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Abstract— This document present a non-rigid registration
framework for the use of brain magnetic resonance (MR) images
comparison. More precisely we want to compare pre-operative
and post-operative MR images in order to assess the deformation
due to the surgical removal of tumor. Consequently, we propose
an application of the theory developed in [3] associated with a
new matching criterion based on a gradient representation in the
dual of a RKHS (Reproducing Kernel Hilbert Space). Moreover,
all objects are defined from a periodic point of view, allowing
the construction of an efficient algorithm. Numerical results are
presented
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I. REGISTRATION PROBLEM

Let u0 and uT a couple of "source" and "target" images.
For instance, a couple of pre/post-operative MR images:

Fig. 1. Left: source imageu0 . Right: target imageuT .

Registration problem aims at construct a transformationφ,
acting on the ambient space, such that:

u0 ◦ φ
−1 = uT . (1)

Since an exact matching is impossible in general, we will
instead try to findφ such that:

u0 ◦ φ
−1 ≈ uT .

This proximity has to be quantified by a discrepancy mea-
surementd(·, ·) that needs to be defined. This leads to the
following optimisation problem:

φ∗ = argmin
φ∈A

d(u0 ◦ φ
−1, uT ) (2)

In order to define this problem mathematically we need:

1) A matching criterionJ(φ) = d(u0 ◦ φ−1, uT ), to
quantify the discrepancy between the target image and
the deformed source image.

2) A set of deformationsA suitable for optimization.

3) An efficient optimisation process.

Image registration can be performed in various ways, an
exhaustive description can be found in [9]. Note that the
classification of registration methods is generally based on the
three points mentioned above. In this paper, deformations are
modelled by a group of diffeomorphisms (elastic transforma-
tions) on which we performe gradient steps in order to reach
the minimum of a matching criterion. This model know as the
"Greedy algorithm" was firstly described in [2]. A theorical
explanation was developed in [3]. This is a non-parametric
method able to deform the whole domain without using a set
of control points (as with Radial basis functions (RBF) model).

Most of registration models can be embedded in a varia-
tional problem, such as the following:

u∗ = argmin
u∈H

d(u0 ◦ (Id+ u)−1 , uT ) + R(u). (3)

The optimisation variableu is a vector field:

u : R2 7−→ R
2

belonging to an Hilbert space. The main difficulty is to obtain a
solutionu⋆ leading to a smooth and one-to-one transformation
Id+ u⋆. Therefore, the additonal termR(u) is introduced to
correct the ill-posedness of the problem. This term includes a
regularisation part and a constraint on the differentialD(Id+
u) in order to recover smooth and one-to-one transformation.
Positive results about this formulation can be found in [4] and
[5].

The originality of the model we will use is that it doesn’t
need (at first sight) any additional term. Indeed, the optimi-
sation variable is constructed directly as a smooth diffeomor-
phism. This is a great advantage to performe optimisation in
a set composed exclusively of elastic transformations.

The contribution of this paper is a derivation of this model
in a periodic framework. Moreover, we present and use a new
matching criterion constructed in the idea of current measures.

In section III we describe our matching criterion. Section
IV takes a brief look at deformation space and section V is
focused on the optimisation process.

A last requirement is that each object we define is suitable
for numerical computation. For this purpose we introduce the
reproducing kernel Hilbert spaces (RKHS) in the following
section.



II. REPRODUCINGKERNEL HIBERT SPACES(RKHS).

This section aims at describing RKHS properties. There
are lots of reason for using this space as a modeling building
block. On one hand, many of well known Hilbert spaces are
RKHS; on the other hand, these spaces are convenient from
numerical point of view. There is a large literature about
RKHS and more details can be found in [11].

Definition 1. Let X be a set, for example the 2-dimensional
torus:

T
2 = (R2/Z2)

and (H , 〈· | ·〉H) an Hilbert space of real functions defined
on X . For eachx ∈ X , there is an algebraic linear form that
evaluates function atx:

δx : f → f(x) ∀f ∈ H.

H is a reproducing kernel Hilbert space if:

δx ∈ H
′

∀x ∈ X.

More precisely, for allx ∈ X , there is a constantMx > 0
such that:

|f(x)| 6 Mx‖f‖H , ∀f ∈ H.

