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Abstract. In this paper, we propose a method for simulating realizations of two-

dimensional anisotropic fractional Brownian �elds (AFBF) introduced by Bonami and

Estrade (2003). The method is adapted from a generic simulation method called the

turning-band method (TBM) due to Matheron (1973). The TBM reduces the problem

of simulating a �eld in two dimensions by combining independent processes simulated

on oriented bands. In the AFBF context, the simulation �elds are constructed by dis-

cretizing an integral equation arising from the application of the TBM to non-stationary

anisotropic �elds. This guarantees the convergence of simulations as the step of dis-

cretization is decreased. The construction is followed by a theoretical study of the con-

vergence rate (the detailed proofs are available in the online Supplementary Materials).

Another key feature of this work is the simulation of band processes. Using self-similarity

properties, processes are simulated exactly on bands with a circulant embedding method,

so that simulation errors are exclusively due to the �eld approximation. Moreover, we

design a Dynamic Programming algorithm that selects band orientations achieving the

optimal trade-o� between computational cost and precision. Finally, we conduct a nu-

merical study showing that the approximation error does not signi�cantly depend on the

regularity of the �elds to be simulated, nor on their degree of anisotropy. Experiments

also suggest that simulations preserve the statistical properties of the original �eld.

1. Introduction

The famous fractional Brownian motion (FBM) was introduced by Kolmogorov (1940)

and Mandelbrot and Van Ness (1968) for the modeling of irregular one-dimensional data
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exhibiting scale invariance and characterized by a single parameterH ∈ (0, 1), called Hurst

parameter. Several extensions have been proposed for 2-dimensional data accounting for

spatial correlations. Among them, fractional Brownian �elds (FBF) are natural extensions

that preserve the two main properties of FBM, namely stationary increments and self-

similarity. However, such �elds are isotropic in the sense that their law is invariant

under rotation, which is a serious drawback for many applications. For the modeling

and analysis of the anisotropy of image textures, Anisotropic Fractional Brownian Fields

(AFBF) were introduced by Bonami and Estrade (2003) (see the de�nition in Section

2.1) and were applied in medical imaging for the analysis of mammogram and bone

radiograph textures (Biermé and Richard, 2009). The main features of the AFBF model

are stationary increments and two orientation-dependent functional parameters c and

h, called respectively the topothesy (Davies and Hall, 1999) and Hurst functions. Due

to these parameters, the AFBF model covers a wide range of textures having di�erent

types of anisotropies. When the Hurst function is constant, the model describes a large

class of self-similar random �elds whose anisotropy is characterized by the topothesy

function. When the Hurst function also varies, the �eld may no longer be strictly self-

similar, but only asymptotically self-similar. This allows one to �t realistic textures having

di�erent properties at small and large scales, e.g. showing irregular patterns on a smooth

heterogeneous background.

The simulation of AFBF is an open issue whose complexity is mainly due to both the

non-stationarity and the anisotropy of the �elds. Stein (2002) described a speci�c method

for the simulation of (isotropic) FBF. This method is based on a representation of the

FBF by a locally stationary isotropic Gaussian �eld, which is simulated using circulant

embedding matrix techniques developed by Dietrich (1995) and Wood and Chan (1994).

This simulation is exact and e�cient on a regular grid. However, since there is not any

locally stationary representation for general anisotropic �elds, Stein's method cannot be

extended to the simulation of these �elds.
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More generic methods based on covariance matrix factorizations (Brouste et al., 2007;

Chan, 1999) cannot be applied to AFBF. In theory, they require covariance functions to be

explicitly known (which is not the case for the AFBF) and in practice, their computational

cost is prohibitive. Other methods based on the discretization of a continuous spectral

representation of the �eld were used for the simulation of FBF by Saupe (1988) and AFBF

by Ayache et al. (2005) and Biermé and Richard (2008). However, due to the truncation

and periodization of the spectral representation, the statistical properties of the simulated

�eld do not exactly match those of the theoretical �eld.

In this paper, we focus on another generic simulation method, called the turning-

band method (TBM) (Matheron, 1973; Journel, 1974), which is more adapted to AFBF

simulations. The TBM essentially reduces the problem of simulating a �eld in several

dimensions to the problem of simulating several processes in one dimension. Indeed,

consider the problem of generating a realization of a target �eld X on a discrete set G of

points of R2. Choose n lines (called turning bands) passing through a given origin and

denote by θi the angle indicating the direction of the ith band. The TBM is based on

n appropriate processes (Yi)1≤i≤n independently simulated on each prede�ned band, that

are linearly combined to build the �eld

(1) Xn(x) =
n∑
i=1

√
λi Yi(x · u(θi)), x ∈ G

where the λi's are positive weights, u(θ) = (cos(θ), sin(θ)) is a unit vector with direction

θ, and u · v denotes the usual inner product in R2.

There are two major issues raised by the application of the TBM. The �rst one consists

of determining appropriate weights λi and band processes Yi which ensure the convergence

of the turning-band �eld Xn to the target �eld X as n tends to in�nity. The second one

concerns the simulation of the processes Yi on the non-equispaced points {x·u(θi), x ∈ G}.

The convergence issue has been extensively studied in the case when the target �eld is

stationary (Brooker, 1985; Christakos, 1987; Dietrich, 1995; Gneiting, 1996, 1998; Man-

toglou, 1987; Matheron, 1973). In this case, the convergence can be obtained using
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stationary band processes. The TBM has also been adapted to the simulation of non-

stationary �elds with stationary increments (Dimitrakopoulos, 1990; Chilès and Del�ner,

2012; Emery, 2008; Mantoglou and Wilson, 1982; Matheron, 1973; Pardo-Igúzquiza and

Dowd, 2003). In such a situation, the convergence of the turning-band �eld to the target

one is expressed in terms of semi-variograms instead of covariances. It is obtained by tak-

ing band processes with stationary increments and semi-variograms ṽθ (in the direction

θ) which satisfy the condition

(2) vX(y) =

∫ π
2

−π
2

ṽθ(y · u(θ)) dθ,

where vX is the semi-variogram of the target �eld X (see Equation (3) below). In this pa-

per, we show that AFBF satisfy this equation for the semi-variograms ṽθ of non-standard

FBMs, whose Hurst exponent and topothesy parameter depend on the direction θ.

Consequently, the TBM algorithm for AFBF requires the simulation of one-dimensional

FBM. In the isotropic case of FBF, TBM algorithms have already been developed. Yin

(1996) proposes to simulate the FBM band processes using the spectral method (Man-

toglou and Wilson, 1982; Pardo-Igúzquiza and Chica-Olmo, 1993; Shinozuka and Jan,

1972), while Emery (2008) synthetizes them using random cosine functions. In both

cases, the band processes are non-Gaussian, and not self-similar processes. Simulations

are only asymptotically Gaussian due to a Central Limit Theorem.

One of the main originalities of the present paper is the construction of an appropriate

turning-band �eld that simulates the AFBF while keeping its main statistical properties:

Gaussianity, stationary increments, and (asymptotical) self-similarity. This construction

relies upon a technique we develop for the exact simulation of the FBM on non-uniformly

spaced points. This technique is an extension of the circulant embedding method intro-

duced in (Dietrich and Newsam, 1997; Wood and Chan, 1994) and already used in (Perrin

et al., 2002) for the simulation of FBM on equispaced points.

The application of this extended technique in the AFBF simulation context has a

computational cost which mainly depends on band orientations and is higher than the
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one of the continuous spectral method in Emery (2008) and Emery and Lantuéjoul (2006).

To reduce this cost, we thus propose a Dynamic Programming algorithm (Bellman, 1954)

that selects band orientations in an optimal way.

Furthermore, the construction of the AFBF simulation method is completed by theo-

retical and numerical analyses of the simulation error. These analyses bring new insights

into the TBM simulation error, which has been mainly investigated in the stationary

isotropic case (Chilès, 1977; Gneiting, 1998; Mantoglou and Wilson, 1982).

