
A FOURIER APPROACH FOR THE CROSSINGS OF SHOT NOISE
PROCESSES WITH JUMPS
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Abstract. We use here a change of variable formula in the framework of functions of bounded
variation to derive an explicit formula for the Fourier transform of the crossing function of shot noise
processes with jumps. We illustrate the result on some examples and give some applications. In
particular we are then able to study the behavior of the mean number of crossings as the intensity of
the Poisson point process of the shot noise goes to infinity.

In this paper, we will consider a shot noise process which is a real-valued random process given by

(1) X(t) =
∑

i∈Z
βig(t− τi), t ∈ R

where g is a given (deterministic) measurable function (it will be called the kernel function of the shot
noise), the {τi}i∈Z are the points of a Poisson point process on the line of intensity λ ds, where λ > 0,
and the {βi}i∈Z are independant copies of a random variable β (called the impulse), independent of
{τi}.

Such a process has many applications (see [14] for instance) and it is a well-known and studied
mathematical model (see [9], [13], [4] for some of its properties).

We will be interested here in the crossings of such a process. Usually, the mean number of crossings
of a stochastic process is computed thanks to a Rice’s formula (see [11] or [1]) that requires some
regularity conditions on the joint probability density of X and of its derivative. This joint probability
density is generally not easy to obtain and to study. Its existence is also sometimes a question. This
is why, instead of working directly on the mean number of crossings, we will work on the Fourier
transform of the function that maps each level α to the mean number of crossings of the level α per
unit length. Thanks to a change of variables formula, we will be able to relate this Fourier transform
to the characteristic function of the shot noise process (which, unlike the probability density, always
exists and is explicit).

1. General result

In [3], we have studied the crossings of X when the kernel function g is smooth on R. We will
consider here the case where g is a piecewise smooth function, that is not necessarily continuous.

More precisely, we assume that g ∈ L1(R), and that it is piecewise C2 on R, with a finite number
of points of discontinuity denoted by

Sg = {t1, t2, . . . , tn}, with t1 < . . . < tn,

and called the jump set of g. We moreover assume that g admits finite left and right limits at each
point of discontinuity.

In the following we denote g′, respectively g′′, the function which is defined at all points s /∈ Sg by
the usual derivative g′(s), respectively g′′(s). We also assume that g′ ∈ L1(R). As a consequence, g
has a finite total variation on R, which means that

TV (g,R) = sup
∑

k∈K
|g(sk)− g(sk−1)| =

∫

R
|g′(s)| ds+

n∑

j=1

|g(t+j )− g(t−j )| < +∞,
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where the supremum is taken over any subdivision {sk ; k ∈ K} of R and g(t+j ) = lims→tj ,s>tj g(s),
g(t−j ) = lims→t,s<tj g(s) are the respective right and left limits of g at a discontinuity point tj . This
implies that g ∈ BV (R), the set of functions of bounded variation on R. We follow the notations
and definitions used in the framework of BV functions (see [7]). According to our assumptions the
weak derivative of g is the Radon measure given by

Dg = g′ds+
n∑

j=1

(g(t+j )− g(t−j ))δtj .

1.1. Piecewise regularity of the shot noise process. The shot noise process “inherits” the
regularity of the kernel function g. More precisely, we have the following result.

Theorem 1. Let β ∈ L1(Ω). Let g be a piecewise C2 function with #Sg < ∞ and such that
g, g′, g′′ ∈ L1(R), where g′ and g′′ are the absolutely continuous part of Dg and D2g. Then the shot
noise process X defined by (1) is an integrable stationary process which is almost surely piecewise C1

on R with
SX =

⋃

i∈Z
(τi + Sg)

and
∀t /∈ SX , X ′(t) =

∑

i

βig
′(t− τi).

Proof. Note that according to Section 2 of [3], since β ∈ L1(Ω) and g ∈ L1(R), for any t ∈ R, the
random variable X(t) is well defined and integrable with E(X(t)) = λE(β)

∫
R g(s)ds. Moreover X is

a stationary process since the intensity of the Poisson point process is given by λds.
Let us remark that since #Sg = n we can write g as the sum of 2n piecewise C2 functions on R,

each of them having only one discontinuity point and having the same regularity properties as g.
Therefore we may and will assume that #Sg = 1 and write Sg = {t1}. Let τi0 , i0 ∈ Z, be a fixed
point of the Poisson point process. We write Ii0 := [t1 + τi0 , t1 + τi0+1], Then, for any t ∈ R,

X(t) =
∑

i>i0+1

βig(t− τi) +
∑

i<i0

βig(t− τi) + βi0g(t− τi0) + βi0+1g(t− τi0+1).

