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Abstract. In this paper, we consider a stochastic anisotropic model for medical image. We model

textures by Anisotropic Fractional Brownian Fields (AFBF) which are Gaussian random fields obtained

as anisotropic generalizations of the Fractional Brownian Field. The main difficulty with this modeling

consists in the estimatation of the anisotropy. We recall here theoretical results obtained in [2, 5] to

construct consistent estimators for the texture anisotropy analysis. These results allow us to propose

statistical tests for deciding if a texture modeled by an AFBF is clearly anisotropic. We apply them

to Full-Field Digital Mammograms and show that about 60 percent of textures can be considered as

anisotropic with a high level of confidence. We finish this paper with preliminary results on trabecular

bone x-ray images. In [4], a fractal analysis based on isotropic Fractional Brownian Fields was proposed

to characterize bone microarchitecture. Our first results suggest that anisotropic models are also

relevant for the statistical analysis of this microarchitecture.
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Résumé. Dans cet article, nous nous intéressons à un modèle aléatoire anisotrope pour des images

médicales. Nous modélisons les textures par des champs browniens fractionnaires anisotropes (CBFA)

qui sont des champs aléatoires gaussiens obtenus comme généralisations anisotropes du champ brownien

fractionnaire. L’anisotropie s’estime difficilement avec ce type de modèle. Nous rappelons les resultats

théoriques obtenus dans [2,5] pour la construction d’estimateurs consistants afin d’analyser l’anisotropie

des textures. Ceci nous a permis d’établir des tests statistiques afin de décider si une texture modélisée

par un CBFA est anisotrope. Nous les avons utilisés sur des images de mammographies et avons trouvé

qu’environ 60% d’entre elles peuvent être considérées anisotropes avec un haut niveau de confiance.

Nous concluons cet article en donnant quelques résultats préliminaires sur des images radiographiques

d’os trabéculaires. Dans [4], une analyse fractale basée sur la modélisation par des champs browniens

fractionnaires isotropes a été proposée pour caractériser la microarchitecture osseuse. Nos premiers

résultats suggèrent qu’une modélisation par des champs anisotropes est également pertinente pour une

analyse statistique de cette microarchitecture.

Introduction

In medical image analysis, many authors tried to characterize texture roughness by the fractal dimension

of images. For instance, it was used for the characterization and classification of the mammogram density [9]

and for the assessment of breast cancer risk. More recently, we [4] linked the fractal dimension of radiographic

images with the bone architecture alteration for the evaluation of an osteoporotic fracture risk.

The stochastic model beyond fractal analysis is the Fractional Brownian Field (FBF), which is a multi-

dimensional extension of the famous fractional Brownian motion introduced by Mandelbrot and Van-Ness [20],

with fractal dimension determined by its so-called Hurst parameter. However the fractal analysis with FBF

models, which is isotropic by definition of H , is not completely satisfactory for some applications, since it does
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not reveal texture anisotropy, which can be an important predictor for diagnostic.

Therefore we consider anisotropic generalizations of FBF such as the anisotropic fractional Brownian field [6].

The Hurst parameter is replaced by a function that characterizes the model anisotropy. We briefly recall main

properties of these fields in Section 1. Then, in Section 2, we consider anisotropic tests as introduced in [22],

based on a parametric estimator constructed in [5]. Finally, in Section 3, we consider two applications to

medical images. The first one concerns mammograms. We show that AFBF models are well-suited for the

modeling of mammogram texture density: our anisotropic tests reveal that about 60% of mammograms are not

isotropic with a high level of confidence. The second application is related with the problem of early diagnosis

for osteoporosis. In [4], fractal analysis of bone radiographs is coupled with bone mineral density to improve

the fracture risk evaluation. We present how we applied our estimators to bone radiographs and show some

preliminary results emphasizing the anisotropy of the bone microarchitecture.

