been largely used in medical applica-
tions [1, 7, 8, 10]. The stochastic model beyond fractal analysis is the fractional
Brownian field (FBF) which is a multi-dimensional extension of the famous frac-
tional Brownian motion implicitly introduced in [17] and defined in [19]. This
field is mathematically defined as the unique centered Gaussian field, null at
0 almost surely, with stationary increments, isotropic, and self-similar of order
H ∈ (0, 1). Its variogram is of the form v(x) = CH |x|2H , ∀x ∈ R

2, with | · |
the Euclidean norm. Parameter H , called the Hurst index, is a fundamental pa-
rameter which is an indicator of texture roughness and is directly related to the
fractal dimension of the graph sample paths.

FBF was used for the characterization and classification of mammogram
density [8], the study of lesion detectability in mammogram textures [12], and
the assessment of breast cancer risk [8, 13]. Fractal analysis has also been used
for the radiographic characterization of bone architecture and the evaluation of
osteoporotic fracture risk [1]. However, it is well-established that the anisotropy
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of the bone is an important predictor of fracture risk [7]. Hence fractal analysis
with fractional Brownian fields (FBF), which are isotropic by definition, is not
completely satisfactory for this medical application. In this paper, our aim is
to propose a suitable model which accounts properly for the anisotropy of bone
radiograph textures.

The study of random field anisotropy is a wide field of research in the Prob-
ability Theory. It covers numerous open issues related to the definition and the
analysis of anisotropy, the estimation of anisotropic model parameters, and the
simulation of anisotropic fields [4, 3, 6, 11, 20]. In [6], A. Bonami and A. Estrade
set a generic framework in which it is possible to define numerous types of
anisotropic fields. This framework gathers centered Gaussian fields with station-
ary increments {X(x) ; x ∈ R

d}, null at 0 almost surely, whose variogram v is
characterized by a positive even measurable function f satisfying the relation

∀ x ∈ R
d, v(x) = E

(
X(x)2

)
=

∫

Rd

∣∣eix·ζ − 1
∣∣2 f(ζ)dζ (1)

and the condition
∫

Rd

(
1 ∧ |ζ|2

)
f(ζ)dζ < ∞. Within this framework, a field is

isotropic whenever the so-called spectral density f of the field is radial, and
anisotropic when f depends on the direction arg(ζ) of ζ.

In [4, 5], we studied 2-dimensional Gaussian fields with spectral density of
the form

∀ ζ ∈ R
2, f(ζ) = |ζ|−2h(arg(ζ))−2, (2)

where h is a measurable π-periodic function with range [H,M ] ⊂ (0, 1) where
H = essinf [−π,π)h and M = esssup [−π,π)h. These fields extend FBF, which
are obtained when the function h is almost everywhere constant and equal to
the Hurst index H . When h is not constant, the function h depends on the
orientation and, consequently, the corresponding field is anisotropic. Another
extension of FBF, called operator scaling Gaussian random fields [3], can be
obtained by taking spectral densities of the form

∀c > 0, ∀ζ ∈ R
2 , f(cEζ) = c−2−tr(E)f(ζ), (3)

for some real 2 × 2 matrix E. The spectral density of an FBF with Hurst index
H ∈ (0, 1), given by f(ζ) = |ζ|−2H−2, for ζ ∈ R

2, satisfies (3) for E = I2/H
with I2 the identity matrix. In such a model, the anisotropy is characterized by
the 2 × 2 parameters of the matrix E.

In this paper, we focus on a particular class of 2-dimensional operator scaling
field for which E is a diagonal matrix. More precisely, we consider 2 dimensional
Gaussian fields with spectral density of the form

∀ ζ = (ζ1, ζ2) ∈ R
2, f(ζ) =

(
ζ2
1 + ζ2a

2

)−β
, (4)

where β = H1 + (1 + 1/a)/2 and a = H2/H1 for some 0 < H1 ≤ H2 < 1. Then
f satisfies (3) for E = diag(1/H1, 1/H2) and 2 dimensional FBFs are obtained
when H2 = H1, which gives the Hurst index. When H1 6= H2 the corresponding
field is anisotropic.