2. The turning-band method

2.1. Anisotropic fractional Brownian �elds. Let (Ω,A,P) be a probability space. A

2-dimensional random �eld X is a map from Ω × R2 into R such that X(·, y) (shortly

written X(y)) is a real random variable on Ω for all y ∈ R2. A random �eld is Gaussian

if any �nite linear combination of its associated random variables is a Gaussian vari-

able. A centered Gaussian �eld X is characterized by its covariance function: (y, z) 7→

Cov(X(y), X(z)). A �eld X has stationary increments if the law governing the �eld

X(·+ z)−X(z) is the same as X(·)−X(0) for all z ∈ R2. When the �eld X is centered

and has stationary increments, one has ∀y, z ∈ R2, Cov(X(y) − X(0), X(z) − X(0)) =

vX(y) + vX(z)− vX(y − z), where vX is the so-called semi-variogram of X de�ned as

(3) ∀y ∈ R2, vX(y) =
1

2
E((X(y)−X(0))2).

Hence, if the �eld X is also Gaussian with X(0) = 0 a.s., its law is characterized by

its semi-variogram (3). From a generalization of Bochner Theorem, a function v is the

semivariogram of a 2-dimensional Gaussian random �eld if and only if there exists a Lévy

measure µ, i.e. a positive Borel measure satisfying
∫
R2 min(1, |ζ|2)µ(dζ) < +∞, such that

(4) ∀ x ∈ R2, v(x) =
1

2

∫
R2

∣∣eix·ζ − 1
∣∣2 µ(dζ).

When µ(dζ) = f(ζ)dζ, the positive function f is called a spectral density. In this work,

we deal with anisotropic fractional Brownian �elds, which are centered Gaussian �elds
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with stationary increments, characterized by a a spectral density of the form

(5) ∀ ζ ∈ R2, f(ζ) = c(arg(ζ)) |ζ|−2h(arg(ζ))−2,

where |ζ| is the Euclidean norm of ζ, arg(ζ) is the direction of ζ, and a semi-variogram

of the form (4) with µ(dζ) = f(ζ)dζ. Functions c and h, called topothesy and Hurst

functions, are two π-periodic measurable functions, de�ned on (−π/2, π/2], with ranges

satisfying c((−π/2, π/2]) ⊂ R+ and h((−π/2, π/2]) ⊂ (0, 1) to ensure that µ is a Lévy

measure. When c ≡ C > 0 and h ≡ H ∈ (0, 1) are both constant, the semi-variogram

satis�es (see Lacaux (2004, Remark 1.1.13) for instance)

(6) v(x) =
1

2

∫
R2

∣∣eix·ζ − 1
∣∣2C|ζ|−2H−2dξ = C

π
1
2 Γ(H + 1/2)γ(H)

2Γ(H + 1)
|x|2H ,

(7) where ∀H ∈ (0, 1), γ(H) =
π

HΓ(2H) sin(Hπ)
.

It follows that such �elds are isotropic, which means that their law is invariant under

rotation. They are also H-self-similar meaning that the law governing the �eld X(λ ·) is

the same as λHX(·) for all λ ∈ R. When the function c is not constant but h remains

constant (h ≡ H), the �eld remains self-similar of order H but becomes anisotropic.

When h is also allowed to vary, the �eld is not self-similar anymore but asymptotically of

order H = ess inf
θ∈Sd−1; c(θ)>0

h(θ), as shown by Bonami and Estrade (2003, Proposition 2).

In general, it is di�cult to get an explicit form of the AFBF semi-variogram similar to

the one expressed in (6) for the FBF. However, we have computed explicitly the semi-

variogram of a particular class of AFBF which is slightly more general than the FBF

(see online Supplementary Materials, Appendix A, Proposition 1). This �eld, which we

call an elementary �eld, is de�ned by a spectral density of the form (5) with c = 1[α1,α2]

for −π/2 ≤ α1 < α2 ≤ π/2 and h ≡ H for H ∈ (0, 1). It is therefore H-self-similar.

Moreover, when α2 = −α1 = π/2, an elementary �eld corresponds to an isotropic FBF of

order H. However, in the general case when α2 − α1 < π, the corresponding elementary

�eld is anisotropic. As explained in Section 4, elementary �elds will be of particular
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interest for the numerical evaluation of simulations. Now, let us consider the general case

from which the TBM will follow.

2.2. Turning-band �elds for AFBF. By a change of variables in polar coordinates,

we derive an integral expression for the semi-variogram of an AFBF.

Proposition 2.1. Let X be a centered Gaussian �eld with stationary increments with

X(0) = 0 a.s. Let us assume that its semi-variogram vX is of the form (4) with a

spectral density de�ned by (5) with c and h two π-periodic measurable functions with

ranges satisfying c((−π/2, π/2]) ⊂ R+ and h((−π/2, π/2]) ⊂ (0, 1). Then, for all x ∈ R2,

(8) vX(x) =
1

2

∫ π/2

−π/2
γ(h(θ))c(θ)|x · u(θ)|2h(θ)dθ,

where u(θ) = (cos(θ), sin(θ)) and γ(·) is de�ned in Equation (7).

Proof. Let x ∈ R2. Then according to (4) and (5),

2vX(x) =

∫
R2

∣∣eix·ζ − 1
∣∣2 c(arg(ζ))|ζ|−2h(arg(ζ))−2dζ

=

∫ 2π

0

∫ +∞

0

∣∣eir(x·u(θ)) − 1
∣∣2 c(θ)r−2h(θ)−1drdθ,

by a change of variables in polar coordinates. But, for H ∈ (0, 1) and t ∈ R,∫ +∞

0

∣∣eirt − 1
∣∣2 r−2H−1dr =

1

2

∫
R

∣∣eist − 1
∣∣2 |s|−2H−1ds =

1

2
γ(H)|t|2H ,

according to (7.2.13) of Samorodnitsky and Taqqu (1994). Then the result follows by

π-periodicity of h and c. �

The integral equation (8) above is of the form (2) with ṽθ(·) = γ(h(θ))c(θ)1
2
|·|2h(θ). This

means that ṽθ is a solution of the integral equation (2) when vX is the semi-variogram

of an AFBF. Now recall that a standard FBM of order H is a centered Gaussian process

with stationary increments and semi-variogram wH(t) = 1
2
|t|2H for all t ∈ R. Hence, up

to the factor γ(h(θ))c(θ) depending only on the orientation θ, the semi-variogram ṽθ is

equal to the one of a FBM of order h(θ), also varying with θ.
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According to previous remarks, we now specify turning-band �elds for AFBF simula-

tions. Given an ordered set Θ = (θi)1≤i≤n of band orientations −π/2 ≤ θ1 < . . . < θn ≤

π/2, and a set Λ = (λi)1≤i≤n ∈ [0,+∞)n of appropriate band weights, a turning-band

�eld has the form

(9) XΘ,Λ(x) =
n∑
i=1

√
λiγ(h(θi))c(θi)Yi(x · u(θi)), ∀x ∈ R2,

where the Yi's are n independent FBM of order h(θi). Its semi-variogram has the form

(10) vΘ,Λ(x) :=
n∑
i=1

λiγ(h(θi)) c(θi)wh(θi)(x · u(θi)).

Let us emphasize that the turning-band �eld XΘ,Λ is a centered Gaussian random �eld

with stationary increments with XΘ,Λ(0) = 0 a.s. Moreover, when h ≡ H, it is also

self-similar of order H. Therefore XΘ,Λ shares the same law properties as X.

In the remaining text, a turning-band �eld XΘ,Λ will be called the simulation �eld, and

the process Yi will always be a FBM of order h(θi). We will also describe the precision of

a simulation �eld XΘ,Λ using the quantity

(11) εΘ = max
i=1,··· ,n+1

(θi − θi−1) ,

where θ0 ∈ [−π/2, θ1] and θn+1 ∈ [θn, π/2] are �xed directions chosen according to the

AFBF function c. When orientations are selected uniformly in (−π/2, π/2), εΘ = π/n.

In general, εΘ ≥ θn−θ0
n
≥ θn−θ1

n
, which links the precision εΘ to the number of lines.

The error of simulating X by XΘ,Λ may be expressed, at point x ∈ R2, as the Kol-

mogorov distance between the random variables XΘ,Λ(x) and X(x), that is,

(12) dKol(XΘ,Λ(x), X(x)) = sup
t∈R
|P(XΘ,Λ(x) ≤ t)− P(X(x) ≤ t)| .

When this distance tends to 0, it implies that the random variable XΘ,Λ(x) tends to X(x)

in distribution. As stated next, due to our Gaussian framework, this distance can be

further bounded by a distance between semi-variograms of simulation and target �elds.
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Theorem 2.2. Let XΘ,Λ be a simulation �eld de�ned as in Equation (9). Then, XΘ,Λ is

a centered Gaussian random �eld on R2 with stationary increments and semi-variogram

given by Equation (10). Moreover, XΘ,Λ(0) = X(0) = 0 a.s. and, for all x 6= 0,

(13) dKol(XΘ,Λ(x), X(x)) ≤ 2
|vX(x)− vΘ,Λ(x)|

vX(x)
.

