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Abstract— This document present a non-rigid registration
framework for the use of brain magnetic resonance (MR) image
comparison. More precisely we want to compare pre-operatie
and post-operative MR images in order to assess the deforman
due to the surgical removal of tumor. Consequently, we propse
an application of the theory developed in [3] associated wlit a
new matching criterion based on a gradient representationn the
dual of a RKHS (Reproducing Kernel Hilbert Space). Moreover
all objects are defined from a periodic point of view, allowirg
the construction of an efficient algorithm. Numerical resuts are
presented
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|. REGISTRATION PROBLEM

2) A set of deformationsd suitable for optimization.
3) An efficient optimisation process.

Image registration can be performed in various ways, an
exhaustive description can be found in [9]. Note that the
classification of registration methods is generally basethe
three points mentioned above. In this paper, deformatioas a
modelled by a group of diffefomorphisms (elastic transforma
tions) on which we performe gradient steps in order to reach
the minimum of a matching criterion. This model know as the
"Greedy algorithm" was firstly described in [2]. A theorical
explanation was developed in [3]. This is a non-parametric
method able to deform the whole domain without using a set
of control points (as with Radial basis functions (RBF) myde

Let uo andur a couple of "source” and "target” images. \Most of registration models can be embedded in a varia-

For instance, a couple of pre/post-operative MR images:

Fig. 1. Left: source imagey . Right: target imagesr.

tional problem, such as the following:

u* =argmin d(ugo (Id+u)™ ", ur) + R(u).

ueH
The optimisation variable is a vector field:
u:R? — R?

belonging to an Hilbert space. The main difficulty is to obtai
solutionu* leading to a smooth and one-to-one transformation
Id + u*. Therefore, the additonal terfi(«) is introduced to
correct the ill-posedness of the problem. This term inctuae

regularisation part and a constraint on the differenfi@l d +
u) in order to recover smooth and one-to-one transformation.

®3)

Registration problem aims at construct a transformafion poitive results about this formulation can be found in [4d a

acting on the ambient space, such that:
()

upo ¢t =urp.

Since an exact matching is impossible in general,
instead try to findp such that:

up o ¢~ up.

This proximity has to be quantified by a discrepancy mea- s
that needs to be defined. This leads to th8 @ periodic framework. Moreover, we present and use a new

surementd(-, -)
following optimisation problem:

¢* = argmin d(ugo ¢~ ', ur)
peA

In order to define this problem mathematically we need:

(2)

1) A matching criterionJ(¢) = d(up o ¢, ur), to

we will

[5].

The originality of the model we will use is that it doesn'’t
need (at first sight) any additional term. Indeed, the optimi
Sation variable is constructed directly as a smooth diffeem
phism. This is a great advantage to performe optimisation in
a set composed exclusively of elastic transformations.

The contribution of this paper is a derivation of this model

matching criterion constructed in the idea of current messu

In section Il we describe our matching criterion. Section
IV takes a brief look at deformation space and section V is
focused on the optimisation process.

A last requirement is that each object we define is suitable
for numerical computation. For this purpose we introduee th

quantify the discrepancy between the target image argproducing kernel Hilbert spaces (RKHS) in the following

the deformed source image.

section.



Il. REPRODUCINGKERNEL HIBERT SPACES(RKHS). In many casesRy (¢) appears as the solution of a concrete

roblem. In the RKHS framework, if we know the kernel and

This section aims at .descr-ibing RKHS proper'gies. T.he_ fie scalar producy () is entirely recovered by the formula
are lots of reason for using this space as a modeling building

block. On one hand, many of well known Hilbert spaces are R ) =5 (R — (R K)o
RKHS; on the other hand, these spaces are convenient from #(?)(@) Ra(¢)) = (R (9) | Ka)y
numerical point of view. There is a large literature about

. . [1l. M ATCHING CRITERION.
RKHS and more details can be found in [11].

A. Current norm on curves.

Definition 1. Let X be a set, for example the 2-dimensional

torus: In [1], the author gives a method to put a norm on curves

by representing them as a "current".

Let C, be a curve ink?, andW an Hilbert space of vector
and (H, (-]-),) an Hilbert space of real functions definedields. By testing the circulation of eaeh € 1V alongC, we
on X. For eachr € X, there is an algebraic linear form thatobtain a linear form oriV :
evaluates function at:

T? = (R?/Z?)

Ye: W — R
6. f — flz) VfeH wes fyw-dl, (4)

H is a reproducing kernel Hilbert space if: . -
P 9 P Whereﬁ is tangential line element of the curde

s, € H VreX.