The Riesz representation theorem implies that for allx ∈ X ,
there is an unique functionKx ∈ H with the reproducing
property:

f(x) = δx(f) = 〈f |Kx〉H , ∀f ∈ H.

Then, exchangingf andKy we define a function:

K : X ×X → R

by

K(x, y) = 〈Kx |Ky〉H = Kx(y), ∀ (x, y) ∈ X2.

This is the reproducing kernel ofH .

In the rest of this paper, we will use RKHS as a test space.
In other words, a function (corresponding to a brain MRI) will
be represented by a element of the dualH ′ of H . In the RKHS
framework, a good knowledge of the kernel function allows
many explicit calculations. As an example, consider the linear
isomorphism described by Riesz theorem:

RH = H
′

→ H.

Given any linear formϕ ∈ H
′

, there is a unique element
RH(ϕ) ∈ H such that:

〈RH(ϕ) | f〉H = ϕ(f), ∀f ∈ H.

Moreover the Cauchy-Schwartz inequality yields:

‖ϕ‖2H′ = 〈RH(ϕ) |RH(ϕ)〉H .

In many cases,RH(ϕ) appears as the solution of a concrete
problem. In the RKHS framework, if we know the kernel and
the scalar product,RH(ϕ) is entirely recovered by the formula

RH(ϕ)(x) = δx (RH(ϕ)) = 〈RH(ϕ) |Kx〉H .

III. M ATCHING CRITERION.

A. Current norm on curves.

In [1], the author gives a method to put a norm on curves
by representing them as a "current".

Let C, be a curve inR2, andW an Hilbert space of vector
fields. By testing the circulation of eachw ∈ W alongC, we
obtain a linear form onW :

γc : W −→ R

w 7−→
∫

C
w ·

−→
dl ,

(4)

where
−→
dl is tangential line element of the curveC.

Fig. 2. An example a vector field inducing high circulation ona circle.

The mappingC → γc yields a useful representation of
curves, as an element of the dual vector spaceW ′. Such an
object is naturally normed by:

‖γc‖W ′ = sup
‖w‖W61

|γc(w)|

Let W be the cartesian product of two identical RKHS with
a KernelKW andc(t) be a parametrisation ofC, we compute
this norm by using the formula

‖γ‖2W ′ =

∫ T

0

∫ T

0

〈c′(s) | c′(t)〉KW (c(s), c(t)) ds dt.

Note that the determination of a parametrisationc(t) from
imaging requires a curve extraction step which is particularly
challenging in the case of brain images.



B. Extended version of the current norm.

The approach described above is very helpful for a geo-
metrical representation of images. We want to get rid of the
curve extraction step and work directly on greyscale imagesas
functions. In the following section we show that it is possible,
through the Stokes theorem, to compute a current norm based
on curves without the geometrical extraction step.

For the sake of simplicity we first consider binary images.
Let u = 1D be the characteristic function of a bounded regular
domainD ⊂ T2, with the notation∂D = C:

u
u=1

=0

D

C

Fig. 3. Example of a binary image representing a domainD.

Let v : T2 → R2 be a periodic vector field. The curl ofv
is definied by:

(∇× v) (x) = ∂1v2(x)− ∂2v1(x).

The following theorem is verified under regularity hypoth-
esis onD.

Theorem 1 (Stokes).
∫

C

w
−→
dl =

∫

D

∇× w =

∫

T2

(∇× w) (x)u(x) dx. (5)

From (5) we remark that the computation of any current
can be performed with an integral over the whole domain. We
will now generalise this notion for any image with greyscale
values.

Let u : T2 → R
+ be a generic non negative function. To

make the following explanation work, we assume thatu is
regular and compactly supported.

Each levelr ∈ R+ yields a domainD(r) = {x, u(x) > r}
and almost each setD(r) yields a curve∂D(r) (assertion
based on Sard’s theorem, see [10]). Consequently we have a
one parameter family of curves and the dual representation
described by (4) leads to the one parameter family of linear
forms:

R
+ −→ W

′

r 7−→ γr.

such that:
γr(w) =

∫

∂D(r)

w
−→
dlr.