If (Θn,Λn)n is chosen in such a way that vΘn,Λn(x) −→
n→+∞

vX(x) for all x ∈ R2, then

(XΘn,Λn(x))x∈R2 converges to (X(x))x∈R2 , in the sense of �nite dimensional distributions.

The proof is given in the online Supplementary Materials (Appendix A, Section 2). Let

us note that, since vΘ,Λ appears as a numerical approximation of the integral giving vX ,

one can choose (Θn,Λn)n in such a way that vΘn,Λn(x) tends to v(x) for x ∈ R2. This

implies that dKol(XΘn,Λn(x), X(x))→ 0 so that XΘn,Λn(x) tends to X(x) in distribution.

Note that conversely, since XΘn,Λn(x) and X(x) are centered Gaussian variables, vΘn,Λn(x)

tends to v(x) as soon as XΘn,Λn(x) tends to X(x) in distribution. The next section is

devoted to the analysis of the convergence rate.

2.3. Approximation error. Under appropriate regularity assumptions on c and h, we

can choose Θ and Λ so that the bound in the right-hand term of (13) holds uniformly

on a compact set. A �rst result can be established for elementary �elds (see online

Supplementary Materials, Appendix A, Section 3), then generalized to piecewise C1 Hurst

and topothesy functions.

Proposition 2.3. Assume that h and c are piecewise C1 on (−π/2, π/2] and write

(14) H = min
θ∈[−π/2,π/2]

h(θ) ∈ (0, 1).

Let Θ = (θi)1≤i≤n with −π/2 ≤ θ1 < . . . < θn ≤ π/2 containing the singular points of h

and c and εΘ given by (11) with θ0 ∈ [−π/2, θ1], θn+1 ∈ [θn, π/2]. Let T be a compact

set of R2. Then, one can �nd Λ = (λi)1≤i≤n ∈ [0,+∞)n and a positive constant CT > 0,

independent of Θ,Λ, such that for all x ∈ T ,

(15) |vX(x)− vΘ,Λ(x)| ≤ CT ε
min(2H,1)
Θ .
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If moreover, h and c are piecewise C2 on (−π/2, π/2], one can �nd Λ = (λi)1≤i≤n ∈

[0,+∞)n and a positive constant CT > 0, independent of Θ,Λ, such that for all x ∈ T ,

(16) |vX(x)− vΘ,Λ(x)| ≤ CT


(
ε3

Θδ
−2+min(2H,1)
Θ + ε

1+min(2H,1)
Θ

)
if H 6= 1/2,(

ε3
Θδ
−1
Θ | log(δΘ)|+ ε2

Θ

)
if H = 1/2

with δΘ = min
1≤i≤n−1

(θi+1 − θi).

The proof of Proposition 2.3 is given in the online Supplementary Materials (Appendix

A, Section 4). In conjunction with Theorem 2.2, it gives a practical way to control the

approximation error associated with a given choice of Θ, since the Kolmogorov distance

between the theoretical �eld X and the simulated �eld XΘ,Λ can be bounded from above

thanks to (13) and (16). In practice, the values Θ are approximately equispaced (see

Section 3.2 for a discussion on the choice of Θ), so that the values of εΘ and δΘ are close

and inversely proportional to the number of bands n, and the bound in (16) behaves like

1/n2 if H < 1/2, like log(n)/n2 if H = 1/2, and like 1/n1+2H if H > 1/2.

For the particular case of elementary �elds, explicit examples of weights (based on

rectangular or trapezoidal integral approximation) are given in Appendix A. Moreover,

due to self-similarity, the previous proposition is strongly improved since the uniform

bound actually holds for the Kolmogorov distance itself (see Proposition 4 in Appendix

A). Note also that, due to discretization, XΘ,Λ may be considered as a linear combination

of independent approximations of elementary �elds.

As a comparison, Emery and Lantuéjoul (2008) also propose a TBM to synthesize an

isotropic FBF (say X), which actually corresponds to an elementary �eld with α1 = −π/2

and α2 = π/2. However, the processes simulated on the bands are not Gaussian so that

the Kolmogorov distance between the simulated random variable and the (elementary)

�eld X is bounded by the Berry Esseen bound given by n−1/2, with n the number of bands

(see Equation (27) in Emery and Lantuéjoul (2008)). This bound is to be compared with

the 1/n2, log(n)/n2 and 1/n1+2H bounds (according to the value of H) mentioned after
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Proposition 2.3. Moreover, in their approach the distance also depends on the point

x ∈ R2, which is not the case in the present work (see Appendix A, Proposition 4).

The next section is devoted to the exact simulation of XΘ,Λ on the discrete grid r−1Z2∩

[0, 1]2 for some r ≥ 1, for conveniently chosen Θ. This relies on fast and exact synthesis

of band processes on the corresponding involved points.

3. Fast and exact simulation on bands

3.1. Choice of bands. We consider the exact simulation of XΘ,Λ on the discrete grid

r−1Z2 ∩ [0, 1]2 for some r ≥ 1. Then for any i with 1 ≤ i ≤ n we have to simulate on each

band of direction u(θi){
Yi(x · u(θi));x ∈ r−1Z2 ∩ [0, 1]2

}
=

{
Yi

(
k1

r
cos(θi) +

k2

r
sin(θi)

)
; 0 ≤ k1, k2 ≤ r

}
.

Note that when θi = π/2 we can simply use the fact that
{
Yi
(
k2

r

)
; 0 ≤ k2 ≤ r

} d
=

r−h(θi) {Yi (k2) ; 0 ≤ k2 ≤ r}, by self-similarity. When cos(θi) 6= 0 we may choose θi such

that tan θi = pi
qi
, with pi ∈ Z and qi ∈ Nr{0}. But,

{
Yi
(
k1

r
cos(θi) + k2

r
sin(θi)

)
; 0 ≤ k1, k2 ≤ r

}
has the same law as

(
cos(θi)
rqi

)h(θi)

{Yi (k1qi + k2pi) ; 0 ≤ k1, k2 ≤ r} . Thus, the band with

direction u(θi) involves the simulation of a 1D FBM on a discrete interval of length

r(|pi| + qi). According to Perrin et al. (2002), one can get a fast and exact synthesis

using the circulant embedding method. The computational cost of this simulation is

C(r(|pi| + qi)), where C(rl) is the computational cost of the method described in the

online Supplementary Materials (Appendix A, Section 5) to simulate a 1D FBM on the

discrete interval {0, . . . , rl}. If the Fast Fourier Transform with powers of two is used, then

C(rl) = O(2dlog2(rl)edlog2(rl)e), where dxe denotes the upper integer part of x. Finally,

the overall simulation process has to �nd a trade-o� between the computational cost

(17) C(Θ) =
∑
i

C(r(|pi|+ qi))

and the precision of the simulation, which is controlled by E(Θ) = ε
min(2H,1)
Θ , with H given

by (14). The optimal choice of Θ is discussed in the following section.
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3.2. Band selection by Dynamic Programming. We would like to minimize the

computational cost C(Θ) over all angle sets Θ such that εΘ ≤ ε (ε being a given precision

parameter). As we saw above, the angles θ ∈ Θ must have a rational tangent, so that one

can �nd an integer N (large enough) such that each angle θ of an optimal solution Θ can

be written under the form θ = arctan p
q
∈ [−π

2
, π

2
], where (p, q) belongs to

(18) VN =

{
(p, q); −N ≤ p ≤ N, 1 ≤ q ≤ N, gcd(p, q) = 1, α1 < arctan

p

q
< α2

}
.

Of course, exploring all subsets of VN is not possible in a reasonable time, but it turns

out that the combinatorial minimization problem we are considering,

(19) min C(Θ) under the constraints Θ ∈ P
({

arctan
p

q
; (p, q) ∈ VN

})
, εΘ ≤ ε

has a recursive structure that can be exploited to design an e�cient exact algorithm with

polynomial complexity. This class of algorithms is referred to as Dynamic Programming

(Bellman, 1954) and is commonly used for graph optimization problems.

We now describe the Dynamic Programming algorithm that can be used to solve (19).