The function t 7→ g(t − s) is C2 on Ii0 for any s < τi0 such that almost surely, for any i < i0, the
function t 7→ g(t− τi) is C2 on Ii0 with g((t1 + τi0 − τi)+) = g((t1 + τi0 − τi)−). Moreover

E

(∑

i<i0

|βi| sup
t∈Ii0

|g′(t− τi)|
∣∣∣ τi0 , τi0+1

)
= λE(|β|)

∫ 0

−∞
sup
t∈Ii0

|g′(t− s− τi0)|ds,

using the fact that {τi−τi0 ; i < i0} is a Poisson point process with intensity λ1]−∞,0[(s)ds independant
of τi0 , τi0+1. But for any t ∈ Ii0 and s < 0,

g′(t− s− τi0) =
∫ t

t1+τi0

g′′(u− s− τi0)du+ g′(t1 − s),

such that by Fubini Tonnelli,
∫ 0

−∞
sup
t∈Ii0

|g′(t− s− τi0)|ds ≤ (τi0+1 − τi0)
∫

R
|g′′(s)|ds+

∫

R
|g′(s)|ds.

Then

E

(∑

i<i0

|βi| sup
t∈Ii0

|g′(t− τi)|
)
≤ λE(|β|)

(
1
λ

∫

R
|g′′(s)|ds+

∫

R
|g′(s)|ds

)
< +∞,

so that the series t 7→
∑

i<i0

βig
′(t − τi) is uniformly convergent on Ii0 . Therefore, almost surely the

series t 7→
∑

i<i0

βig(t−τi) is continuously differentiable on Ii0 with

(∑

i<i0

βig(t− τi)

)′
=

∑

i<i0

βig
′(t−τi)
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and
∑

i<i0

βig((t1 + τi0 − τi)+) =
∑

i<i0

βig((t1 + τi0 − τi)−).

The same proof applies for
∑

i>i0+1

βig(t − τi). To conclude it is sufficient to remark that for i ∈

{i0, i0 + 1}, the function t 7→ g(t − τi) is continuously differentiable in the interior of Ii0 . Moreover
g((t1 +τi0−τi0+1)+) = g((t1 +τi0−τi0+1)−) and g((t1 +τi0−τi0)+) = g(t+1 ) and g((t1 +τi0−τi0)−) =
g(t−1 ).
Finally, a.s. X is continuously differentiable in the interior of Ii0 with

X ′(t) =
∑

i

βig
′(t− τi),

and X((t1 + τi0)
+)−X((t1 + τi0)

−) = βi0
(
g(t+1 )− g(t−1 )

)
.

¤

Then, under the above conditions, the shot noise process X is a BV function on any interval (a, b).
By stationarity we can focus on what happens on (0, 1). Then X has a.s. a finite number of points
of discontinuity on (0, 1) and the weak derivative of X is given by

DX = X ′dt+
n∑

j=1

∑

τi∈(−tj ,1−tj)
βi(g(t+j )− g(t−j ))δtj+τi .

Moreover its total variation on (0, 1) is given by

TV (X, (0, 1)) =
∫ 1

0
|X ′(t)|dt+

n∑

j=1

∑

τi∈(−tj ,1−tj)
|βi||g(t+j )− g(t−j )|.

1.2. Crossings. We will be interested in the crossings of the shot noise process X. We first start by
a general definition and a result on the crossings of a piecewise smooth function.

When f is a piecewise C1 function on an interval (a, b) of R with a finite number of discontinuity
points, we can define its crossings on (a, b) by considering for any level α ∈ R,

Nf (α, (a, b)) = #{s ∈ (a, b) ; min(f(s−), f(s+)) ≤ α ≤ max(f(s−), f(s+))}.
Then, a change of variables formula for BV functions yields the following result (see [5]).