1. Anisotropic fractional Brownian field

1.1. Gaussian fields with stationary increments

Let (Ω,A, P) be a probability space. A d-dimensional random field X is a map from Ω×R
d into R such that

X(·, y) := X(y) is a real random variable on Ω for all y ∈ R
d. When d = 1, such a field is called a random

process and can be used to model a signal. We will be mainly interested in the case d = 2 for which the random

field X can stand for the gray level of an image. We say as usual that a random field is Gaussian if any finite

linear combination of its associated random variables is a Gaussian variable. A centered Gaussian field X is

characterized by its covariance function: (y, z) �→ Cov(X(y), X(z)). A field X has stationary increments if the

law governing the field X(·+ z)−X(z) is the same as X(·)−X(0) for all z ∈ R
d. This property is often used to

model homogeneous media. Moreover a centered Gaussian field X with stationary increments is characterized
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by its variogram, which is defined by

∀y ∈ R
d, v(y) = E((X(y) − X(0))2). (1)

Using a generalization of Bochner’s Theorem, some of centered Gaussian fields with stationary increments have

a variogram of the form

∀ y ∈ R
d, v(y) =

∫
Rd

∣∣eiy·ζ − 1
∣∣2 f(ζ)dζ, (2)

where f is a positive function such that
∫

Rd

(
1 ∧ |ζ|2) f(ζ)dζ < ∞, which is called the spectral density. Such

fields are referred to as Gaussian Fields with Spectral Density (GFSD).

In [6], Bonami and Estrade define anisotropic fractional Brownian fields (AFBF) by taking spectral densities

which are of the form

∀ ζ ∈ R
d, f(ζ) = |ζ|−2h(ζ/|ζ|)−d, (3)

where h is a map taking values in (0, 1) and defined for any direction θ of the unit sphere Sd−1 of R
d. Due to

directional Hurst indices h, AFBF have orientation-dependent spectral densities and yield anisotropic fields for

non constant h.

FBF are particular AFBF, characterized by a density of the form (3) with a constant function h ≡ H . The

parameter H ∈ (0, 1) is called the Hurst parameter of the FBF BH . The variogram of BH given by (2) with

f(ζ) = |ζ|−2H−d is simply equal to

v(y) = Var(BH(y)) = cH,d|y|2H ,

with cH,d a positive constant. It is straightforward to see that the law of BH is then rotation invariant which

means that BH is isotropic. Moreover the homogeneity of the variogram induces the famous self-similarity

property of the FBF:

{
BH(λy); y ∈ R

d
} fdd

= λH
{
BH(y); y ∈ R

d
}

,
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where fdd means equality for finite dimensional distributions. Lots of fractal properties follow from this scaling

behavior. In particular, using Kolmogorov-Centsov criterion [15], one can prove that H is the critical Hölder

exponent of BH . This means that for any α ∈ (0, H) the sample paths of BH satisfy a uniform Hölder condition

of order α on [−T, T ]d, for any T > 0: there exists a positive random variable A with P(A < +∞) = 1 such

that

∀y, z ∈ [−T, T ]d, |BH(y) − BH(z)| ≤ A|y − z|α; (4)

while for any α ∈ (H, 1), almost surely the sample paths of BH fail to satisfy any uniform Hölder condition of

order α.

From an image point of view (d = 2), the critical Hölder exponent is related to the roughness of the texture.

The texture is as rough as the field regularity H is small.

Note also that the critical Hölder exponent H of a FBF BH is related to the Hausdorff and Box-counting

fractal dimensions of its graph G(BH) =
{
(y, BH(y)) ; y ∈ [−T, T ]d

}
by

dimHG(BH) = dimBG(BH) = d + 1 − H, (5)

almost surely, for any T > 0 (see [11] for the dimension definitions and proofs).

Actually, in the more general setting of GFSD, all this properties can be deduced from the local behavior of

the variogram around 0 (7) or from the asymptotic behavior of the spectral density at high-frequencies (6).

1.2. Hölder regularity

Let us introduce some useful notations. For any H ∈ (0, 1), if f is a spectral density satisfying: for any ε > 0

there exists A, B1, B2 > 0 and a positive-measure subset E of Sd−1 such that for almost all ξ ∈ R
d,

|ξ| ≥ A ⇒ B2|ξ|−2H−d−ε1E

(
ξ

|ξ|
)

≤ f(ξ) ≤ B1|ξ|−2H−d+ε, (6)
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we note f(ξ) �
+∞ |ξ|−2H−d. In the same vein, for any H ∈ (0, 1), if v is a variogram satisfying: for any ε > 0

there exists δ, C1, C2 > 0 such that for all y ∈ R
d,

|y| ≤ δ ⇒ C2|y|2H+ε ≤ v(y) ≤ C1|ξ|2H−ε, (7)

we note v(y) �
0
|y|2H . We recall here Theorem 2.1 of [22], proved in [6].