Assume that the set VN has been sorted into a sequence (pk, qk)1≤k≤n such that the

associated angular sequence θk = arctan pk
qk

is increasing. Writing ek = C(r(|pk| + qk))

for the elementary cost associated with a band of orientation θk, we can rewrite the total

computational cost of a set of angles Θ = (θik)1≤k≤s as C(Θ) =
s∑

k=1

eik . We add the

convention that θn+1 = α2 and θ0 = α1 (with the associated elementary cost e0 = 0).

Now, for 0 ≤ i ≤ n+1, let us call ci the minimal cost that can be realized with a sequence

i1 = i, i2, . . . is = n + 1 for some integer s. Then, c0 is the optimal cost we look for, and

for all 0 ≤ i ≤ n we have ci = ei + minj; j>i, θj≤θi+ε cj. This induction formula (called the

Bellman Equation in the framework of Dynamic Programming) permits us to compute

the optimal costs cn, cn−1, . . . c0 recursively (the initialization being made with cn+1 = 0).

Moreover, each time the minimum in Bellman Equation is computed, we consider one

optimal index ki ∈ arg minj; j>i, θj≤θi+ε cj, so that an optimal sequence i1, i2, . . . is can

be computed by tracking back indexes that achieve the optimal cost c0. This sequence
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is given by i1 = k0, i2 = ki1 , . . . is = kis−1 , where the value of s is obtained using the

fact that is+1 = n + 1. In the end, the desired sequence of integer vectors is simply

(p̄k, q̄k)1≤k≤s, where (p̄k, q̄k) = (pik , qik) for all 1 ≤ k ≤ s. The whole procedure we just

described is given in pseudo-code in the online Supplementary Materials, Appendix B.

In practice, it seems that choosing N = 1 +
⌈

1
tan ε

⌉
(which ensures that the constraint

εΘ ≤ ε is feasible) is su�cient to achieve the optimal solution, though we do not have a

proof of this (even if this were not true, the algorithm we present here would yield slightly

sub-optimal sets of bands, with little practical consequences). In Figure 1, the Dynamic
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Figure 1. Computational cost achieved with a pseudo-uniform sampling of the

turning bands versus their selection by Dynamic Programming.

Programming algorithm we described is compared to a pseudo-uniform sampling of Θ,

where each θi = arctan pi
qi
is computed by choosing for each i an appropriate convergent

pi/qi of the continued fraction associated with tan
(
α1 + i

n
(α2 − α1)

)
. It appears that the

proposed Dynamic Programming algorithm achieves a signi�cantly lower computational

cost. Note that choosing the number n of bands as 1/ε with ε the precision parameter,

the TBM involves the computation of n 1D FFTs of vectors whose size is of the order

n× r, where r is the step of the discrete grid.



14 HERMINE BIERMÉ 1, LIONEL MOISAN 2, AND FRÉDÉRIC RICHARD3

4. Numerical Study

This section is devoted to the numerical evaluation of anisotropic fractional Brownian

�eld (AFBF) simulations obtained by turning bands.

Let us recall some notations. The �eldX is the theoretical �eld to be simulated (AFBF).

Its semi-variogram vX is of the form (4) with a spectral density de�ned by (5). The �eld

XΘ,Λ is the turning-band simulation �eld de�ned by Equation (9) for some sets Θ and Λ

giving band orientations and weights, respectively. The semi-variogram vΘ,Λ of XΘ,Λ is

de�ned by Equation (10).

In all experiments, the set Θ of band orientations was computed automatically using

the Dynamic Programming algorithm described in Section 3.2 with a constraint on �eld

precision. The precision parameter εΘ associated with the set Θ is de�ned as in Equation

(11). Weights λi of Λ are de�ned to ful�ll the condition of Proposition 4 (see online

Supplementary Materials, Appendix A, Section 3).

4.1. The use of elementary �elds. Our evaluation is based on elementary �elds whose

spectral density is given by Equation (5) taking h ≡ H for some H ∈ (0, 1) and c = 1[−α,α]

for some 0 < α ≤ π/2.

Elementary �elds are speci�ed by only two parameters, H and α, which can be inter-

preted as regularity and anisotropy parameters, respectively. The Hölder regularity of

these �elds being equal to H (see Bonami and Estrade (2003) for instance), it increases

as H tends to 1. When α = π/2, the elementary �eld corresponds to the usual isotropic

fractional Brownian �eld with Hurst index H. When 0 < α < π/2, these �elds are no

longer isotropic. In this case, they are fractional Brownian �elds whose non-null frequency

components are restricted between frequency directions −α and α. As α decreases to 0,

non-null �eld frequency components become more and more focused around the horizon-

tal direction. In Figure 2, some elementary �eld realizations are shown for illustrating

both the e�ect of increasing H on the �eld regularity and the e�ect of decreasing α on

its anisotropy. For the evaluation, we considered elementary �elds of varying degrees of
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regularity and anisotropy, taking all parameter pairs (H,α) for H in {0.2, 0.5, 0.8} and α

in {π/3, π/2}.

α = π
2

α = π
3

H = 0.2 H = 0.5 H = 0.8

Figure 2. Realizations on [0, 1]2 of elementary �elds obtained for di�erent val-

ues of H and α using the TBM with 5900 bands.

Let us further mention that the semi-variograms of elementary �elds can be computed

using the closed form given in Appendix A (Supplementary materials, Proposition 1,

Equation (1)). As will become apparent below, this is of particular interest for the com-

putation of evaluation criteria. In Figure 3, some of these semi-variograms are presented

for di�erent degrees of regularity and anisotropy.

Finally, let us notice that any anisotropic fractional Brownian �eld whose spectral

density is de�ned with piecewise constant functions h and c can be decomposed as a

sum of independent elementary �elds. Hence, although achieved on elementary �elds, our

evaluation accounts for more general anisotropic fractional Brownian �elds.

4.2. Approximation error. As mentionned in Section 2.3, simulation errors result from

the distance separating simulation and theoretical �elds. This distance can be de�ned as

the Kolmogorov distance between distributions of theoretical and simulation �elds at

each position x. As stated in Theorem 2.2 (Equation (13)), the Kolmogorov distance
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Figure 3. Semi-variograms on [0, 1]2 of elementary �elds for di�erent values of

H and α.

is further bounded by dΘ,Λ(x) =
|vX(x)−vΘ,Λ(x)|

vX(x)
, which is proportional to the error made

when approximating the semi-variogram of X by that of XΘ,Λ. Moreover, when X is

an elementary �eld, it is possible to compute the bound dΘ,Λ(x) using closed forms of

vΘ,Λ(x) and vX(x) given by Equation (10) and Appendix A (Proposition 1, Equation (1)),

respectively. Hence, using elementary �elds, we could numerically evaluate a simulation

error by averaging values of dΘ,Λ(x) over points x of a uniform subgrid of [0, 1]2 :

dΘ,Λ =
∑

1≤k,l≤p

dΘ,Λ

(
k

p
,
l

p

)
=

∑
1≤k,l≤p

|vX(k
p
, l
p
)− vΘ,Λ(k

p
, l
p
)|

vX(k
p
, l
p
)

,

with p = 64. As evidenced by Equation (15), the measured error dΘ,Λ depends on the

precision parameter εΘ of the simulation �eld. Figure 4 illustrates the e�ect of increasing

εΘ (i.e. reducing the simulation precision) on simulations of a fractional Brownian �eld of

Hurst index H = 0.2. When the precision becomes too low (εΘ ≥ 0.25), �eld realizations

exhibit some stripes in di�erent directions, and the semi-variograms of the simulation �elds

present some singularities on lines radiating from the origin. This well-known e�ect, often

called artifact banding in the literature (Gneiting, 1998; Mantoglou and Wilson, 1982;

Emery and Lantuéjoul, 2006; Emery, 2008), is due to the fact that the contribution of a
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band process Yi to the sum de�ning the simulation �eld (see Equation (9)) is null on the

line orthogonal to the band direction θi and passing through the origin.
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Figure 4. E�ect of reducing the �eld precision on simulations of a fractional

Brownian �eld of Hurst index H = 0.2.