There are several ways to analyze the anisotropy of a field. One simple way
consists of characterizing the Hölder regularity of rectrictions of the field along
oriented lines. However, it was shown that the directional regularity (the regular-
ity of these line restrictions) of any 2-parameter Gaussian random field obtained
from (1) is constant, except in at most one direction where it can be larger [11].
In particular, the directional regularity of field model (2) is the same whatever
the direction. Hence, the anisotropy of such a model cannot be characterized
using line restrictions. For such a model, one can rather study the regularity of
windowed Radon transforms [6].

In this paper, we show that fields defined by (4) can have a privileged direc-
tion where line restrictions are more regular than in other directions. We also
propose some techniques for the estimation of parameters H1 and H2. Estima-
tors are constructed using line restrictions and following principles of generalized
quadratic variations. Finally, adapting results shown in [4], we prove the conver-
gence of these estimators.

In collaboration with L. Benhamou and M. Rachidi (INSERM U658, Orleans,
France) [5], we studied trabecular bone x-ray images. After some preliminary
experiments, we came to the conclusion that model (2) was not suitable for the
modeling of these images. Due to trabecular structures of the bone, these images
have a privileged direction which is detectable from the analysis of line regularity.
Such a situation is analogous to the one of sedimentary aquifers whose scaling
properties vary according to directions and which were successfully modeled by
operator scaling fields [2]. In this paper, we present some preliminary experiments
suggesting the adequacy of model (4) to bone radiograph textures.

In Section 2, we recall main properties of operator scaling fields and con-
struct consistent estimators for H1 and H2. In Section 3, we present results
of estimation on trabecular bone x-ray images, which suggest adequacy to this
modeling.

2 Main properties

Let X be a Gaussian field with spectral density (GFSD) on R
2 given by (4)

for 0 < H1 ≤ H2 < 1. Let us denote E the diagonal 2 × 2 matrix E =
diag(1/H1, 1/H2). We note q = tr(E) and remark that

q = 1/H1 + 1/H2 = (1 + 1/a)/H1,

with a = H2/H1 ≥ 1 such that β = H1 (1 + q/2).

2.1 Operator scaling property

Let us define ψ(ζ) =
(
ζ2
1 + ζ2a

2

)H1/2
, for ζ ∈ R

2, such that ψ is continuous on
R

2 with positive values on R
d

r {0} and satisfies ψ(0) = 0 and ψ(cEζ) = cψ(ζ)

for all c > 0, where cE is the exponential matrix cE =
∑

n∈N

ln(c)n

n!
En. According



to Theorem 4. 1 of [3], the random field X is a Harmonizable operator scaling
Gaussian field with respect to E (since E = Et):

∀c > 0,
{
X(cEx);x ∈ R

2
} fdd

=
{
cX(x);x ∈ R

2
}
,

where
fdd
= means equality for finite dimensional distributions. The operator scal-

ing property is an anisotropic generalization of the well-known self-similarity
property.
In particular, for H1 = H2, the random field X is self-similar of order H =
min(H1, H2), which means that

∀c > 0,
{
X(cx);x ∈ R

2
} fdd

=
{
cHX(x);x ∈ R

2
}
, ∀c > 0.