Theorem 1.1. Let X be a GFSD with spectral density f and variogram v. Let H ∈ (0, 1).

(a) If f(ξ) �
+∞ |ξ|−2H−d then v(y) �

0
|y|2H .

(b) If v(y) �
0
|y|2H then X admits H as critical Hölder exponent.

In particular, this shows that the critical Hölder exponent of X an AFBF is equal to the minimal value H of

the Hurst index function h on Sd−1:

H = essinf
Sd−1

(h), (8)

since it is straightforward to see that its spectral density given by (3) satisfies (a) of Theorem 1.1. The critical

Hölder exponent H of an AFBF will be called the minimal Hurst index. Let us mention that an AFBF will

also satisfy (5) with H its minimal Hurst index. Therefore the minimal Hurst index characterizes the AFBF

texture roughness, but being direction-independent, it does not capture any anisotropic feature of an AFBF.

In attempt to characterize the anisotropy of an AFBF, one could propose to study the field along oriented

straight lines. Let X be a a GFSD defined on R
d, then for any direction θ ∈ Sd−1 and y0 ∈ R

d the restriction

{X(y0 + tθ); t ∈ R} of X along the line y0 + Rθ defines a Gaussian process with spectral density (GFSD with

d = 1) given by

∀p ∈ R, fθ(p) =
∫
〈θ〉⊥

f(ξ + pθ)dξ, (9)

where f is the spectral density of X and 〈θ〉⊥ denotes the hyperplane of R
d orthogonal to the direction θ. Let

us remark that (θ, p) �→ fθ(p) is the Radon transform of f (see [21] p.11 for instance). Moreover, if X is an

AFBF with directional Hurst index h one has fθ(p) �
+∞ |p|−2H−1 for H its minimal Hurst index given by (8).



106 ESAIM: PROCEEDINGS

(a) (b) (c) (d)

Figure 1. Simulation of FBF by the Stein method for (a) h = 0.3 and (b) h = 0.7. Simulation

of AFBF by the spectral method for (c) h1 = 0.3 and h2 = 0.5 and (d) h1 = 0.3 and h2 = 0.7.

Therefore Theorem 1.1 implies that the critical Hölder exponent Hθ of the process {X(t0 + tθ); t ∈ R} equals

H in any direction θ.

In order to reveal anisotropy, the authors of [6] proposed to study windowed Radon transforms. For X a

GFSD defined on R
d and any direction θ ∈ Sd−1, they give a rigorous definition of the process RθX obtained

as windowed Radon transform of X in the direction θ

∀t ∈ R, RθX(t) =
∫
〈θ〉⊥

X(s + tθ)ρ(s)ds, (10)

where ρ is a window function of the Schwartz class. RθX also defines a Gaussian process with spectral density

given by

∀p ∈ R, Rθf(p) =
∫
〈θ〉⊥

f(ξ + pθ) |ρ̂(ξ)|2 dξ. (11)

Note that this transform has a smoothing effect and we use an extended definition of the Hölder regularity

which has a meaning when H ≥ 1 [6]. We say that a Gaussian process Y = {Y (t); t ∈ R} admits H ∈ (n, n + 1)

as critical Hölder exponent for some n ∈ N if Y is n times mean square differentiable in the sense of [1] and the

process Y (n) admits H as critical Hölder exponent. Then Theorem 2.2 of [22] can be formulated as follow.
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Theorem 1.2. Let Y be a Gaussian process with spectral density f and variogram v. Let H ∈ (n, n+1), n ∈ N.

(a) If f(p) �
+∞ |p|−2H−1 then v ∈ C2n(R) and

∣∣v(2n)(y) − v(2n)(0)
∣∣ �

0
|y|2(H−n).

(b) If v ∈ C2n(R) and
∣∣v(2n)(y) − v(2n)(0)

∣∣ �
0
|y|2(H−n) then Y admits H as critical Hölder exponent.

Proposition 2.1 of [5] shows that when X is an AFBF with directional Hurst index h one has Rθf(p) �
+∞

|p|−2h(θ)−d such that RθX admits h(θ) + d−1
2 as critical Hölder exponent.