In Figure 5, we plotted values of error bounds dΘ,Λ obtained for di�erent elementary

�elds as a function of the precision parameter εΘ. Whatever the �eld parameters, error

bounds varied almost linearly with respect to εΘ. They did not seem to depend on

the regularity parameter H. However, they were slightly dependent on the anisotropy

parameter α, especially at low precision (εΘ > 0.03). Error bounds of all �elds fell below

1% when εΘ < 0.02, such a precision being reached with around 150 simulation bands.
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Figure 5. Variations of the error bound dΘ,Λ relative to the precision parameter

εΘ for elementary �elds with di�erent values of H and α.
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4.3. Estimation error. We also conducted numerical experiments to evaluate errors

that arise when estimating �eld features (e.g. parameters, semi-variograms) from �eld

simulations. Applying the TBM (with 1321 bands on a 64×64 grid of [0, 1]2), we simulated

2000 independent realizations {y(k), k = 1, · · · , 2000} of a given elementary �eldX of semi-

variogram vX . Given k ∈ {1, · · · , 2000}, we then computed the empirical semi-variogram

v(K)(x) at position x using the K �rst samples v(K)(x) = 1
2K

∑K
k=1(y(k)(x))2. Finally,

we computed an estimation error d(K)(x) = |vX(x)−v(K)(x)|
vX(x)

at point x, and its average over

points x of the grid d(K) =
∑

1≤k,l≤p d
(K)
(
k
p
, l
p

)
=
∑

1≤k,l≤p
|vX( k

p
, l
p

)−v(K)( k
p
, l
p

)|
vX( k

p
, l
p

)
, with p = 64.

In Figure 6, we plotted the estimation error d(K) as a function of the sample number

K for di�erent elementary �elds. For a �xed value of the regularity parameter H, the

convergence of the error to zero is about the same for all values of the anisotropy parameter

α. However, the convergence gets slower and slower as H increases. In all cases, around

1000 samples are required for the error to get below 5%.
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Figure 6. Variations of the estimation error relative to the number K of sam-

ples for elementary �elds with di�erent values of H and α.

In addition to their accuracy, the simulated �elds have interesting statistical properties.

Like the AFBF, they are Gaussian and have stationary increments by construction. More-

over, they share self-similar properties with the AFBF. In particular, for a FBF of Hurst

index H, the logarithm of quadratic variations is asymptotically linked to the logarithm

of the scale by a linear relationship of slope 2H (Biermé and Richard, 2008; Richard and
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Biermé, 2010). As illustrated in Figure 7 (a), such an asymptotic property could be ob-

served for TBM simulations of FBF. In this experiment, the coe�cient of determination

(R2) for the linear regression of the variations with respect to scale was about 0.98 on

average over 40 simulations (with a standard deviation of 0.07).

As a comparison, we conducted the same experiment using a spectral simulation method

(Biermé and Richard, 2008). This method is based on an approximation of the stochastic

integral of the harmonizable representation of the �eld, which is computed with a discrete

Fourier transform. In order to mitigate the e�ects of the discretization (in both space and

frequency domains), two integer oversampling factors are used: α, an oversampling rate,

and β, a domain extension factor. Thus, the spectral simulation of the �eld on the domain

[0, 1)2 ∩ r−1Z2 is obtained by cropping and subsampling a larger �eld simulated on the

domain [0, β)2 ∩ (αr)−1Z2. The larger α and β, the more accurate the spectral method

is (more precisely, α permits capturing the high-frequency content of the �eld, while β

aims at avoiding the undesired periodization e�ect of the discrete Fourier transform), but

this accuracy has a cost, since a 2D discrete Fourier transform has to be performed on an

image of size (αβr)2. In experiments, we used α = β = 2 for r = 600, so that the spectral

simulation takes about the same time as the TBM with 400 bands (15s using our Matlab

implementation). In Figure 7, notice that relationships between variations and scales

obtained for the spectral method (right) are not as linear as for the TBM (left). This

suggests that spectral simulations lack self-similarity, and are not as truthful to the model

as the TBM ones. Moreover, on spectral simulations the relationships between variations

and scales signi�cantly depart from the theoretical ones. In particular, the slope of lines

obtained by linear regressions of variations on the smallest scales is larger than expected;

on average, it is 0.54 instead of 0.4. This is in sharp contrast with the TBM simulations

for which the mean slope is close to 0.4. But, the slope is directly related to the �eld

regularity (Biermé and Richard, 2008; Richard and Biermé, 2010). Hence, whereas the

regularity of TBM simulations corresponds to that of the model, the one for spectral

simulations is higher. This drawback of the spectral method mainly results from cutting



20 HERMINE BIERMÉ 1, LIONEL MOISAN 2, AND FRÉDÉRIC RICHARD3

�eld high-frequencies when approximating its integral representation. Considering larger

values of α and β would improve the accuracy of the spectral method, but the cost in

time and memory would become rapidly prohibitive. Thus, the TBM appears superior to

the spectral method for simulating accurately �elds on a large grid.
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Figure 7. Quadratic variations computed on 40 realizations of size 600 × 600

of a FBF of Hurst index 0.2 obtained using the TBM with 400 bands (left) and

the spectral method with oversampling factors α = β = 2 (right).

5. Applications

In this section, we describe some applications of the proposed simulation method.

5.1. Visualization of anisotropic �elds associated with di�erent topothesy func-

tions. In Figure 2, some elementary �elds were displayed. However, simulation possibili-

ties o�ered by the TBM go far beyond those �elds, as there is a large choice of parameter

de�nitions and tunings. Using the TBM, it becomes possible to visualize truthful realiza-

tions of di�erent anisotropic �eld models studied in the literature (Bonami and Estrade,

2003; Biermé et al., 2011; Davies and Hall, 1999; Richard and Biermé, 2010). In the

generic model de�ned by Equation (5), we recall that the �eld anisotropy is introduced

through two direction-dependent and π-periodic functions: the Hurst function h and the

topothesy function c. So as to illustrate the e�ect of varying these parameter functions,

we set 0 < µ1 ≤ µ2 < 1 and considered two functions of di�erent regularity:
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• a discontinuous function g1(θ) =

 µ1 if θ ∈ (−π
4
, π

4
) modulo π,

µ2 otherwise.

• an in�nitely di�erentiable function g2(θ) = µ2 − (µ2 − µ1) cos2 θ.

Fixing the topothesy function to a constant (c ≡ 1), we �rst simulated �eld realizations

with Hurst functions h = gi for i = 1, 2 and di�erent pairs of parameter values (µ1, µ2);

results are shown in Figure 8. In these realizations, the degree of anisotropy can be

measured as the di�erence µ2−µ1 between maximal and minimal Hurst indices. It is the

same for realizations of the �rst and second columns (µ2−µ1 = 0.3), and higher for those

of the third column (µ2−µ1 = 0.6). Moreover, the Hölder regularity of those realizations

is equal to µ1. It is the same for realizations of the �rst and third columns (µ = 0.2)

and higher for those of the second column (µ = 0.5). Comparing realizations in a same

row, we clearly see the e�ect of anisotropy and regularity variations on �eld textures:

as the �eld regularity decreases, the texture gets rougher, and, as the �eld anisotropy

increases, texture patterns get more obviously oriented. Besides, comparing realizations

in a same column, we can observe texture di�erences induced by changing the regularity

of the Hurst function h in the model. Realizations obtained with a discontinuous function

h (in the �rst row) have some linear patterns which are not present on those obtained

with a more regular function h (second row).

Fixing the Hurst function to a constant (h ≡ 0.5), we also simulated �eld realizations

with topothesy functions c = gi for i = 1, 2 and di�erent pairs of parameter values (µ1, µ2).

Some visual di�erences can be clearly distinguished in Figure 9, in particular between the

two images of column 3 (in�uence of the regularity of the topothesy function) and between

the columns 1 and 3 (in�uence of the variations of the topothesy function).

5.2. Irregular grids. In the simulations we presented, �eld realizations were generated

on a regular subgrid of [0, 1]2. Using our TBM approach, it is however possible to simulate

�elds on non-uniformly spaced positions. To do so, the only condition is that the position

coordinates are all rational; this is required for the exact simulation of FBM on turning
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Figure 8. Field realizations obtained with di�erent Hurst functions h. For

all realizations, the topothesy function is c ≡ 1. In the �rst and second rows,

Hurst functions are h = g1 (discontinuous) and h = g2 (in�nitely di�erentiable),

respectively. In the �rst, second and third columns, the Hurst functions are

speci�ed by the parameter pair values (µ1, µ2) = (0.2, 0.5), (µ1, µ2) = (0.5, 0.8),

and (µ1, µ2) = (0.2, 0.8), respectively.

bands (see Section 3). The pseudo-polar grid is an example of a set of points satisfying

this simulation condition (Averbuch et al., 2008a). Such a grid is of particular interest for

computing a discrete Radon transform (Averbuch et al., 2008b), as its points are uniformly

spread on di�erent lines radiating from the origin. But Radon transforms are one of the

key features for the construction of parameter estimators for AFBF (Biermé and Richard,

2008; Richard and Biermé, 2010). Hence, those estimators could be better discretized and

evaluated using simulations on a pseudo-polar grid.