Proposition 1. Let a, b ∈ R with a < b and f be a piecewise C1 function on (a, b). Then, for any
bounded continuous function h defined on R,

(2)
∫

R
h(α)Nf (α, (a, b)) dα =

∫ b

a
h(f(s))|f ′(s)| ds+

∑

s∈Sf∩(a,b)

∫ max(f(s+),f(s−))

min(f(s+),f(s−))
h(α) dα,

Proof. Let us assume that Sf ∩ (a, b) = {sj ; 1 ≤ j ≤ m} with m ≥ 1 and a := s0 < s1 < . . . < sm <
b := sm+1. Then

Nf (α, (a, b)) =
m∑

j=0

#{s ∈ (sj , sj+1) ; f(s) = α}+
m∑

j=1

1[min(f(s−j ),f(s+j )),max(f(s−j ),f(s+j ))](α).

Let h be a bounded continuous function on R. According to the change of variables formula for
Lipschitz functions (see [7] p.99), for any j = 0, . . . ,m ,

∫

R
h(α)#{s ∈ (sj , sj+1) ; f(s) = α} dα =

∫ sj+1

sj

h(f(s))|f ′(s)| ds,

and the result follows using Chasles formula. ¤

Back to the shot noise process X, for α ∈ R, let NX(α) be the random variable that counts the
number of crossings of the level α by the process X in the interval (0, 1). It is defined by

NX(α) = #{t ∈ (0, 1) ; min(X(t+), X(t−)) ≤ α ≤ max(X(t+), X(t−))}.
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We will be mainly interested in its expectation, namely in

CX(α) = E(NX(α)).

The following theorem computes these mean numbers of crossings from a Fourier transform point
of view. It has to be related to the heuristic approach of [2] (in particular their Formula (13) that
involves the joint density of X(t) and X ′(t) in a Rice’s formula - but without checking any of the
hypotheses for its validity).

Theorem 2. Under the assumptions of Theorem 1, the mean crossing function CX is in L1(R) and∫

R
CX(α) dα = E(TV (X, (0, 1))) ≤ λE(|β|)TV (g,R).

Moreover, its Fourier transform, denoted by u 7→ ĈX(u) is given for u 6= 0 by

ĈX(u) = E(eiuX(0)|X ′(0)|) + λE(eiuX(0))
n∑

j=1

E(eiumax(βg(t−j ),βg(t+j )))− E(eiumin(βg(t−j ),βg(t+j )))
iu

,

and for u = 0 by

ĈX(0) = E(TV (X, (0, 1))) = E(|X ′(0)|) + λE(|β|)
n∑

j=1

|g(t+j )− g(t−j )|.

Proof. According to Proposition 1 for any bounded continuous functions h defined on R, almost
surely

(3)
∫

R
h(α)NX(α) dα =

∫ 1

0
h(X(t))|X ′(t)| dt+

∑

t∈SX∩(0,1)

∫ max(X(t+),X(t−))

min(X(t+),X(t−))
h(α) dα,

Taking h = 1, we obtain that
∫

R
NX(α) dα =

∫ 1

0
|X ′(t)| dt+

∑

t∈SX∩(0,1)

|X(t+)−X(t−)| = TV (X, (0, 1)).

Using the stationarity of X ′, we have E
(∫ 1

0 |X ′(t)|
)

= E(|X ′(0)|) ≤ λE(|β|) ∫
R |g′(s)|ds and

E


 ∑

t∈SX∩(0,1)

|X(t+)−X(t−)|

 = λE(|β|)

n∑

j=1

|g(t+j )− g(t−j )|.

Therefore,
∫

R
CX(α) dα ≤ λE(|β|)




∫

R
|g′(s)|ds+

n∑

j=1

|g(t+j )− g(t−j )|

 ≤ λE(|β|)TV (g,R).

Now, taking h(α) = eiuα for some u ∈ R with u 6= 0 in (3), we get
∫

R
eiuαNX(α) dα =

∫ 1

0
eiuX(t)|X ′(t)| dt+

∑

t∈SX∩(0,1)

∫ max(X(t+),X(t−))

min(X(t+),X(t−))
eiuα dα,

=
∫ 1

0
eiuX(t)|X ′(t)| dt+

n∑

j=1

A(j),(4)

where A(j) :=
∑

τi∈(−tj ,1−tj)
eiuX((tj+τi)

+)

iu

(
eiumax(βi(g(t

−
j )−g(t+j )),0) − eiumin(βi(g(t

−
j )−g(t+j )),0)

)
. Now,

let us write X((tj + τi)+) =
∑

τk 6=τi
g(tj + τi − τk) + βig(t+j ) and

B(u, tj , βi) :=
eiumax(βig(t

−
j ),βig(t

+
j )) − eiumin(βig(t

−
j ),βig(t

+
j ))

iu
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such that
A(j) =

∑

τi∈(−tj ,1−tj)
eiu

P
k 6=i βkg(tj+τi−τk)B(u, tj , βi).