2. Estimation and anisotropy test

Among numerous estimators constructed to estimate the Hurst parameter of a fractional Brownian motion

we choose estimators based on generalized quadratic variations as studied in [14, 16].

2.1. Generalized quadratic variations

Let H ∈ (0, 1) and BH a fractional Brownian motion on R. We assume to observe N +1 equispaced points of

its sample path, namely {BH

(
p
N

)
; 0 ≤ p ≤ N − 1}. The fractional Brownian motion is not stationary but any

of its increments is. The main idea of generalized quadratic variations is to use adaptations of ergodic Theorem

which states that if (Xp)p∈N
is an ergodic stationary sequence of mean square integrable random variables then

for Sn =
n−1∑
p=0

Xp we have

Sn

n
−→

n→+∞ E(X0) a.s. with
√

n

(
Sn

n
− E(X0)

)
d−→

n→+∞ N (0, 1).

For any a ∈ N with a ≥ 1, considering Xa
p :=

(
BH

(
p
N + a

N

)− BH

(
p
N

))2 for any p ∈ N, the sequence
(
Xa

p

)
p∈N

is stationary and E(Xa
0 ) = E

(
BH

(
a
N

)2) = v
(

a
N

)
= cH,1a

2HN−2H . However this sequence is ergodic only if

H < 3/4. One can overcome this restriction by considering second-order increments (see [14] for instance).

For Y = {Y (t); t ∈ R} a Gaussian process with spectral density we consider the stationary sequence of

second-order increments of Y with step a as

ZN,a(Y )(p) = Y
( p

N
+ 2

a

N

)
− 2Y

( p

N
+

a

N

)
+ Y

( p

N

)
. (12)
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The stationary sequence
(
(ZN,a(BH)(p))2

)
p∈N

is ergodic for any H ∈ (0, 1) and this can be generalized to

Y instead of BH , provided that the spectral density f of Y satisfies f(p) �
+∞ |p|−2H−1 for some H < 7/4.

Therefore we will consider the generalized quadratic variations of Y defined as

VN,a(Y ) =
1

N − 2a

N−2a−1∑
p=0

(ZN,a(Y )(p))2 , (13)

from the observation of {Y ( p
N

)
; 0 ≤ p ≤ N − 1}. A natural estimator of H is then given by

ĤN =
1

2 log(2)
log
(

VN,2(Y )
VN,1(Y )

)
. (14)

We refer to [14], respectively Proposition 1.3 of [5], for assumptions on the variogram, or on the spectral density

of Y to ensure the convergence of (14) to H with asymptotic normality.

2.2. Anisotropy test

In this section we consider X = {X(y); y ∈ R
2} an AFBM in R

2 with a spectral density f satisfying (3) for

some function h such that for any θ = (θ1, θ2) ∈ S1 ⊂ R
2,

h(θ) =


h1, if |θ1| < c1|θ2|

h2 if |θ2| < c2|θ1|
(15)

with 0 < c2 ≤ c−1
1 . We assume to observe

{
X
(

p1
N , p2

N

)
; 0 ≤ p1, p2 ≤ N − 1

}
for some N ≥ 1. For 0 ≤ p ≤ N−1,

we write Xp
1 for the process

{
X
(

p
N , t

)
; t ∈ R

}
obtained by restriction of X along the vertical line going through(

p
N , 0

)
. Similarly, we write Xp

2 for the process
{
X
(
t, p

N

)
; t ∈ R

}
obtained by restriction of X along the horizontal

line going through
(
0, p

N

)
. From Proposition 1.3 of [5], for any e ∈ {1, 2} and 0 ≤ p ≤ N − 1,

1
2 log(2)

log
(

VN,2(Xp
e )

VN,1(X
p
e )

)
a.s.−→

N→+∞
H, with

√
N

(
1

2 log(2)
log
(

VN,2(Xp
e )

VN,1(X
p
e )

)
− H

)
d−→

N→+∞
N (0, σ2

H),

where H = essinf
S1

(h) ≤ min(h1, h2) according to (8), σ2
H is a positive constant that only depends on H , a.s.−→

means the almost sure convergence and d−→ means the convergence in distribution. Actually we can consider

Ĥ0e =
1

2 log(2)
log

(
N−1∑
p=0

VN,2(Xp
e )/

N−1∑
p=0

VN,1(Xp
e )

)
(16)
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and establish the following result.