By integrating this family we obtain an other linear form
defined by:

Γu(w) =

∫

R+

γr(w) dr

=

∫

R+

∫

T2

(∇× w) (x)1{u>r}(x) dx dr . (6)

{u > r} is bounded becauseu is compactly supported. Then,
if ∇×w is continuous (or at least locally integrable) the above
integrale is well defined an we can use a Fubini inversion to
obtain:

Γu(w) =

∫

T2

(∇× w) (x)u(x) dx. (7)

Finally, Γu is a representation of the functionu. We will use
the notation:

‖u‖cW = ‖Γu‖W ′ .

This norm is a measure of the gradient (actually of a rotated
gradient). Therefore, global contrast deviation (or addition
of a constant) is not take into account. Moreover, there is
a regularisation phenomenon, due to the particular scalar
product defined onW . Regularity of the matching criteria is
a determinant characteristic to avoid local minima in steepest
descent algorithm.

Let us give a more precise description of the model. Brain
images can be extended as periodic functions, since they are
compactly supported. As a consequence, we derive a periodic
model based on a RKHSW , composed of periodic vector
fields. To this aim we use periodic Sobolev spacesHs

per:

W = Hs
per ×Hs

per ,

where,s > 1 is a positive parameter controlling the regularity
of w ∈ W .

Let k ∈ Z2 and f : T2 → C . Then, ck(f) denotes the
"k-th" Fourier coefficient off .

W is an Hilbert space for the scalar product:

〈w | v〉W =
∑

k∈Z
2

(1 + |k|2)s
(

ck(w1)ck(v1) + ck(w2)ck(v2)
)

We know, by Sobolev spaces theory that a parameters > 1
leads to continuous function inHs

per . Therefore, by fixing an
s > 1, each coordinate belongs to an RKHS. The Kernel of
this RKHS is:

KW (x, y) =
∑

k∈Z
2

1

(1 + |k|2)
s e2iπk·(x−y). (8)

We notice that this kernel is stationary, hence there is a
function f such that:

KW (x, y) = f(x− y) .



Finally, by using RKHS properties (see the calculations in
appendix) with the classical notation:

∆f(x) =
∂2f

∂x2
1

(x) +
∂2f

∂x2
2

(x),

we obtain an explicit formula for the computation of the
current norm:

‖Γu‖
2
W ′ = −〈u |∆f ⋆ u〉L2 . (9)

This expression can be quickly computed by using FFT.
Moreover, whenu represents a binary image describing the
contourC, we have:

‖Γu‖W ′ = ‖γc‖W ′

IV. D EFORMATION SPACE.

The fundamental hypothesis is that our deformationφ
defined in (1) is a diffeomorphism, that is to say, a smooth and
one-to-one with a smooth inverse map. This concept includes
a large class of transformations, from very simple mappings
such as translations to much more complex transformations
(large non-linear deformations).

The main difficulty here is that there is no parametrisation
of a diffeomorphism set which would be appropriate for
optimization. For instance there is no guarantee that the sum of
two diffeomorphisms is a diffeomorphism. Hence our set is not
a vector space and we dont have any natural notion of direction
(for example for gradient descent methods). However this set
of deformations has a group structure analogous to a lie group
whith its associated lie algebra (here, a set of smooth vector
fields). In the rest of this section, we show how to exploit this
structure.

Let (vt)t∈[0,ǫ] be a time dependent vector field, we know,
from Cauchy-Lipschitz theory thatvt yields a time dependent
diffeomorphismφt, solution of the ODE:

{

∂tφt(x) = vt(φt(x)) t ∈ [0, ǫ]
φ0(x) = x ∀x ∈ T2.

(10)

Let V be another Hilbert space of vector fields. By using
vt ∈ V as a parameter, we can construct a diffeomorphism
groupAV suitable for optimisation. This is the theory develop
in [3] in which the author, after a rigorous construction, gives
two methods for solving matching-type problems.

The second method is based on the possibility to define the
gradient flow of a function on the groupAV . The following
section describes an application using the above matching
criterion.

V. GRADIENT FLOW ON DIFFEOMORPHISM GROUP.

A. An instructive example with translation group

Let uT be a translation ofu0 by b ∈ T2:

uT (x) = τbu0(x) = u0(x − b).