More precisely, for allz € X, there is a constant/, > 0

such that: ~—
//""
f (@) < Mol flm, Vf€H. S SNERGANG NN

The Riesz representation theorem implies that for al X,
there is an unique functiod’, € H with the reproducing

property:
f(@)=6,(f) = (f|Kz)y, Vf€EH.

Then, exchanging’ and K, we define a function:

-
\,,.»///
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N
~

!

\

\

\
K: XxX—>R i
by

K(z,y) = (Ko | Ky) = Ka(y), V(w,y) € X2
Fig. 2.  An example a vector field inducing high circulation awircle.
This is the reproducing kernel df.

The mappingC — ~. yields a useful representation of

In the rest of this paper, we will use RKHS as a test SPaG&irves, as an element of the dual vector spece Such an
In other words, a function (corresponding to a brain MRI)l W”object is naturally normed by:

be represented by a element of the ddalof H. In the RKHS
framework, a good knowledge of the kernel function allows Vellw = sup  [ye(w)]
many explicit calculations. As an example, consider thedm llwllw <1

isomorphism described by Riesz theorem: . ) ) )
Let W be the cartesian product of two identical RKHS with

Ry =H — H. a Kernel Ky, andc(t) be a parametrisation @f, we compute

) ] , . ] this norm by using the formula
Given any linear formy € H , there is a unique element

Ry (p) € H such that:

(Ru(p) | g =¢(f), YfeH.

Moreover the Cauchy-Schwartz inequality yields: Note that the determination of a parametrisatign) from
imaging requires a curve extraction step which is partityla

lellZ = (Ru(e) | Ru () g - challenging in the case of brain images.

I3, = / / (€ ()| () Kw(c(s), e(t)) ds d.



B. Extended version of the current norm. such that: -

The approach described above is very helpful for a geo- r(w) = /aD(r)w dl
metrical representation of images. We want to get rid of the . ) ) . .
curve extraction step and work directly on greyscale imagesbY_ Integrating this family we obtain an other linear form
functions. In the following section we show that it is pogsib defined by:

through the Stokes theorem, to compute a current norm based
on curves without the geometrical extraction step. Ly(w) = /R+ ¥r(w) dr
For the sake of simplicity we first consider binary images.
Letu = 1p be the characteristic function of a bounded regular - /R+ /1I2 (V xw) (2) Luzry(z) dedr. (6)

domainD C T2, with the notationdD = C: , _
{u > r} is bounded becauseis compactly supported. Then,

if V xw is continuous (or at least locally integrable) the above
integrale is well defined an we can use a Fubini inversion to

— obtain: .
u 0 Ty(w) = /’L[‘2 (V x w) (x) u(z) de. (7)

Finally, I",, is a representation of the functiean We will use
the notation:
[ullew = ITullw.

This norm is a measure of the gradient (actually of a rotated
gradient). Therefore, global contrast deviation (or addit
of a constant) is not take into account. Moreover, there is
a regularisation phenomenon, due to the particular scalar
product defined oiV. Regularity of the matching criteria is
a determinant characteristic to avoid local minima in sésep
descent algorithm.

Let us give a more precise description of the model. Brain

images can be extended as periodic functions, since they are
compactly supported. As a consequence, we derive a periodic

Fig. 3. Example of a binary image representing a doniain

Let v : T? — R? be a periodic vector field. The curl of

is definied by: model based on a RKH3$V, composed of periodic vector
(V x v) () = drva(x) — vy (). fields. To this aim we use periodic Sobolev spatgs,.:
W =HS, x H}

per per

The following theorem is verified under regularity hypoth-
esis onD. where, s > 1 is a positive parameter controlling the regularity

Theorem 1 (Stokes) ofweW.

/w ﬁ :/ V x w:/ (V x w) (z)u(z) dz.  (5) Let k € Z? and f : T?> — C . Then, ¢x(f) denotes the
c D T2 "k-th" Fourier coefficient off.