Proposition 2.1. Let X be an AFBF with directional Hurst index h satisfying (15). Let N ≥ 1 and e ∈ {1, 2}.

Then, for H = essinf
S1

(h) and some γ > 0, we get

Ĥ0e
a.s.−→

N→+∞
H, with N

(
Ĥ0e − H

)
d−→

N→+∞
N (0, γ2

H).

We use windowed Radon transform (10) to estimate h1 and h2. For ρ ∈ S(R) a window, let us denote R1X ,

respectively R2X , the windowed Radon transform of X in the direction (0, 1), respectively in the direction (1, 0),

as defined by (10). From Theorem 2.3 of [5] and Theorem 3.1 of [22] we can consider the following estimators

defined for e ∈ {1, 2}.

ĥe =
1

2 log(2)
log
(

VN,2(ReX)
VN,1(ReX)

)
− 1

2
. (17)

Proposition 2.2. Let X be an AFBF with directional Hurst index h satisfying (15). Let N ≥ 1 and e ∈ {1, 2}.

Then, for some σhe > 0,

ĥe
a.s.−→

N→+∞
he, with

√
N
(
ĥe − he

)
d−→

N→+∞
N (0, σ2

he
).

Moreover, for some γ > 0

ĥ1 − ĥ2
a.s.−→

N→+∞
h1 − h2, with

√
N
(
ĥ1 − ĥ2 − (h1 − h2)

)
d−→

N→+∞
N (0, γ2).

We can therefore consider the statistical asymptotic hypothesis test for testing the assumption H0: h1 = h2

(isotropy) against H1: h1 �= h2 (anisotropy). Our test statistic is naturally defined by

DN =
√

N
∣∣∣ĥ1 − ĥ2

∣∣∣ . (18)

By Proposition 2.1, under the assumption H0 we have DN
d−→

N→+∞
|N (

0, γ2
) | while DN −→

N→+∞
+ ∞ under the

assumption H1. Hence, we define the form of an hypothesis rejection interval (of confidence level α) as

RN (α) = {DN > γ cα}, (19)

where cα stands for (1 − α/2)-quantile of the centered and normalized Gaussian distribution.
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2.3. Implementation

We consider an image (I(n, m))0≤p1,p2≤N−1 of size N×N as a realization of an AFBM over a grid
{
X
(

p1
N , p2

N

)
; 1 ≤ p1, p2 ≤ N

}
,

with spectral density satisfying (15).

As in [2], we approximate R1X , resp. R2X , the windowed Radon transform of X in the direction (0, 1), resp.

(1, 0)., by Y1, resp. Y2, the discrete row, resp. column, average of the observations of X :

Y1

(p2

N

)
=

N−1∑
p1=0

X
(p1

N
,
p2

N

)
, resp. Y2

(p1

N

)
=

N−1∑
p2=0

X
(p1

N
,
p2

N

)
, (20)

for any 0 ≤ p1, p2 ≤ N − 1. Due to the Hölder regularity of X , we can find an upper bound for the error of the

Radon’s transform discretization. Actually, for any r < H = essinf
S1

(h), one can find C > 0 such that almost

surely, for any e ∈ {1, 2} and 0 ≤ p ≤ N − 1,

∣∣∣ReX
( p

N

)
− Ye

( p

N

)∣∣∣ ≤ CN−r.

In order to neglect this error compared to the estimation of he + 1
2 , which is the regularity of ReX , the trick is

to subsample Ye. We note Vν,a(·) instead of VN/2ν ,a(·), for ν ≤ log2(N). Following the same lines as [2], we can

prove that for any r < H = essinf
S1

(h), one can find C > 0 such that almost surely, for any e, a ∈ {1, 2}
∣∣∣∣log

(
Vν,a(Ye)

Vν,a(ReX)

)∣∣∣∣ ≤ CN−r (N/2ν)he+1/2
,

which corresponds to the error of approximation, considering

ĥν
e =

1
2 log(2)

log
(

Vν,2(Ye)
Vν,1(Ye)

)
− 1

2
. (21)

instead of ĥe given by (17). We can define an empirical statistical test for testing the assumption H0: h1 = h2