Moreover, in this case, the spectral density is a radial function, which implies
that X is isotropic. Being Gaussian, with stationary increments, null at point
zero almost surely, self-similar of order H and isotropic is enough to conclude
that X is the famous FBF of Hurst index H . Then, any restriction along straight
lines

Xθ,x0
= {X(x0 + tθ) −X(x0) ; t ∈ R}, (5)

for a point x0 ∈ R
2 and a unit vector θ = (θ1, θ2), will also be a fractional

Brownian motion (1 dimensional process) of index H .
When H1 6= H2, the stationarity of increments and the operator scaling property
with respect to the diagonal matrix E lead to the fact that for any x0 ∈ R

2,
processes Xθ,x0

are fractional Brownian motion of index H1 when θ2 = 0 and
H2 when θ1 = 0. Note that in any other direction θ with θ1 6= 0 and θ2 6= 0,
processes Xθ,x0

are not self-similar. Therefore self-similarity parameters are too
restrictive to characterize those processes. However, these parameters considered
at small scales, are closely linked to Hölder regularity index as we will see in the
next section.

2.2 Regularity

Using Kolmogorov-Centsov criterion [15], one can prove that H = min(H1, H2)
is the critical Hölder exponent of X . This means that for any α ∈ (0, H), sample
paths of X satisfy a uniform Hölder condition of order α on [−T, T ]d, for any
T > 0: there exists a positive random variable A with P(A < +∞) = 1 such that

∀x, y ∈ [−T, T ]d, |X(x) −X(y)| ≤ A|x− y|α; (6)

while for any α ∈ (H, 1), almost surely the sample paths of X fail to satisfy
any uniform Hölder condition of order α. We refer to Theorem 5.4 of [3] for the
proof of this result. Actually, global Hölder regularity H does not capture the
anisotropy of the field. Therefore one can study regularity properties of the field
along straight lines, considering critical Hölder exponent of processes defined by
(5). This will provide some additional directional regularity information. Note
that when X has stationary increments, the Hölder regularity of the process
Xθ,x0

will not depend on point x0 ∈ R
2 so one only has to study the regularity

of {X(tθ) ; t ∈ R} for all directions θ. Let us recall Definition 6 of [6].



Definition 1. Let {X(x);x ∈ R
d} with stationary increments and let θ be any

direction of the unit sphere. If the process {X(tθ); t ∈ R} has Hölder critical
exponent γ(θ) we say that X admits γ(θ) as directional regularity in direction θ.

Note that ifX is a GFSD given by f , for any direction θ, the process {X(tθ); t ∈ R}
is still a Gaussian process with spectral density given by the Radon transform
of f , namely,

∀p ∈ R, Tθf(p) =

∫

R

f(pθ + sθ⊥)ds, (7)

where (θ, θ⊥) is an orthonormal basis of R
2. It is well known that the asymptotic

behavior of the spectral density determines the Hölder regularity of the process,
as we recall in the sequel. Let us first introduce some notations. For any H ∈
(0, 1), we note f(ξ) ≍+∞ |ξ|−2H−1, if f satisfies: for any ε > 0 there exists
A,B1, B2 > 0 such that for almost all ξ ∈ R,

|ξ| ≥ A ⇒ B2|ξ|−2H−1−ε ≤ f(ξ) ≤ B1|ξ|−2H−1+ε. (8)

Remark that |ξ|−2H−1 is, up to a constant, the spectral density of a fractional
Brownian motion of Hurst index H . In the same vein, for any H ∈ (0, 1), we
note v(y) ≍0 |y|2H , if v satisfies: for any ε > 0 there exists δ, C1, C2 > 0 such
that for all y ∈ R,

|y| ≤ δ ⇒ C2|y|2H+ε ≤ v(y) ≤ C1|ξ|2H−ε. (9)

We recall here results proved in [6].

Theorem 1. Let X be a Gaussian process with spectral density f and variogram
v. Let H ∈ (0, 1).
(a) If f(ξ) ≍+∞ |ξ|−2H−1 then v(y) ≍0 |y|2H .
(b) If v(y) ≍0 |y|2H then X admits H as critical Hölder exponent.

In [4] we prove that better estimates on the spectral density enable to give
consistent estimators for H . Therefore we give stronger results for spectral den-
sities Tθf of line processes {X(tθ) ; t ∈ R}.