From (5) we remark that the computation of any current W is an Hilbert space for the scalar product:
can be performed with an integral over the whole domain. We
will now generalise this notion for any image with greyscaléw | v),,, = Z (1+ |k?)® (Ck(wl)ck(vl) + ck(wg)ck(vz))
values. hez?
Let u : T2 — R be a generic non negative function. To
make the following explanation work, we assume thais
per:®

regular and compactly supported._ s > 1, each coordinate belongs to an RKHS. The Kernel of
Each levelr € RT yields a domainD(r) = {z, u(z) > 7} this RKHS is:

We know, by Sobolev spaces theory that a parameterl
leads to continuous function iH%,... Therefore, by fixing an

and almost each seb(r) yields a curvedD(r) (assertion 1 .
based on Sard’s theorem, see [10]). Consequently we have a Kw(z,y) =Y TTRE’ eimk-(2=y) (8)
one parameter family of curves and the dual representation kez? (1+[&[*)
described by (4) leads to the one parameter family of line@je notice that this kernel is stationary, hence there is a
forms: , function f such that:
Rt — W

A e Kw(z,y) = f(z —y).



Finally, by using RKHS properties (see the calculations iRor eacha € T2, our matching criterion gives a score:
appendix) with the classical notation: 1 )
J(a) = 5”'7—&“0 - UTHW/,

— &(:L.) &(gj) where.J is a positive function and is a global minimum of

i 03 J. In order to findb, we will construct a patht — a(t) on
. - . which J(a(t)) is decreasing. A good way for achieving this

we obtain .an explicit formula for the computation of thefarget is to solve the following ODE, which is a continuous
current norm: . : .

analogue of the discrete gradient descent algorithm.

Hru”%/v/ =—(u|Afxu).. ) a/(t) =—V,pnd tE€ R
a(0) = 0.

Af(z)

(11)
This expression can be quickly computed by using FFT. _
Moreover, whenu represents a binary image describing thErom (9), we have:

. 1
contourC, we have: J(a) = -3 (Tatto — g | Af % (Tatig — ur)) L2 - (12)
ITullw = llvellw Under regularity assumptions, we obtain the following ehar

acterisation of the gradient :
Vol = (V1aug | Af % (Tauo — ur)) 12 -

IV. DEFORMATION SPACE

The fundamental hypothesis is that our deformatipn _
defined in (1) is a diffeomorphism, that is to say, a smooth andLét a(t) be a solution of (11), then we have
one-to-one with a smooth inverse map. This concept includes d

— 2
a large class of transformations, from very simple mappings Ej(at) = —=[Va@JII” <0.

such as translations to much more complex transformationsl. , ' .
. : he following figures show some gradient steps on an
(large non-linear deformations). e .
o . ) ~ artificial example of a translated image.

The main difficulty here is that there is no parametrisation
of a diffeomorphism set which would be appropriate for
optimization. For instance there is no guarantee that threafu
two diffeomorphismsiis a diffeomorphism. Hence our set is no
a vector space and we dont have any natural notion of directio .,
(for example for gradient descent methods). However this se
of deformations has a group structure analogous to a liepgrou
whith its associated lie algebra (here, a set of smooth vecto
fields). In the rest of this section, we show how to explois thi
structure.

Let (v¢),ep0, e a time dependent vector field, we know,
from Cauchy-Lipschitz theory that yields a time dependent
diffeomorphism¢;, solution of the ODE:

0,60(x) = wi(6n(x)) 1€ [0.d
{%(ZL') =z VzeT2 (10)

Let V' be another Hilbert space of vector fields. By using
vy € V as a parameter, we can construct a diffeomorphism
group Ay suitable for optimisation. This is the theory develop
in [3] in which the author, after a rigorous constructionjes

two methods for solving matching-type problems.

The second method is based on the possibility to define the
gradient flow of a function on the groudy . The following
section describes an application using the above matching
criterion.

V. GRADIENT FLOW ON DIFFEOMORPHISM GROUP

A. An instructive example with translation group

Let ur be a translation ofiy by b € T?:
Fig. 5. From left to right and from top to bottom, gradient flewolution

ur(x) = mpug(x) = ug(x — b). of |7a(ryuo — url.



Consider translations as a Lie group, the success of previouRecall thatv, is an element of an Hilbert spadé, and
method is due to the Riemannian structure of this group. Moassume that the mapping
precisely it is due to the possibility of defining a gradient.
Now, we will extend this procedure to a more general set ofV — R 1 .
diffeomorphisms. In this case, the notion of tangent space a “° "~ (vo | V(uood™") x Af x(ugo ¢~ —ur))
gradient has to be defined. is a continous linear form ofY. With an other use of Riesz

. o i . . . theorem, there is a unique vector field denoteslich that:
B. Gradient flow on an infinite dimensional diffeomorphism

group. {vo | D)y
In this section, we want to reproduce the previous procedure =
by.replacmg the translation varlgbzmby_ a gengral diffeomor- (vo | V(ugod™") x Af x(ugo¢~" —ur))),,.
phism¢. In this case the matching criterion is:
1 . ) Thus, if we choose the direction = —v € V, we obtain
(@) = Slluoo ¢ — urly,.
’ d J = ||} <0
In order to achieve a good conversion frato ¢, we have dt (@)e=0 = —l7llvy <.

fo use a little more "Riemannian" description. Defining V' as an other RKHS, we can easily compuatéy

Given a state we are looking for a direction in whiclf is  using an explicit linear operatdty based on convolution with
decreasing. Let; be a time dependent diffeomorphism suckhe reproducing kernel of :
that ¢() = QZS ~ . .