(isotropy) against H1: h1 �= h2 (anisotropy). Let d̂ν = |ĥν
1 − ĥν

2 | be the empirical approximation of the statistic

DN/2ν√
N/2ν

in Equation (18), with ĥν
1 and ĥν

2 given by (21). The rejection interval of confidence level α = 0.05 for

the above test is defined as

Rν = {d̂ν > 1.96σν}, (22)
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where 1.96 is the 0.975-quantile of the centered and normalized Gaussian distribution and σν = γ√
N/2ν

is the

standard deviation of d̂ν . However, Proposition 2.1 does not give an explicit value of γ, nor the optimal choice

for ν. We set empirically these two parameters [5,22], considering exact synthesis for fractional Brownian fields

obtained using Stein method [23]. We evaluated the accuracy and the precision of each estimator on a dataset

of 7 subsets of 1000 FBF of size 512 × 512 generated using Stein method for H ∈ {0.1, . . . , 0.7}. The accuracy

of an estimator on a given set was obtained by averaging parameter estimates over the set and subtracting the

true parameter value; it is the empirical bias of the estimator. The precision of an estimator on a given set

was defined as the standard deviation of parameter estimates over the set. Accuracy and precision are both

reported in Figures 2.
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Figure 2. Projection-based estimation of global Hurst index on FBF simulated using the

Stein method. The accuracy and precision of the projection-based estimators ĥν
e (e = 1, 2) are

computed for different global Hurst index values of fields and different estimator sampling

factors.

Figure 2 shows that accuracy and precision both depends on the estimator sampling factor. The precision

becomes worse and worse as the sampling factor increases. However, when the sub-sampling factor is fixed, the

precision does not vary significantly when values of the estimated index are changed. For any fixed sampling

factor below 4, the precision variations are of order 0.05. Concerning the accuracy, estimators tend to underes-

timate the real index value and the underestimation bias increases as the index value decreases, which is due
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to the discretization of the Radon transform. For any estimated index value H , the accuracy further varies as

a function of the sampling factor and reaches an optimum for a sampling factor value νopt(h). The accuracy

optima are almost the same for the different index values. However, the optimal sampling values νopt(h) are

different: it is higher for low index values than for high index values. Considering index values altogether, the

best accuracy seems to be reached for ν = 2. In this case, the estimation error is below 0.05 for all index

values varying between 0.2 and 0.8 and around 0.13 for the index value 0.1. The precision achieved for the same

sampling factor ν = 2 is about 0.1. The sampling factor ν = 2 gives a good compromise between accuracy and

precision and will be used to measure directional indices in applications.

For comparison, Table 1 shows the accuracy and the precision of the line-based estimator for the Hurst index

given by (16). We evaluated the accuracy and precision of the estimation of the Hurst index difference by the

Ĥ01 Ĥ02

Hurst Accuracy Precision Accuracy Precision

H = 0.7 < 10e−3 0.0017 −0.001 0.014

H = 0.5 < 10e−3 0.0016 < 10e−3 0.017

H = 0.2 0.003 0.0019 0.001 0.0018

Table 1. Line-based estimation of global Hurst index on FBF simulated using the Stein method.

estimators d̂ν = |ĥν
1 − ĥν

2 |, for ν = 0, 2, see Figure 3. At the opposite of results of Figure 2 for a single estimator,

accuracy and precision do not vary significantly with H . Since precision is better for ν = 0 (around 0.8) we

consider the rejection interval given by

R0 = {d̂0 > 0.16}. (23)

We reported in Table 2 the value p of percentage of simulations for which we can reject isotropy assumption

H0, evaluated on exact synthesis of FBF (h1 = h2) and on approximated simulations of AFBM (h1 �= h2). On

isotropic simulations, tests produce few errors, whatever the value of the minimal Hurst index, but results are

slightly better when the Hurst index is high. On anisotropic simulations, the test is not efficient when Hurst

index differences are below 0.2 (between 32 and 43 % of errors). However, it becomes reliable when differences
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Figure 3. Hurst index difference estimation d̂ν = |ĥν
1 − ĥν

2 | on FBF simulated using the Stein method.

|h1 − h2| 0 0.2 0.4 0.6

h1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.7 0.9 0.7 0.9 0.9

h2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.5 0.7 0.3 0.5 0.3

p 11 5 7 4 3 2 1 59 57 68 100 100 100

Table 2. Percentage of simulations for which we can reject isotropy assumption H0 according

to (23), evaluated on exact synthesis of FBF (h1 = h2) and on approximated simulations of

AFBM (h1 �= h2).

are above 0.4 (0 % of errors).