For eacha ∈ T
2, our matching criterion gives a score:

J(a) =
1

2
‖τau0 − uT ‖

2
W

′ ,

whereJ is a positive function andb is a global minimum of
J . In order to findb, we will construct a patht → a(t) on
which J(a(t)) is decreasing. A good way for achieving this
target is to solve the following ODE, which is a continuous
analogue of the discrete gradient descent algorithm.

{

a
′

(t) = −∇a(t)J t ∈ R
+

a(0) = 0.
(11)

From (9), we have:

J(a) = −
1

2
〈τau0 − uT |∆f ⋆ (τau0 − uT )〉L2 . (12)

Under regularity assumptions, we obtain the following char-
acterisation of the gradient :

∇aJ = 〈∇τau0 |∆f ⋆ (τau0 − uT )〉L2 .

Let a(t) be a solution of (11), then we have

d

dt
J(at) = −‖∇a(t)J‖

2
6 0.

The following figures show some gradient steps on an
artificial example of a translated image.
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Fig. 4. Source and target image.
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Fig. 5. From left to right and from top to bottom, gradient flowevolution
of |τa(t)u0 − uT |.



Consider translations as a Lie group, the success of previous
method is due to the Riemannian structure of this group. More
precisely it is due to the possibility of defining a gradient.
Now, we will extend this procedure to a more general set of
diffeomorphisms. In this case, the notion of tangent space and
gradient has to be defined.

B. Gradient flow on an infinite dimensional diffeomorphism
group.

In this section, we want to reproduce the previous procedure
by replacing the translation variablea by a general diffeomor-
phismφ. In this case the matching criterion is:

J(φ) =
1

2
‖u0 ◦ φ

−1 − uT ‖
2
W

′ .

In order to achieve a good conversion froma to φ, we have
to use a little more "Riemannian" description.

Given a stateφ we are looking for a direction in whichJ is
decreasing. Letφt be a time dependent diffeomorphism such
that φ0 = φ.

There is no problem to interpret this object as a curve passes
through the "point"φ, at timet = 0. The notion of direction or
"tangent vector" is mush more ambiguous but can be defined
by using an ODE

{

∂tφt(x) = vt(φt(x)) t ∈ [0, ǫ]
φ0(x) = φ(x) ∀x ∈ T2.

(13)

wherevt is a one parameter family of vector fields belongs to
an Hilbert space. Formally,

v0 ◦ φ(x) =
d

dt
φt(x)|t=0

as to be considered as a tangent vector toφ. Consequently, we
can compute the directional derivative ofJ in this direction:

d
dt
J(φt)|t=0

=
〈

v0 | ∇
(

u0 ◦ φ
−1

)

×∆f ⋆ (u0 ◦ φ
−1 − uT )

〉

L2 ,

Note that we follow the same procedure as those for
translation group.

Here, we have to be careful not to interpret

∇
(

u0 ◦ φ
−1

)

×∆f ⋆ (u0 ◦ φ
−1 − uT )

as the gradient ofJ . It could be the case if we are working
with the Hilbert spaceV = L2(T2,R2). However we need
more regularity to give sense to system (13). Admissibility
conditions are described by Cauchy-Lipschitz theorem (local
lipschitz vector field) and are completed if we have some
continous embedding in a Banach space of regular functions.

(V, ‖ · ‖V ) ⊂
(

Cp(T2,R2), ‖ · ‖p,∞
)

.

with p > 1.

Recall thatv0 is an element of an Hilbert spaceV , and
assume that the mapping

V −→ R

v0 7−→
〈

v0 | ∇
(

u0 ◦ φ
−1

)

×∆f ⋆ (u0 ◦ φ
−1 − uT )

〉

L2

is a continous linear form onV . With an other use of Riesz
theorem, there is a unique vector field denotedṽ such that:

〈v0 | ṽ〉V

=
〈

v0 | ∇
(

u0 ◦ φ
−1

)

×∆f ⋆ (u0 ◦ φ
−1 − uT ))

〉

L2 .

Thus, if we choose the directionv0 = −ṽ ∈ V , we obtain

d

dt
J(φt)|t=0 = −‖ṽ‖2V 6 0.

Defining V as an other RKHS, we can easily computeṽ by
using an explicit linear operatorRV based on convolution with
the reproducing kernel ofV :

ṽ = RV

(

∇
(

u0 ◦ φ
−1

)

×∆f ⋆ (u0 ◦ φ
−1 − uT )

)

.