Theorem 2. Let f be a spectral density given by (4). Let θ = (θ1, θ2) be a unit
vector of R

2.
(a) If θ1 6= 0 and θ2 6= 0, then

Tθf(p) = |p|−2H1−1

(∫

R

(s2a + θ−2
1 )−βds

)
/|θ1|+O|p|→+∞

(
|p|−2H1−1−(1−1/a)

)
.

(b) If θ2 = 0, then Tθf(p) = |p|−2H1−1
(∫

R
(s2a + 1)−βds

)
.

(c) If θ1 = 0, then Tθf(p) = |p|−2H2−1
(∫

R
(s2 + 1)−βds

)
.

Proof. Let θ = (θ1, θ2), then one can choose θ⊥ = (θ2,−θ1) such that

Tθf(p) =

∫

R

(
(pθ1 + sθ2)

2 + (pθ2 − sθ1)
2a
)−β

ds.



Let us assume that θ1 6= 0 and let the change of variables u = sθ1 − pθ2, then

Tθf(p) =
1

|θ1|

∫

R

(
(p/θ1 + uθ2/θ1)

2
+ u2a

)−β

du. (10)

Since Tθf is an even function one can assume that p > 0 and let the change of
variables u = p1/as such that

Tθf(p) =
1

|θ1|
p1/a−2β

∫

R

((
1/θ1 + p−(1−1/a)sθ2/θ1

)2

+ s2a

)−β

ds.

This concludes for the proof when θ2 = 0, since 1/a−2β = −1−2H1. Otherwise,
let us consider

|θ1|p−1/a+2βTθf(p) −
∫

R

(
1/θ21 + s2a

)−β
ds =

∫

R

Eθf(p, s)ds,

where

Eθf(p, s) =

((
1/θ1 + p−(1−1/a)sθ2/θ1

)2

+ s2a

)−β

−
(
1/θ21 + s2a

)−β
.

Note that

|Eθf(p, s)| ≤ βp−(1−1/a)|sθ2/θ1|
∫ 1

0

((
1/θ1 + tp−(1−1/a)sθ2/θ1

)2

+ s2a

)−β−1/2

dt

≤ βp−(1−1/a)|sθ2/θ1|
(
1/4θ21 + s2a

)−β−1/2
if |s| ≤ p1−1/a/2|θ2|

≤ βp−(1−1/a)|θ2/θ1||s|−2a(β+1/2)+1 if |s| > p1−1/a/2|θ2|.

Therefore, choosing p > |2θ2|1/(1−1/a), one has

∫

R

|Eθf(p, s)| ds

≤ βp−(1−1/a)|θ2/θ1|
(∫

R

|s|
(
1/4θ21 + s2a

)−β−1/2
ds+

∫

|s|>1

|s|−2a(β+1/2)+1ds

)

= Op→+∞

(
p−(1−1/a)

)
,

since 2a(β + 1/2) > 2aβ > 2. Finally, when θ1 = 0, we have

Tθf(p) =

∫

R

(
s2 + p2a

)−β
ds.

Therefore, the change of variables s = pau leads to

Tθf(p) = pa−2aβ

∫

R

(
u2 + 1

)−β
du,

which concludes the proof since 2aβ − a = 2aH1 + 1 = 2H2 + 1.



Following Definition 1 and combining Theorems 1 and 2 we obtain the following
results as stated in Theorem 5.4 of [3].

Proposition 1 For any direction θ = (θ1, θ2), the random field X admits H1

for directional regularity in direction θ such that θ1 6= 0. When θ1 = 0, the
random field X admits H2 for directional regularity in direction θ.

The next section is devoted to the construction of estimators for H1 and H2.