Then, for M > 0 consider

AM (j) =
∑

τi∈(−tj ,1−tj),|τi|≤M
e
iu
P

k 6=i;|τk|≤M βkg(tj+τi−τk)
B(u, tj , βi) such that AM (j) −→

M→+∞
A(j) a.s.

Then

AM (j) d=
NM∑

i=1

1(−tj ,1−tj)(Ui)e
iu
P

k 6=i βkg(tj+Ui−Uk)B(u, tj , βi),

where (Uk)k∈N is an iid sequence of uniform law on [−M,M ] independent from (βk)k∈N and NM is a
Poisson random variable of intensity 2λM independent from (Uk)k∈N and (βk)k∈N and the convention

is
0∑

i=1

= 0. Now, classical computations lead to

E(AM (j)) = λE(B(u, tj , β))
∫ 1−tj

−tj
exp

(
λ

∫ M+x+tj

−M+x+tj

(
F̂ (ug(s))− 1

)
ds

)
dx,

where F̂ (u) = E(eiuβ). Then using Lebesgue’s Theorem

E(A(j)) = λE(B(u, tj , β))E(eiuX(0)).

Finally, taking the expectation on both sides of Equation (4) and using the stationarity of X, leads
to the announced result for ĈX(u). ¤

The Fourier transform ĈX may be rewritten in terms of the characteristic function of the shot
noise process which is easily computable. Actually, if we denote for all u, v ∈ R,

(5) ψ(u, v) = E(eiuX(0)+ivX′(0)) and F̂ (u) = E(eiuβ)

then it is well-known that

ψ(u, v) = exp
(
λ

∫

R
(F̂ (ug(s) + vg′(s))− 1) ds

)
.

Proposition 2. Under the assumptions of Theorem 1, if we assume moreover that β ∈ L2(Ω) and
that g′ ∈ L2(R). Then, for u 6= 0, ĈX(u) is equal to
(6)
−1
π

∫ +∞

0

1
v

(
∂ψ

∂v
(u, v)− ∂ψ

∂v
(u,−v)

)
dv+λψ(u, 0)

n∑

j=1

E(eiumax(βg(t−j ),βg(t+j )))− E(eiumin(βg(t−j ),βg(t+j )))
iu

.

Proof. Since g′ ∈ L1(R) and since g has a finite number of discontinuity points with finite left and
right limits, it follows that g ∈ L∞(R). Consequently, g ∈ L∞(R) ∩ L1(R) ⊂ L2(R). Therefore,
when β ∈ L2(Ω) and g′ ∈ L2(R), the characteristic function ψ of (X(0), X ′(0)) is C2 on R2. Then,
−1
π

∫ +∞
0

1
v

(
∂ψ
∂v (u, v)− ∂ψ

∂v (u,−v)
)
dv is well defined and is the Hilbert transform of the function

v 7→ ∂ψ
∂v (u, v). Moreover, the computations of Proposition 12 in our previous paper [3] yields that

E(eiuX(0)|X ′(0)|) =
−1
π

∫ +∞

0

1
v

(
∂ψ

∂v
(u, v)− ∂ψ

∂v
(u,−v)

)
dv.

¤
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Let us remark that, when β ≥ 0 a.s., the part involving the jumps in Equation (6) can be written
as

∑

tj ;g(t
+
j )>g(t−j )

F̂ (ug(t+j ))− F̂ (ug(t−j ))
iu

+
∑

tj ;g(t
+
j )<g(t−j )

F̂ (ug(t−j ))− F̂ (ug(t+j ))
iu

,

where F̂ is defined by (5).

Moreover, remark also that for any s1 < s2, the function u 7→ ψ(u, 0)
bF (us2)− bF (us1)

iu is the Fourier
transform of the function α 7→ P[α− βs2 ≤ X(0) ≤ α− βs1].