This test evaluates the anisotropy between vertical and horizontal directions. Hence it cannot detect

anisotropic fields which have the same vertical and horizontal directional Hurst indices. In order to fix this

drawback, we set a second anisotropy test which takes into account the other directions using an estimation

of the minimal directional Hurst index H : we test the assumption H0: H = h1 = h2 (isotropy) against H1:

H �= h1 or H �= h2 (anisotropy). We consider the empirical statistic δ̂ν = |max(ĥν
1 , ĥν

2)− Ĥ |, with ĥν
1 , ĥν

2 given
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by (21) and Ĥ = min(Ĥ01, Ĥ02) given by (16). The rejection interval of the test is then defined by

Rν = {δ̂ν > c},

where c is a positive constant which will be fixed empirically, under assumption H0.

We evaluated the accuracy and precision of the estimators δ̂ν = |max(ĥν
1 , ĥν

2) − Ĥ |, for ν = 0, 2, see Figure

4. The mean value of the statistic δ̂ν obtained for ν = 0 increases as the value of h decreases, while, for ν = 2,
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Figure 4. Hurst index difference estimation δ̂ν = |max(ĥν
1 , ĥν

2)− Ĥ| on FBF simulated using

the Stein method.

it remains constant around 0.8. This is due to the bias of the estimators ĥν
1 and ĥν

2 . The standard deviation

does not vary significantly according to h. However, we observe that they are slightly lower than the standard

deviations of the previous statistics d̂ν . Since accuracy is better for ν = 2 we consider the rejection interval

given by

R2 = {δ̂2 > 0.2}. (24)

We reported in Table 3 the value p of percentage of simulations for which we can reject isotropy assumption H0,

evaluated on exact synthesis of FBF (h1 = h2 = H) and on approximated simulations of AFBM (max(h1, h2) �=

min(h1, h2) = H). On isotropic simulations, tests produce few errors, whatever the value of the minimal

Hurst index, but as for the first test, results are slightly better when the Hurst index is high. On anisotropic
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max(h1, h2) − H 0 0.2 0.4 0.6

h1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.7 0.9 0.7 0.9 0.9

h2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.5 0.7 0.3 0.5 0.3

p 9 7 4 7 3 3 1 7 14 22 64 83 83

Table 3. Percentage of simulations for which we can reject isotropy assumption H0 according

to (24), evaluated on exact synthesis of FBF (h1 = h2 = H) and on approximated simulations

of AFBM (max(h1, h2) �= min(h1, h2) = H).

simulations, the test is not efficient when Hurst index differences are below 0.2. However, it becomes reliable

when differences are above 0.4.

3. Application to medical images

3.1. Mammogram

In this section, we apply this methodology on mammograms and study the relevance of an anisotropic model

for the characterization of the textures of these images. Our database has a total of 58 cases, each case being

composed of Full-Field Digital Mammograms (FFDM) of the left and right breasts of a woman. Images were

acquired in MLO position using a Senographe 2000D (General Electric Medical Systems, Milwaukee, WI), with

a spatial resolution of 0.1mm2 per pixel (image size: 1914x2294 pixels). Images are courtesy of the Department

of Radiology of the University of Pennsylvania. In each image of the database, we extracted manually a region

of interest (ROI) of size 512 × 512 within the densest region of the breast. As illustrated on Figure 5, we

then computed the discrete row- and column-wise projections of each ROI and the estimates of the directional

Hurst indices in both directions (ĥν
1 , ĥν

2 for ν = 0, 2 given by (21)). We also estimated the minimal Hurst index

Ĥ = min(Ĥ01, Ĥ02) using the line-based estimators given in (16). Note that in mammograms, vertical (row)

and horizontal (column) directions (labeled 1 and 2) correspond to directions perpendicular and parallel to the

chest wall, respectively.
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Figure 5. A ROI extracted from a FFDM and its vertical and horizontal projections (ĥ2
1 =

0.73, ĥ2
2 = 0.47 and Ĥ = 0.26).