2.3 Estimation

Generalized quadratic variations, studied in [14, 16], have been extensively used
to estimate the Hurst parameter of a fractional Brownian motion. More generally
they allow the estimation of critical Hölder exponents for Gaussian processes or
fields. In [4] we give theoretical results of consitency and asymptotic normality
for estimators based on generalized quadratic variations under asymptotic de-
velopment of spectral densities assumptions. These results will be used in the
context of this paper. Let us recall principles of these estimations. Let Y be a
Gaussian process with stationary increments and a spectral density f . Let

{Y (k/N) ; 0 ≤ k ≤ N}

be an observed sequence. We consider the stationary sequence formed by second-
order increments of Y with step u ∈ N r {0}

∀ p ∈ Z, ZN,u(Y )(p) = Y ((p+ 2u)/N) − 2Y ((p+ u)/N) + Y (p/N) . (11)

The generalized quadratic variations of Y of order 2 are then given by

VN,u(Y ) =
1

N − 2u+ 1

N−2u∑

p=0

(ZN,u(Y )(p))
2
. (12)

Let us quote that

E(VN,u(Y )) = E((ZN,u(Y )(0))2) = E

(
Y

(
2u

N

)
− 2Y

( u
N

)
+ Y (0)

)2

,

According to Proposition 1.1 of [4], when N → +∞,

E(VN,u(Y ))∼cHN−2Hu2H ,

for some cH > 0, whenever the spectral density f satisfies f(ξ)∼c|ξ|−2H−1,
when |ξ| → +∞, with H ∈

(
0, 7

4

)
and c > 0. Intuitively, we can thus define an

estimator of H as

ĤN,u,v =
1

2 log(u/v)
log

(
VN,u(Y )

VN,v(Y )

)
. (13)



In [14] the convergence of this estimator to H with asymptotic normality was
shown under some appropriate assumptions on the variogram of Y . In Proposi-
tion 1.3 of [4], under assumptions on the spectral density, we prove that almost

surely ĤN,u,v−→H , as N → +∞, with

√
N
(
ĤN,u,v −H

)
d−→ N (0, γu,v

H ) , with NE

((
ĤN,u,v −H

)2
)
→γu,v

H , (14)

for some positive constant γu,v
H .

Now let us consider the 2-dimensional random field X and denote by VN,u(θ)
the variations of the line process Y = Xθ,x0

defined by Equations (5) and (12).
Let

ĥN,u,v(θ) =
1

2 log(u/v)
log

(
VN,u(θ)

VN,v(θ)

)
. (15)

Theorem 3. Let θ = (θ1, θ2) be a unit vector.

(a) If θ1 6= 0 and θ2 6= 0, then ĥN,u,v(θ)→H1, almost surely as N → +∞.
Moreover, when a > 2, (14) holds for H = H1.
When a ≤ 2,

E

((
ĥN,u,v(θ) −H1

)2
)

= ON→+∞

(
N−2(1−1/a)

)
.

(b) If θ2 = 0, then ĥN,u,v(θ)→H1, almost surely as N → +∞. Moreover, (14)
holds for H = H1.
(c) If θ1 = 0, then ĥN,u,v(θ)→H2, almost surely as N → +∞. Moreover, (14)
holds for H = H2.

Proof. Let θ = (θ1, θ2) be a unit vector. According to Proposition 1.3 of [4]
results follow if Tθf , the spectral density of the process Xθ,x0

fulfills assumptions
of Propositions 1.1 and 1.2 of [4]. We already know an asymptotic development
for Tθf from Theorem 2 such that Propositions 1.1 applies. The main additionnal
assumption of Propositions 1.2 is concerned with (9) requiring an asymptotic
development for the derivative of Tθf . However, it can be weakened by the
following one: Tθf is differentiable on R r (−r, r), for r large enough and

(Tθf)′(p) = O|p|→+∞

(
|p|−2H−2

)
, (16)

with H = H1 if θ1 6= 0 and H = H2 otherwise. It remains to check (16). Let us
assume that θ1 6= 0 and recall that from (10), for all p 6= 0,

Tθf(p) =
1

|θ1|

∫

R

(
(p/θ1 + uθ2/θ1)

2
+ u2a

)−β

du.