5.3. Field deformations. Due to the ability of the TBM to simulate �elds on quasi-

arbitrary points, it also becomes possible to simulate �eld deformations. For instance, let

A be the 2× 2-matrix of an a�ne transform (with rational components) and X̃ = X ◦A

the deformation of the random �eld X by the a�ne transform A. Realization of X̃ on

a uniform grid G of [0, 1]2 can be obtained by applying the TBM to the simulation of
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Figure 9. Field realizations obtained with di�erent topothesy functions. For all

realizations, the Hurst function is h ≡ 0.2. In the �rst and second rows, topothesy

functions are c = g1 (discontinuous) and c = g2 (in�nitely di�erentiable), re-

spectively. In the �rst, second and third columns, the topothesy functions are

speci�ed by the parameter pair values (µ1, µ2) = (1, 5), (µ1, µ2) = (1, 100), and

(µ1, µ2) = (1, 1000), respectively.

X on {Ax, x ∈ G}. Figure 10 illustrates how an isotropic �eld can be deformed into an

anisotropic �eld.

Figure 10. A simulated fractional Brownian �eld of Hurst index 0.5 (partially

shown on the left), and its deformation by an horizontal shear transform (right).
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6. Conclusion

We have constructed turning-band �elds suited to the simulation of AFBF. This con-

struction is based on the resolution of an integral equation speci�c to the non-stationary

anisotropic context of AFBF. This ensures the convergence of simulation �elds to target

�elds as the precision increases. Moreover, the band processes involved in the de�nition

of simulation �elds are simulated exactly using a circulant embedding method. Hence,

errors produced by the simulation method are exclusively due to the approximation of the

target �eld by the simulation �eld. This approximation error was evaluated theoretically

and numerically. From a numerical point of view, we observed that it does not depend

signi�cantly on the regularity of target �elds, nor on their degree of anisotropy. Experi-

ments also suggest that simulations preserve the statistical properties of the target �eld.

In the end, we obtained good simulation results with a relatively small number of bands

(around 150 for images of size 600× 600) at a low computational cost.

Supplementary Materials

The online supplementary materials consists in a single �le (supplementary.pdf) that

contains Appendix A (various technical results and proofs) and Appendix B (pseudo-code

for the Dynamic Programming band selection algorithm).
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Appendix A: detailed results and proofs

1. Semi-variogram of an elementary field

Proposition 1. Let H ∈ (0, 1) and −π/2 ≤ α1 < α2 ≤ π/2. Let denote v
H,α1,α2

the

semi-variogram of an AFBF with h = H and c = 1[α1,α2]. Then,

(1) ∀x ∈ R2, v
H,α1,α2

(x) = 22H−1γ(H)C
H,α1,α2

(arg(x))|x|2H ,

where C
H,α1,α2

is a π-periodic function de�ned on (−π/2, π/2] by

C
H,α1,α2

(θ) =


β
H

(
1−sin(α2−θ)

2

)
+ β

H

(
1−sin(α1−θ)

2

)
if α1 ≤ θ + π/2 ≤ α2

β
H

(
1+sin(α2−θ)

2

)
+ β

H

(
1+sin(α1−θ)

2

)
if α1 ≤ θ − π/2 ≤ α2∣∣∣βH (1−sin(α2−θ)

2

)
− β

H

(
1−sin(α1−θ)

2

)∣∣∣ otherwise

with β
H
the incomplete Beta function given by

∀t ∈ [0, 1], β
H

(t) =

∫ t

0

uH−1/2(1− u)H−1/2du,

and γ is de�ned by γ(H) =
π

HΓ(2H) sin(Hπ)
.

Proof. According to Proposition 2.1 (main paper), for all x ∈ R2,

v
H,α1,α2

(x) =
1

2

∫ π/2

−π/2
γ(h(θ))c(θ)|x · u(θ)|2h(θ)dθ

=
1

2
γ(H)|x|2H

∫ α2

α1

| cos(θ − arg(x))|2Hdθ.
1
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We will use the following lemma.

Lemma 2. Let a, b ∈ R with −π/2 ≤ a < b ≤ π/2, then∫ b

a

| cos(θ)|2Hdθ = 22H

(
β
H

(
1 + sin(b)

2

)
− β

H

(
1 + sin(a)

2

))
.

Proof. Since we assume that −π/2 ≤ a < b ≤ π/2,∫ b

a

| cos(θ)|2Hdθ =

∫ b

a

(
1− sin(θ)2

)H−1/2
cos(θ)dθ

=

∫ sin(b)

sin(a)

(1− u2)H−1/2du,

by the change of variables u = sin(θ). Then, by the change of variables v = 1+u
2
, we

obtain ∫ b

a

| cos(θ)|2Hdθ = 22H

∫ 1+sin(b)
2

1+sin(a)
2

(1− v)H−1/2vH−1/2dv,

which gives the result. �

This allows us to get the next result, which concludes the proof.

Corollary 3. Let a, b ∈ R with 0 ≤ b− a ≤ π, then

∫ b

a

| cos(θ)|2Hdθ = 22H



∣∣∣βH (1+sin(b)
2

)
− β

H

(
1+sin(a)

2

)∣∣∣ if (a, b) ∩ {π
2

+ Zπ} = ∅

β
H

(
1+sin(b)

2

)
+ β

H

(
1+sin(a)

2

)
if (a, b) ∩ {−π

2
+ 2Zπ} 6= ∅

β
H

(
1−sin(b)

2

)
+ β

H

(
1−sin(a)

2

)
if (a, b) ∩ {π

2
+ 2Zπ} 6= ∅

Proof. We �rst assume that (a, b) ∩ π
2

+ Zπ = ∅. Since 0 ≤ b− a ≤ π, one can �nd k ∈ Z

such that −π/2 ≤ a + kπ < b + kπ ≤ π/2. The result follows from Lemma 2 when k is

even. When k is odd,∫ b

a

| cos(θ)|2Hdθ =

∫ b+kπ

a+kπ

| cos(θ)|2Hdθ = 22H

(
β
H

(
1− sin(b)

2

)
− β

H

(
1− sin(a)

2

))
,

according to Lemma 2. Note that by a change of variables, for all θ ∈ R

(2) β
H

(
1− sin(θ)

2

)
= β

H
(1)− β

H

(
1 + sin(θ)

2

)
and the result follows.
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Now let assume that −π
2

+ 2Zπ 6= ∅. Then, one can �nd k ∈ Z such that a + 2kπ <

−π/2 < b+ 2kπ, and according to Lemma 2,∫ b

a

| cos(θ)|2Hdθ =

∫ b+2kπ

a+2kπ

| cos(θ)|2Hdθ

=

∫ −π/2
a+2kπ

| cos(θ)|2Hdθ +

∫ b+2kπ

π/2

| cos(θ)|2Hdθ

=

∫ π/2

a+π+2kπ

| cos(θ)|2Hdθ + 22Hβ
H

(
1 + sin(b)

2

)
= 22H

(
β
H

(1)− β
H

(
1 + sin(a+ π)

2

)
+ β

H

(
1 + sin(b)

2

))
,

which concludes this case using (2). The last case is similar. �

2. Proof of Theorem 2.2

Let us write Xθi(x) := Yi(x · u(θi)), for x ∈ R2, with Yi a FBM of order h(θi). First,

note that Xθi(0) = Yi(0) = 0 a.s. Moreover, since Yi is a centered Gaussian random

process it is clear that Xθi is a centered Gaussian random �eld on R2. Finally, since Yi

has stationary increments, for any x0 ∈ R2, writing t0,i = x0 · u(θi) ∈ R,

{Xθi(x+ x0)−Xθi(x0);x ∈ R2} = {Yi(x · u(θi) + t0,i)− Yi(t0,i);x ∈ R2}

fdd
= {Yi(x · u(θi))− Yi(0);x ∈ R2},

= {Xθi(x)−Xθi(0);x ∈ R2}.