Finally we introduce

∇V
φ J = RV

(

∇
(

u0 ◦ φ
−1

)

×∆f ⋆ (u0 ◦ φ
−1 − uT )

)

◦ φ.

And the gradient flow equation is
{

∂tφt(x) = −∇V
φt
J (x)

φ0(x) = x.
(14)

The following figure show an example of gradient flow pro-
gression. Source and target images are characteristic functions
of a tumorous area, before and after surgical removal.
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Fig. 6. Gradient flow evolution.
First column :φt improvement. Second column :u0 ◦ φ

−1
t

. Third : uT .



VI. CONCLUSION

We have described a registration algorithm that takes advan-
tage of the Riemannian structure of the group of diffeomor-
phisms. This approach, sometimes referred as "greedy", leads
to an efficient registration process especially in the periodic
framework use in this paper. Indeed, forn×m images, each
gradient step has a computational cost ofO(n×m)log(n×m)
operations. As a result, in the case of512 × 512 images
such as those presented in figure (6), the computation of a
solution takes a few minutes with a Matlab codes. The use
of the matching criterion introduced in this paper doesn’t
increase the computational cost (as illustrated by formula(9)).
Futhermore, this criterion seems better suited for matching
than the classicalL2 norm. On one hand, it is based on
image gradient, thus focused on structure (contours, critical
points...). On the other hand, the regularisation helps prevent
local minima from early stopping the algorithm.

VII. A PPENDIX

In this appendix we detail the computation of the current
norm (9) based on a greyscale functionu. Recall the expres-
sion of the current measureΓu:

Γu(w) =

∫

T2

∇× w(x)u(x) dx . (15)

By denotingw = (w1, w2) and∇ = (∂1, ∂2), we have:

Γu(w) =

∫

T2

[∂1w2(x)− ∂2w1(x)]u(x) dx . (16)

Sincew1 andw2 both belong to the same RKHSH with the
kernelKW , we use the reproducing property to obtain:

Γu(w) =

∫

T2

[∂1 〈KW (x, ·) |w2〉H

− ∂2 〈KW (x, ·) |w1〉H ]u(x) dx . (17)

Using Fubini’s theorem, we writeΓu(w) as a dot product in
H :

Γu(w) =

〈
∫

T2

u(x) ∂1KW (x, ·)dx |w2

〉

H

−

〈
∫

T2

u(x) ∂2KW (x, ·)dx |w1

〉

H

, (18)

which can be rewritten as a dot product inW :

Γu(w) =

〈
∫

T2

u(x)∇⊥KW (x, ·)dx |w

〉

W

, (19)

where∇⊥ = (−∂2, ∂1) is the "turned" gradient operator. This
defines a continuous linear form onW . Thanks to the Cauchy-
Schwartz inequality, the norm ofΓu is given by:

‖Γu‖W ′ = ‖

∫

T2

u(x)∇⊥KW (x, ·) dx ‖W , (20)

which leads to:

‖Γu‖
2
W ′ =

〈
∫

T2

u(x)∇⊥
x KW (x, ·) dx |

∫

T2

u(y)∇⊥
y KW (y, ·) dy

〉

W

. (21)

where the operator∇⊥
x (respectively∇⊥

y ) is the turned gradi-
ent with respect tox (respectivelyy). Again, using Fubini’s
theorem, we obtain:

‖Γu‖
2
W ′ =

∫

T2

∫

T2

u(x)u(y)

∇⊥
x · ∇⊥

y 〈KW (x, ·) |KW (y, ·)〉H dydx (22)

The reproducing kernel property allows us to simplify this
expression to:

‖Γu‖
2
W ′ =

∫

T2

∫

T2

u(x)u(y)∇⊥
x · ∇⊥

y KW (x, y) dydx (23)

Since the kernel is supposed to be stationary (i.e.KW (x, y) =
f(x− y)), we have:

∇⊥
x · ∇⊥

y KW (x, y) = −∆f(x− y) , (24)

hence:

‖Γu‖
2
W ′ = −

∫

T2

∫

T2

u(x)u(y)∆f(x− y) dydx . (25)

Finally we obtain the expression (9) by noticing the convolu-
tion product in the above expression.
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