2. A particular case

The formula for ĈX(u) can become simpler in some cases. The first particular case if when the
kernel g is piecewise constant, since then X ′(0) = 0 a.s. and thus the term E(eiuX(0)|X ′(0)|) vanishes.
The second particular case is when g is piecewise non-increasing. In that case, we have the following
proposition.

Proposition 3. Assume that β ≥ 0 a.s. and that g is piecewise non-increasing (meaning that g′ ≤ 0
and thus g is non-increasing on each of the intervals on which it is continuous, but it can have positive
jumps, defined as discontinuity points tj such that g(tj+) > g(tj−)). Then,

(7) ĈX(u) = 2λψ(u, 0)
∑

tjpositive jump

F̂ (ug(t+j ))− F̂ (ug(t−j ))
iu

,

and as a consequence,

(8) for almost every α ∈ R, CX(α) = 2λ
∑

tjpositive jump

P[α− βg(t+j ) ≤ X(0) ≤ α− βg(t−j )].

Proof. Since g′ ≤ 0, we haveX ′(0) ≤ 0 a.s. and consequently E(eiuX(0)|X ′(0)|) = −E(eiuX(0)X ′(0)) =
i∂ψ∂v (u, 0). Now, since g is piecewise non-increasing and in L1(R), we have lim

|s|→+∞
g(s) = 0 and thus

lim
|s|→+∞

F̂ (ug(s)) = 1. Then, after reordering the term coming from Chasles’ Formula,

∂ψ

∂v
(u, 0) = λψ(u, 0)

∫

R
g′(s)F̂ ′(ug(s)) ds

= λψ(u, 0)
n∑

j=1

F̂ (ug(t−j ))− F̂ (ug(t+j ))
u

.

Consequently, in the formula for ĈX(u), grouping the terms for each jump tj , we get that all the terms
with the negative jumps vanish because in that case F̂ (ug(t−j ))−F̂ (ug(t+j )) = −F̂ (umin(g(t+j ), g(t−j )))+

F̂ (umax(g(t+j ), g(t−j ))) and thus finally we get Formula (7) for ĈX(u). The remark at the end of the
previous section gives as a consequence Formula (8) for CX(α) for almost every α ∈ R. ¤

A particular case of this is when we make the assumption that the function g is positive and that
it has only one positive jump at t1 = 0 from the value g(0−) = 0 to the value g(0+) > 0. The formula
above then simply becomes

(9) ĈX(u) = 2λψ(u, 0)
F̂ (ug(0+))− 1

iu
.

This framework corresponds to the case studied by Hsing in [10], and where he proves that if UX(α)
denotes the expected number of up-crossings of the level α by the process X in [0, 1], then

(10) ∀α ∈ R, UX(α) = λP[α− βg(0+) < X(0) ≤ α].

The result of Hsing given by Equation (10) is stronger than the similar formula given by Equation
(8) because his formula is valid for all levels α and moreover he needs weaker assumptions on the
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regularity of g. On the other hand, his proof strongly relies on the fact that g has only one positive
jump and that its value is 0 before that jump, and thus it can not be generalized to kernel functions
g with other more general shapes. Another point that has to be discussed is the type of crossings
that are considered. In his paper, Hsing considers up-crossings that are defined in the following way :
the point t is an up-crossing of the level α by the the process X if it is a point of discontinuity of X
and if X(t−) ≤ α and X(t+) > α. This explains the left strict inequality in his formula (10).

Notice that we have studied here in this section the case of a piecewise non-increasing kernel
function g, but of course similar results hold for a piecewise non-decreasing kernel.

3. High intensity and Gaussian limit

We assume here that the assumptions of Proposition 2 hold. It is then well-known (see [13, 9] for
instance) that as the intensity λ of the Poisson point process goes to infinity, then the normalized
process Zλ defined by

t 7→ Zλ(t) =
Xλ(t)− E(Xλ(t))√

λ
,

where Xλ denotes a shot noise process (as defined by Equation (1)) with intensity λ for the Poisson
point process, converges to a centered Gaussian process with covariance R(t) = E(β2)

∫
R g(s)g(s −

t) ds.
Now, how do the crossings of Zλ behave as λ goes to +∞ ? To answer this, we first determine the

asymptotic expansion of the Fourier transform of CZλ
as λ→ +∞.