There is no problem to interpret this object as a curve passes © — 1tV (V(wod™) x Af x(ugo¢™" —ur)).
through the "point'y, at timet = 0. The notion of direction or Finally we introduce
"tangent vector" is mush more ambiguous but can be defined

by using an ODE Vo J =Ry (V(uwod™) x Af x(ugod™" —ur)) o ¢

O0r6u(x) = ve(@e(x)) £ € [0,¢] (13) And the gradient flow equation is

do(x) = ¢(z) V€T 5 v

; : ) =-VVJ
wherev; is a one parameter family of vector fields belongs to {J?;gw . Vil (@) (14)
an Hilbert space. Formally, o
d The following figure show an example of gradient flow pro-
v © p(x) = E@(x)\tzﬂ gression. Source and target images are characteristiidnac

as to be considered as a tangent vectas.tGonsequently, we of a tumorous area, before and after surgical removal.

can compute the directional derivative #fin this direction:

Diffeomorphism Source's deformation Target

L 7(¢e) =0 -

(00 | V(oo™ ) x Af (w0 s ~ur)ar o

09

Note that we follow the same procedure as those f,
translation group. a1

Here, we have to be careful not to interpret
V(wod™) x Af x(ugod™" —ur) i

as the gradient of/. It could be the case if we are working, . owomomsn Souces delomaien
with the Hilbert spacel’ = L?(T? R?). However we need *
more regularity to give sense to system (13). Admissibilit:
conditions are described by Cauchy-Lipschitz theoremafloc:
lipschitz vector field) and are completed if we have som.|
continous embedding in a Banach space of regular functio:}: /-

AR c (CP(T% R?),| - .
( ” HV) ( ( / )7H ”IWO) Fig. 6. Gradient flow evolution.

with p > 1. First column :¢; improvement. Second columnup o ¢>;1. Third : ur.




VI. CONCLUSION which leads to:

We have described a registration algorithm that takes advan|r (12, = </ w(z) VEKy (z,)dz |
tage of the Riemannian structure of the group of diffeomor- 2

phisms. This approach, sometimes referred as "greedydslea
to an efficient registration process especially in the mkcio
framework use in this paper. Indeed, forx m images, each
gradient step has a computational costgf x m)log(n x m)
operations. As a result, in the case ®f2 x 512 images .
such as those presented in figure (6), the computation thgorem, we obtain:

/Tzu@w;KW(y,.)dy> e

w

where the operatoV - (respectivelyvj) is the turned gradi-
ent with respect tac (respectivelyy). Again, using Fubini’s

solution takes a few minutes with a Matlab codes. The use )
of the matching criterion introduced in this paper doesn'’t Tl = /T2 /T2 u(x)u(y)
increase the computational cost (as illustrated by for
P ( y forr@jh VL VE (K (@, ) | Kw (9, )y dydz (22)

Futhermore, this criterion seems better suited for magchin

than the classicalLl? norm. On one hand, it is based orThe reproducing kernel property allows us to simplify this
image gradient, thus focused on structure (contourscatiti expression to:

points...). On the other hand, the regularisation helpsgmie

local minima from early stopping the algorithm. ITull? = /m /T2 u(z)u(y) Vi - VjKW(:c,y)dydx (23)

Since the kernel is supposed to be stationagy Kw (z,y) =

VIl. APPENDIX
f(z —y)), we have:

In this appendix we detail the computation of the current vi.vig — Af(r— 24
norm (9) based on a greyscale functienRecall the expres- o Vy Kw(z,y) f@—y), 24)
sion of the current measuie,: hence:

TullZ = — A —y) dydx . 25
D) = [V wl)ute)a. asy Nl == [ [ ulut) Afa s, (@9
) _ Finally we obtain the expression (9) by noticing the convolu
By denotingw = (w1, w2) andV = (91, 8,), we have: tion product in the above expression.
Ty(w) = / [Orwz(x) — Oqwy (x)] u(z) dx . (16) REFERENCES
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