Therefore Tθf(p) is differentiable on R r {0} with

(Tθf)′(p) = − 2β

|θ1|θ1

∫

R

(p/θ1 + uθ2/θ1)
(
(p/θ1 + uθ2/θ1)

2
+ u2a

)−β−1

du.



Let p > 0 and let the change of variables u = p1/as such that

(Tθf)′(p) = −2βp1/a−2β−1

|θ1|θ1

∫

R

(
1

θ1
+

sθ2
θ1p1−1/a

)((
1

θ1
+

sθ2
θ1p1−1/a

)2

+ s2a

)−β−1

ds.

Then, as in the proof of Theorem 2, one can show that

|(Tθf)′(p)| ≤ 2βp1/a−2β−1

θ21

(∫

R

3

2|θ1|
(
1/4θ21 + s2a

)−β−1
ds+

∫

|s|>1

s−a(2β+1)ds

)
.

This gives (16) with H = H1, since (Tθf)′ is odd, 1/a− 2β− 1 = −2H1 − 2 and
a(2β + 1) > 1.
The remaining cases θ1 = 0 or θ2 = 0 are straightforward using (b) and (c) of
Theorem 2.

3 Application to trabecular bone x-ray images

Results of [1] suggest that fractal analysis of trabecular bone radiographic images
is a good indicator of the alteration of the bone microarchitecture. In association
with bone mineral density, fractal analysis improves the fracture risk evaluation.
However, since this analysis is based on an isotropic model, it does not reveal
bone texture anisotropy which is of special interest for the diagnosis of osteo-
porosis [7, 9].

In this section, we apply our estimation methods to trabecular bone x-ray
images. The database contains radiographs of 211 post menopausal women, 165
being control cases and 46 osteoporotic fracture cases. Radiographs were ac-
quired at INSERM U658 (Orleans, France) using a standardized procedure [18].

They were obtained on calcaneus with a direct digital X-ray prototype (BMATM,
D3A Medical Systems, Orleans, France) with focal distance 1.15 m and X-ray
parameters 55 kV and 20 mAs. The high-resolution digital detector integrated
into the device prototype had a 50 µm pixel size, providing a spatial resolution
of 8 line pairs per millimeter at 10% modulation transfer function. For each
subject, the software device selected a region of interest (ROI) of constant size
1.6 × 1.6cm2 at a same position using three predefined anatomical landmarks
localized by the operator ; see figure 1.

In each image of the ROI, we computed the quadratic variations on lines
oriented in four different directions ((1) horizontal direction (θ = (1, 0)), (2)
vertical direction (θ = (0, 1)), (3) first diagonal direction ( θ = (1, 1)/

√
2), (4)

second diagonal direction ( θ = (−1, 1)/
√

2)) and at scales u ranging from 1 to
20 pixels (see Equations (5) and (12)). Log-log-plots of mean variations vs. scale
are shown on Figure 2. Scale properties observed in direction 2 differ significantly
from those in directions 1, 3 and 4, which are very close. The graph is almost a
line in direction 2 (vertical) whereas it is curvilinear in the other directions.

In direction 2, images could be considered as self-similar from the smallest
scale to the largest one. In other directions, the self-similarity property is not



(a) (b)

Fig. 1. (a) ROI of the os calcis with anatomical landmarks and (b) a radiograph of the
ROI.

valid considering all scales. This property is partially true on two consecutive
scale ranges: a small scale range from 1 (50µm) to 5 pixels (250µm) and a large
scale range above 5 pixels (250µm). The first range covers scales correspond-
ing to the thickness of trabeculae in the calcaneus. The second range includes
scales which are beyond the size of bone structures. In other words, in directions
1, 3, and 4, we can clearly distinguish the scaling properties inside structures
from those between the structures. Besides, differences observed between scaling
properties in direction 2 and in directions 1, 3 and 4 reflect the presence of longi-
tudinal trabeculae, which are predominant structures in the calcaneum oriented
in direction 2.
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Fig. 2. Plots of the logarithm of the quadratic variations Vu versus the logarithm of
the scale u (in pixels) in different directions θ of the plane.