We have :

ĈZλ
(u) =

1√
λ
ĈXλ

(
u√
λ

)
e−iuE(Xλ(t))/

√
λ =

1√
λ
E

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))|X ′

λ(0)|
)

+
√
λE

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))

) n∑

j=1

E(ei
u√
λ

max(βg(t+j ),βg(t−j )))− E(ei
u√
λ

min(βg(t+j ),βg(t−j )))
iu/

√
λ

As we have already studied in [3], the first term of the right-hand side admits a limit as λ→ +∞,
and more precisely we have proved that, as λ→ +∞,

1√
λ
E

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))|X ′

λ(0)|
)

=

√
2m2

π
e−m0u2/2 + o(1),

where m0 =
∫
R g

2(s) ds and m2 =
∫
R g

′2(s) ds. For the second term, it is the product of two terms
that can be explicitely asymptotically developed as λ→ +∞. Indeed we have

E
(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))

)
= exp

(
λ

∫

R
(ei

u√
λ
g(s) − 1)ds− iu

√
λ

∫

R
g(s) ds

)

= exp
(
−m0u

2

2
− im3u

3

3
√
λ

+O(
1
λ

)
)

= e−m0u2/2

(
1 +

2ium3

3m0

√
λ

)
+O

(
1
λ

)
,

where m3 =
∫
R g

3(s) ds. And for a given jump j, 1 ≤ j ≤ n, we have

E(ei
u√
λ

max(βg(t+j ),βg(t−j )))− E(ei
u√
λ

min(βg(t+j ),βg(t−j )))
iu/

√
λ

= E(|β|)|g(t+j )− g(t−j )|

+
iu

2
√
λ
E(β2)|g2(t+j )− g2(t−j )|+O

(
1
λ

)
.

Finally, we thus have

ĈZλ
(u) =

√
λ e−m0u2/2E(|β|)

n∑

j=1

|g(t+j )− g(t−j )|

+




√
2m2

π
+

2ium3

3m0
E(|β|)

n∑

j=1

|g(t+j )− g(t−j )|+ iu

2
E(β2)

n∑

j=1

|g2(t+j )− g2(t−j )|

 e−m0u2/2 + o(1).
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Let us comment a bit this result. When there are no jumps we obtain that ĈZλ
(u) converges, as

λ goes to infinity, to
√

2m2
π e−m0u2/2. This implies that CZλ

(α) weakly converges to
√
m2

π
√
m0
e−α2/2m0 ,

which is the usual Rice’s formula for the crossings of Gaussian processes (see [6] for instance). Now,
when there are jumps, the behavior of ĈZλ

(u) is different, since the main term in
√
λ doesn’t vanish

anymore. More precisely we have that 1√
λ
ĈZλ

(u) goes to e−m0u2/2E(|β|) ∑n
j=1 |g(t+j )− g(t−j )|, which

implies that

1√
λ
CZλ

(α) −→
λ→∞

1√
2πm0

e−α
2/2m0E(|β|)

n∑

j=1

|g(t+j )− g(t−j )| in the sense of weak convergence.

Notice also that taking u = 0 in the asymptotic formula for ĈZλ
(u) gives the asymptotic behavior

of the total variation of Zλ. Indeed, we then have

E(TV (Zλ, (0, 1))) = ĈZλ
(0) =

√
λE(|β|)

n∑

j=1

|g(t+j )− g(t−j )|+
√

2m2

π
+ o(1).

This kind of asymptotic behavior has also been studied by B. Galerne in [8] in the framework of
random fields of bounded variation.

4. Some examples

4.1. Step functions. We start this section with some examples of explicit computations in the case
of step functions.

(1) The first simple example of step function is the one where the kernel g is a rectangular
function : g(t) = 1 for t ∈ [0, a] with a > 0 and 0 otherwise. Notice that this is a very simple
framework, that also fits in the results of Hsing [10].
• If the impulse β is such that β = 1 a.s., then ψ(u, 0) = exp(λa(eiu − 1)), which shows

that X(0) follows a Poisson distribution with parameter λa. Then, by Formula (9),

ĈX(u) = 2λ exp(λa(eiu − 1))
eiu − 1
iu

.

We recognize here the product of two Fourier transforms: the one of a Poisson distribu-
tion and the one of the indicator function of [0, 1]. Thus,

CX(α) =
+∞∑

k=0

2λe−λa
(λa)k

k!
1I{k<α<k+1} for all α ∈ R\N.

(The inequality k < α < k+1 comes from the way we have defined the crossings CX(α),
and CX(α) = +∞ for all α ∈ N.)