It follows that XΘ,Λ is a centered Gaussian random �eld on R2 with stationary increments

as it is a sum of independent centered Gaussian random �elds on R2 with stationary

increments. Since XΘ,Λ(0) = 0 a.s.,

vXΘ,Λ
(x) =

1

2
E
(
XΘ,Λ(x)2

)
=

1

2
Var(XΘ,Λ(x)), since XΘ,Λ is centered,

=
1

2

n∑
i=1

λiγ(h(θi))c(θi)Var(Yi(x · u(θi))), by independence,

=
1

2

n∑
i=1

λiγ(h(θi))c(θi)|x · u(θi)|2h(θi) = vΘ,Λ(x).
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Let N ∼ N (0, 1), then for x 6= 0,

dKol(XΘ,Λ(x), X(x)) = dKol(
√
vΘ,Λ(x)N,

√
vX(x)N).

Then Inequality (13) in Theorem 2.2 follows from the fact that dKol(σ
′N, σN) ≤ 2 |σ

2−σ′2|
σ2 .

Actually, there is nothing to prove when σ = σ′ or when 2 |σ
2−σ′2|
σ2 > 1, so we can as-

sume that σ 6= σ′ and 2 |σ
2−σ′2|
σ2 ≤ 1, which implies that

(
σ
σ′

)2 ≤ 2. First, let us sup-

pose that σ′′ := σ′/σ > 1 so that dKol(σ
′N, σN) = sup

z>0
P(z ≤ N ≤ σ′′z), using the

fact that sup
t>0
|P(N ≤ σ′t)− P(N ≤ σt)| = sup

z>0
P(z < N ≤ σ′′z), while, since −N d

= N ,

sup
t<0
|P(N ≤ σ′t)− P(N ≤ σt)| = sup

z>0
P(z ≤ N < σ′′z). But, for σ′′ > 1 and z > 0,

we get P(z < N ≤ σ′′z) ≤ (σ′′ − 1)ze−z
2/2 ≤ σ′′2 − 1 = σ′2−σ2

σ2 . In the remaining case

σ′′ := σ′/σ < 1, one has dKol(σ
′N, σN) ≤ σ2−σ′2

σ′2
≤ 2 |σ

2−σ′2|
σ2 , using the fact that

(
σ
σ′

)2 ≤ 2.

For the second part of the proof, we have a sequence (Θn,Λn) such that vΘn,Λn(x) −→
n→+∞

vX(x) for all x ∈ R2. By stationarity of the increments, for all n ≥ 1, for all x, y ∈ R2,

Cov(XΘn,Λn(x), XΘn,Λn(y)) = vΘn,Λn(x) + vΘn,Λn(y)− vΘn,Λn(x− y),

and similarly for Cov(X(x), X(y)) and vX . It follows that Cov(XΘn,Λn(x), XΘn,Λn(y))

tends to Cov(X(x), X(y)) for all x, y ∈ R2. Using a Cramér-Wold device, this implies

that the �eld (XΘn,Λn(x))x∈R2 converges to (X(x))x∈R2 in the sense of �nite dimensional

distributions.

3. Approximation error for an elementary field

Proposition 4. Let c and h be two π-periodic measurable functions de�ned on (−π/2, π/2]

by h = H for some H ∈ (0, 1) and c = 1[α1,α2] for −π/2 ≤ α1 < α2 ≤ π/2. Let

Θ = (θi)1≤i≤n with α1 ≤ θ1 < . . . < θn ≤ α2 and θ0 = α1, θn+1 = α2. Choose Λ as

λ1 = θ2 − θ0 and λi = θi+1 − θi for 2 ≤ i ≤ n. Then, one can �nd a positive constant

C > 0, independent of Θ,Λ, such that for all x ∈ R2,

(3) dKol(XΘ,Λ(x), X
H,α1,α2

(x)) ≤ Cε
min(2H,1)
Θ ,
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where the precision parameter εΘ is de�ned by εΘ = maxi=1,··· ,n+1 (θi − θi−1) (see Equation

(11) in the main paper).

Moreover, when choosing λ1 = (θ1 − θ0) + θ2−θ1
2
, λn = (θn+1 − θn) + θn−θn−1

2
and λi =

θi+1−θi−1

2
for 2 ≤ i ≤ n− 1, one can �nd a positive constant C > 0, independent of Θ,Λ,

such that for all x ∈ R2,

(4) dKol(XΘ,Λ(x), X
H,α1,α2

(x)) ≤ C

 ε3
Θδ
−2+min(2H,1)
Θ + ε

1+min(2H,1)
Θ if H 6= 1/2,

ε3
Θδ
−1
Θ | log(δΘ)|+ ε2

Θ if H = 1/2

with δΘ = min
1≤i≤n−1

(θi+1 − θi).

Proof. Note that XΘ,Λ(0) = X
H,α1,α2

(0) = 0 a.s. so that dKol(XΘ,Λ(0), X
H,α1,α2

(0)) = 0.

Let x ∈ R2 with x 6= 0. Then, the error of approximation is bounded by

v
H,α1,α2

(x)− vΘ,Λ(x)

v
H,α1,α2

(x)
,

with v
H,α1,α2

(x) = 1
2
γ(H)|x|2H

∫ α2

α1
| cos(θ − arg(x))|2Hdθ and

vΘ,Λ(x) =
1

2
γ(H)|x|2H

n∑
i=1

λi| cos(θi − arg(x))|2H .

First let us remark that, since θ′ 7→ | cos(θ − θ′)|2H is continuous, non-negative and not

identically equal to 0, one can �nd c1 > 0 such that
∫ α2

α1
| cos(θ− arg(x))|2Hdθ ≥ c1 for all

x ∈ R2. It follows that

dKol(XΘ,Λ(x), X
H,α1,α2

(x)) ≤ c−1
1

(∫ α2

α1

| cos(θ − arg(x))|2Hdθ −
n∑
i=1

λi| cos(θi − arg(x))|2H
)
.

Now, let us write

(5) gx(θ) = | cos(θ − arg(x))|2H ,

and note that

(6) |gx(θ)− gx(θ′)| ≤ 2|θ − θ′|min(2H,1) for all θ, θ′ ∈ R,
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using the fact that ||t|2H − |t′|2H | ≤ 2|t − t′|min(2H,1) for all t, t′ ∈ [−1, 1]. It follows that

there exists c2 > 0 such that for 0 ≤ i ≤ n,

(7)

∣∣∣∣∫ θi+1

θi

(gx(θ)− gx(θi)) dθ
∣∣∣∣ ≤ c2(θi+1 − θi)1+min(1,2H).

Then, choosing λ1 = θ2 − θ0 and λi = θi+1 − θi for 2 ≤ i ≤ n, one has∣∣∣∣∣
∫ α2

α1

gx(θ)−
n∑
i=1

λigx(θi)

∣∣∣∣∣ ≤ c2(α2 − α1) max
0≤i≤n

(θi+1 − θi)min(1,2H).

Moreover gx is of class C2 on Rr {arg(x)− π/2 + πZ} with

(8) |gx
′′
(θ)| ≤ c3| cos(θ − arg(x))|2H−2, for all θ /∈ arg(x)− π/2 + πZ,

for some c3 > 0 (not depending on x). According to the trapezoidal rule, when [θi, θi+1]∩

{arg(x)− π/2 + πZ} = ∅,

(9)

∣∣∣∣∫ θi+1

θi

(
gx(θ)−

gx(θi) + gx(θi+1)

2

)
dθ

∣∣∣∣ ≤ sup
θ∈[θi,θi+1]

|gx′′(θ)|
(θi+1 − θi)3

12
.

Note also that using (6) one always has

(10)

∣∣∣∣∫ θi+1

θi

(
gx(θ)−

gx(θi) + gx(θi+1)

2

)
dθ

∣∣∣∣ ≤ c2(θi+1 − θi)1+min(1,2H).

For the sake of simplicity let us consider the case where arg(x) = π/2 such that −π/2 ≤

α1 ≤ θ − arg(x) + π/2 ≤ α2 ≤ π/2 and

| cos(θ − arg(x))| ≥ 2

π
|θ − arg(x) + π/2| = 2

π
|θ|.