As described in Equation (15), we estimated the anisotropic index in the
four directions on each image by comparing quadratic variations at scales u = 6
and v = 5 (pixels). On average, we obtained values 0.51 ± 0.08, 0.56 ± 0.06,
0.51±0.08, and 0.51±0.09 for directions 1, 2, 3, and 4, respectively. Comparisons
of estimates in pairs of directions on each image are shown on Figure 3. They
reveal that the anisotropic index is approximately the same in directions 1, 3,
and 4 and higher in direction 2. This observation suggests that bone radiographs
would have the same regularity in all directions except one (direction 2). From
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Fig. 3. Comparison of the anisotropic index estimation in pairs of directions. H1, H2,
H3 and H4 are the estimation of the anisotropic index in directions (1, 0), (0, 1), (1, 1),
and (−1, 1), respectively.

a theoretical point of view, such a property is consistent with the property of
Gaussian operator scaling random fields proven in Theorem 2 of this paper.

4 Conclusion

In this paper, we studied some particular operator scaling fields which are
anisotropic generalizations of the Fractional Brownian Field. We showed that
they have a privileged direction where line restrictions are more regular than
in other directions. We also constructed some techniques for the estimation of
parameters of these fields, using line restrictions and following principles of gener-
alized quadratic variations. We then proved the convergence of these estimators.
We then modeled trabecular bone radiographs by operator scaling Gaussian ran-
dom fields and showed experimentally that images had some properties of the
model.
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2. D. Benson, M. M. Meerschaert, B. Bäumer, and H. P. Scheffler. Aquifer operator-

scaling and the effect on solute mixing and dispersion. Water Resour. Res., 42:1–18,
2006.
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5. H. Biermé, F. Richard, M. Rachidi and C. L. Benhamou. Anisotropic texture
modeling and applications to medical image analysis. ESAIM: Proc., Mathematical
methods for imaging and inverse problems, 2009.

6. A. Bonami and A. Estrade. Anisotropic analysis of some Gaussian models. J.
Fourier Anal. Appl., 9:215–236, 2003.

7. B. Brunet-Imbault, G. Lemineur, C. Chappard, et al. A new anisotropy index on
trabecular bone radiographic images using the fast Fourier transform. BMC Med.
Imaging, 5(4), 2005.

8. C. Caldwell, S. Stapleton, D. Holdsworth, et al. Characterisation of mammographic
parenchymal patterns by fractal dimension. Phys. Med. Biol., 35(2):235–247, 1990.

9. C. Chappard, B. Brunet-Imbault, G. Lemineur, et al. Anisotropy changes in post-
menopausal osteoporosis: characterization by a new index applied to trabecular
bone radiographic images. Osteoporos Int, 16: 1193–1202, 2005.

10. C.-C. Chen, J. Daponte, and M. Fox. Fractal feature analysis and classification in
medical imaging. IEEE Trans. Pattern. Anal. Mach. Intell., 8(2):133–142, 1989.

11. S. Davies and P. Hall. Fractal analysis of surface roughness by using spatial data.
J. R. Stat. Soc. Ser. B, 61:3–37, 1999.

12. B. Grosjean and L. Moisan A-contrario detectability of spots in textured back-
grounds J. Math. Imaging Vis., 33(3):313–337, 2009.

13. J. Heine and P. Malhorta. Mammographic tissue, breast cancer risk, serial image
analysis, and digital mammography: tissue and related risk factors. Acad. Radiol,
9:298–316, 2002.

14. J. Istas and G. Lang. Quadratic variations and estimation of the local Holder index
of a Gaussian process. Ann. Inst. Henri Poincaré, Probab. Statist., 33(4):407–436,
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