• If the impulse β follows an exponential distribution of parameter µ > 0, then F̂ (u) = µ
µ−iu

and a simple computation gives

ĈX(u) = 2λ exp
(
λa

iu

µ− iu

)
1

µ− iu
.

We recognize here the Fourier transform of a non-central chi-square distribution, and
thus

CX(0) = +∞ and CX(α) = 2λµe−aλ−µαI0(2
√
aλµα) for all α > 0,

where I0 is the modified Bessel function of the first kind of order 0; it is given by
I0(x) = 1

π

∫ π
0 e

x cos θdθ =
∑+∞

m=0
x2m

4m(m!)2
. By taking the inverse Fourier transform, we

only have that the formula above for CX(α) holds for almost every α ∈ R. But CX(α)
can be written as CX(α) = UX(α) +DX(α) + TX(α), where UX(α) are the up-crossings
(as defined by Hsing), DX(α) are the down-crossings (defined in a symmetric way) and
TX(α) = E(#{t ∈ (0, 1) ∩ ScX ;X ′(t) = 0 and X(t) = α}). Now, the law of X(0) can
be computed: dPX(0)(x) = e−2aλδ0(x) +

∑+∞
k=1 e

−2aλ (2aλ)k

k! fµ,k(x)dx, where fµ,k is the
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probability density of the Gamma distribution of parameters µ and k. Then, for all
α > 0, P[X(t) = α] = 0 and since X is piecewise constant we have that TX(α) = 0.
Then, thanks to the result of Hsing in Equation (10), we have that for all α > 0,
CX(α) = 2UX(α) = 2λP[α − β < X(0) ≤ α]. This implies that CX(α) is a continuous
function of α > 0, and thus the formula holds for every α > 0. And for α = 0, since
P[X(t) = 0] > 0, we have CX(0) = +∞.

(2) A second example is a “double rectangular” function given by: g(t) = 1 if −1 ≤ t < 0;
g(t) = −1 if 0 ≤ t < 1, and g(t) = 0 otherwise. Notice that this case does not fit anymore in
the framework of Hsing.
• If β = 1 almost surely, then simple computations show that

ĈX(u) = 4λ
sinu
u

exp(2λ(cosu− 1)).

The last term above is the characteristic function of the difference of two independent
Poisson random variables of same parameter λ (it is also called a Skellam distribution),
and thus

∀α ∈ R\Z, CX(α) =
+∞∑

k=−∞
4λpk1I{k<α<k+1}, where ∀k ∈ Z, pk = e−2λ

+∞∑

n=0

λk+2n

n!(k + n)!
.

(Again, the inequality k < α < k + 1 comes from the way we have defined the crossings
CX(α), and CX(α) = +∞ for all α ∈ Z.)

• If β follows an exponential distribution of parameter µ, we can also explicitely compute

ĈX(u) =
4λµ

µ2 + u2
exp

(
−2λ

u2

µ2 + u2

)
.

4.2. Exponential kernel. In this section, we consider an example that has been widely studied in
the literature : the impulse β follows an exponential distribution of parameter µ > 0, and the kernel
function g is given by g(s) = 0 for s < 0 and g(s) = e−s for s ≥ 0.

A simple computation gives that the joint characteristic function of X(0) and X ′(0) is

∀u, v ∈ R, ψ(u, v) =
µλ

(µ− iu+ iv)λ
.

Then by Formula (9), we get

ĈX(u) =
2λµλ

(µ− iu)λ+1
.

We recognize here the Fourier transform of a Gamma probability density. Thus it implies that

CX(α) =
2λµλαλe−µα

Γ(λ+ 1)
1I{α≥0} for all α ∈ R.

The fact that the formula holds for all α ∈ R comes from the continuity of the crossing function.
Indeed, using again Hsing result’s as in the previous example, and the fact that here the law of X(0)
admits a probability density (see [3] for a rigorous proof of this) and that X is stationary and has
a.s. no tangencies in (0, 1), it implies that for all α ∈ R, CX(α) = 2UX(α) and thus that the crossing
function CX is continuous.

In the case where λ is an integer, the explicit formula for the crossings CX(α) was already given in
[12] by Orsingher and Battaglia (but they had a completely different approach based on the property
that in the particular case of an exponential kernel, the process is Markovian).
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