If θn+1 ≤ 0 we set m = n + 1, if θ0 > 0 we set m = 0 and otherwise we choose m ∈

{0, . . . , n} such that θm ≤ 0 < θm+1. Then, according to (8), since 2H − 2 < 0, for

i > m+ 2,

sup
θ∈[θi,θi+1]

|gx′′(θ)| ≤ c3

(
2

π

)2H−2

θ2H−2
i ≤ c3

(
2

π

)2H−2
1

θi−1 − θi

∫ θi

θi−1

θ2H−2dθ,

with, when m < n− 3,

(11)
n−1∑

i=m+3

∫ θi

θi−1

θ2H−2dθ =

∫ θn

θm+2

θ2H−2dθ ≤ c4

 (θm+2 − θm+1)−1+min(2H,1) if H 6= 1/2

| log(θm+2 − θm+1)| if H = 1/2
,
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for some constants c3, c4 > 0. While for i < m− 1 one has

sup
θ∈[θi,θi+1]

|gx′′(θ)| ≤ c3

(
2

π

)2H−2
1

θi+2 − θi+1

∫ θi+2

θi+1

|θ|2H−2dθ,

with, when m > 3,

(12)
m−2∑
i=1

∫ θi

θi−1

θ2H−2dθ =

∫ θm−2

θ0

θ2H−2dθ ≤ c5

 (θm−1 − θm−2)−1+min(2H,1) if H 6= 1/2

| log(θm−1 − θm−2)| if H = 1/2
,

for some constant c5 > 0. Let us choose λ1 = (θ1− θ0) + θ2−θ1
2

, λn = (θn+1− θn) + θn−θn−1

2

and λi = θi+1−θi−1

2
for 2 ≤ i ≤ n − 1. Then, let us note that for 2 ≤ i ≤ n − 1 one has

λi = θi+1−θi
2

+ θi−θi−1

2
. Therefore

n−1∑
i=2

λigx(θi) =
n−1∑
i=2

θi+1 − θi
2

gx(θi) +
n−2∑
i=1

θi+1 − θi
2

gx(θi+1)

=
n−2∑
i=2

(θi+1 − θi)
gx(θi) + gx(θi+1)

2
+
θn − θn−1

2
gx(θn−1) +

θ2 − θ1

2
gx(θ2).

It follows that

n∑
i=1

λigx(θi) =
n−1∑
i=1

(θi+1 − θi)
gx(θi) + gx(θi+1)

2
+ (θ1 − θ0)gx(θ1) + (θn+1 − θn)gx(θn)

=
n−1∑
i=1

∫ θi+1

θi

gx(θi) + gx(θi+1)

2
dθ +

∫ θ1

θ0

gx(θ1)dθ +

∫ θn+1

θn

gx(θn)dθ.

Then,∣∣∣∣∣
∫ α2

α1

gx(θ)−
n∑
i=1

λigx(θi)

∣∣∣∣∣
≤

n−1∑
i=1

∣∣∣∣∫ θi+1

θi

gx(θ)−
gx(θi) + gx(θi+1)

2
dθ

∣∣∣∣+

∣∣∣∣∫ θ1

θ0

gx(θ)− gx(θ1)dθ

∣∣∣∣+

∣∣∣∣∫ θn+1

θn

gx(θ)− gx(θn)dθ

∣∣∣∣
≤

m−2∑
i=1

+
n−1∑

i=m+3

+
m+2∑
i=m−1

+

∣∣∣∣∫ θ1

θ0

gx(θ)− gx(θ1)dθ

∣∣∣∣+

∣∣∣∣∫ θn+1

θn

gx(θ)− gx(θn)dθ

∣∣∣∣ ,
which gives the result using (9) with (11) and (12) for the two �rst sums and using (7)

and (10) for the other terms. The general case where arg(x) 6= π/2 can be computed

similarly. �
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4. Proof of Proposition 2.3

The proof is similar to the proof of Proposition 4, considering

g̃x(θ) = γ(h(θ))c(θ)|x · u(θ))|2h(θ) = γ(h(θ))c(θ)|x|2h(θ)| cos(θ − arg(x))|2h(θ).

instead of gx(θ) given by (5). Note that when h and c are assumed of class Cl (l = 1 or

2) on [α1, α2] ⊂ [−π/2, π/2], one can �nd C > 0 such that for all x ∈ T ,

|g̃x(θ)− g̃x(θ′)| ≤ C|θ − θ′|min(2H(α1,α2),1), for all θ, θ′ ∈ [α1, α2],

and when l = 2,

|g̃x
′′
(θ)| ≤ C| cos(θ − arg(x))|2H(α1,α2)−2, for all θ ∈ [α1, α2] with θ /∈ arg(x)− π/2 + πZ,

where H(α1, α2) = min
θ∈[α1,α2]

h(θ). These estimates allow us to proceed as in the proof of

Proposition 4. The result follows by summing the integrals over which the functions h

and c are regular using the fact that H ≤ H(α1, α2) for all α1, α2.

5. Simulation of a 1D FBM

Several methods for the synthesis of a 1D FBM have been proposed in the literature.

Most of them are approximate procedures. However, considering equispaced points on the

band, one can get exact simulations using the circulant embedding method as in Dietrich

and Newsam (1997). Let us brie�y recall this procedure. Let BH be a FBM (with H ∈

(0, 1)) and ZH = (BH(t+ 1)−BH(t))t∈R the associated fractional Gaussian noise, which

is a stationary process with covariance function given by Cov(ZH(t), ZH(s)) = rH(|t− s|)

with rH(t) = 1
2
(|t+1|2H−2|t|2H+|t−1|2H). For any l ≥ 1, (ZH(0), . . . , ZH(l)) is a centered

Gaussian vector of size l+ 1 with Toeplitz covariance matrix RH(l) = (rH(|i− j|))0≤i,j≤l.

One can embed RH(l) in a circulant matrix of size 2l given by SH(l) = circ(sH(l)) with

sH(l) = (rH(0), . . . rH(l) rH(l− 1), . . . rH(1)). The main interesting property of circulant

matrices is that they are diagonalized in the discrete Fourier basis, with their eigenvalues

given by the Discrete Fourier Transform of their �rst row. In particular one has SH(l) =

1
2l
F ∗2ldiag(F2lsH(l))F2l, where F2l = (e

iπjk
l )0≤i,j≤2l−1.
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The main result of Perrin et al. (2002) is that for all H ∈ (0, 1) and l ≥ 1, F2lsH(l)

always has positive entries, so that SH(l) is a covariance matrix. Moreover, if ε
(1)
2l and ε

(2)
2l

are independent vectors of law N (0, I2l), the real-valued vectors Z(1) and Z(2) de�ned by

Z(1) + iZ(2) =
1√
2l
· F ∗2l diag(F2lsH(l))1/2 (ε

(1)
2l + iε

(1)
2l )

are independent with common lawN (0, SH(l)). In particular, one has (ZH(0), . . . , ZH(l))
d
=

(Z
(i)
0 , . . . , Z

(i)
l ) for i = 1, 2, and using stationarity of the increments of BH and the fact

that BH(0) = 0 a.s., one has, for all m ≤ l,

(BH(k))−m≤k≤l−m =

( ∑
j<k+m

ZH(j)−
∑
j<m

ZH(j)

)
−m≤k≤l−m

,

with the convention that
∑

j<0 = 0. Let us emphasize that this procedure is very fast

since, choosing l as a power of 2, the cost is reduced to C(l) = O(2dlog2(l)edlog2(l)e), where

dxe denotes the upper integer part of x, using the Fast Fourier Transform algorithm. It

follows that the cost is similar to that of the spectral method but with the considerable

advantage that the resulting simulations are exact and not approximate.
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Appendix B: Optimal band selection algorithm

based on Dynamic Programming

input : α1, α2, de�ning the considered angular interval
ε: the maximum angular distance between two adjacent bands
r: resolution parameter (the sampling step is 1/r)

output: a �nite sequence of integer vectors (p̄k, q̄k)1≤k≤s

N ← 1 + d 1
tan ε
e1

Build the set V of all integer vectors (q, p) ∈ {1, . . . , N} × {−N, . . . , N}2

such that gcd(p, q) = 1 and α1 < arctan p
q
< α2

Sort V into a sequence (pk, qk)1≤k≤n with k 7→ θk := arctan pk
qk

increasing3

Compute the cost ek associated to each (qk, pk)4

Add extremal angles: θ0 ← α1 (e0 ← 0) and θn+1 ← α25

cn+1 ← 06

for i = n, n− 1, . . . 0 do7

cmin←∞8

j ← i+ 19

while j ≤ n+ 1 and θj ≤ θi + ε do10

if cj ≤ cmin then11

cmin← cj12

ki ← j13

end14

j ← j + 115

end16

ci ← ei + cmin17

end18

i← 019

s← 020

while i ≤ n do21

i← ki22

s← s+ 123

(p̄s, q̄s)← (pi, qi)24

end25

return (p̄k, q̄k)1≤k≤s26
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