The estimates of the minimal Hurst index we obtained using line-based estimators on the extracted ROI

are in the interval [0.18; 0.42], with an average of 0.31 and a standard deviation of 0.05. These results are
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Figure 6. Ĥ = min(Ĥ01, Ĥ02) = 0.31 ± 0.05

close to those obtained in previous studies, using other estimators. For instance, Kestener et al. computed the

Hurst index on small regions of size 512× 512 of film mammograms taken from the DDSM database [17]. The

values of the minimal Hurst index are in [0.20; 0.35] and [0.55; 0.75] for ROI with predominant adipose tissues,

respectively. In [13], authors used a spectral method for the estimation of the regularity coefficient β of the

1/f noise model. On 104 ROI extracted from 26 FFDM mammograms, β ∈ [1.32; 1.44], which correspond to
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H ∈ [0.33; 0.42]. Moreover, the line-based estimates of the minimal Hurst in both directions have equivalent

empirical distributions and are approximately equal on each image. This observation is consistent with the

theoretical result showing that line-based restrictions of AFBF have same Hurst indices in all directions. This

gives an indirect evidence of the adequacy of the AFBF model to mammogram textures.

Moreover, we observe that horizontal and vertical Hurst index estimates have similar distributions. Stan-

dard deviations of horizontal and vertical Hurst indices are about 0.15 and their averages are 0.45 and 0.55,

respectively. On average, the mammograms seems slightly smoother in the direction parallel to the chest wall

than in the perpendicular one. Besides, ranges of minimal and directional Hurst indices are not the same. This

is partly due to differences in precision of index estimators. However, since the range difference is above the

precision, this also indicates a texture anisotropy.
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Figure 7. (a)
(
ĥ2

1, ĥ
2
2

)
. (b)

(
min(Ĥ01, Ĥ02), max(ĥ2

1, ĥ
2
2)
)

The mammogram anisotropy is further confirmed by results shown on Figure 7 (a) and (b) and Figure 8.

On these figures, we plotted histograms of estimators which are used in the different anisotropy tests, and

represented the rejection bounds of these tests by red dash lines.

Similarly to [8,12,13], our experiments confirm the relevance of fractional Brownian models for the character-

ization of the mammogram density. However, they also reveal that the isotropy assumption which is behind the

mammogram modeling of [8,12,13] is not valid in many cases: around 60 percents of the mammogram textures
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Figure 8. Histograms of Hurst index difference estimators

we studied could be considered as anisotropic with a high level of confidence. Hence, we conclude that AFBF

model is more realistic and relevant than the isotropic FBF model for the description of FFDM textures.

3.2. Trabecular bone x-ray images

Results of [4] suggest that fractal analysis of radiographic trabecular bone radiographic images is a good

indicator of the alteration of the bone microarchitecture. In association with bone mineral density, fractal

analysis improves the fracture risk evaluation. However, since this analysis is based on an isotropic model, it

does not reveal bone texture anisotropy which is of special interest for the diagnosis of osteoporosis [7, 10].

In this section, we consider our estimators on trabecular bone x-ray images. Our study involved 291 cases

of post menopausal women, 181 were considered as control cases and 110 as osteoporotic fracture cases. The

images have been produced in the INSERM U658 (Orleans, France). The radiographs were obtained on calcaneus

with a direct digital X-ray prototype (BMATM, D3A Medical Systems, Orleans, France) having the following

characteristics: focal distance 1.15 m and X-ray parameters 55 kV and 20 mAs. The high-resolution digital

detector integrated into the device prototype had a 50 µm pixel size, providing a spatial resolution of 8 line

pairs per millimeter at 10% modulation transfer function [18]. In each image, we considered a region of interest

(ROI) of size 400× 400 pixels. As illustrated on Figure 9, we then apply a high-pass filter to images. This filter

is intended to remove the local trend of the images and increase the homogeneity of images in low frequencies.
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Indeed, we observed that low frequency inhomogeneities could cause sharp variations in Radon transforms and

reduce significantly the regularity of these projections. The filtered image was obtained by substracting the

image convolved with a gaussian low-pass filter to the original image.
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Figure 9. (a) raw image, (b) filtered image.

The estimates of the averaged Hurst index Ĥmean = Ĥ01+Ĥ02
2 we obtained using line-based estimators on the

extracted ROI are in the interval [0.484, 0.783], with an average of 0.66 and a standard deviation of 0.050. We

found Ĥmean = 0.653 ± 0.051 on 110 osteoporotic cases versus Ĥmean = 0.665 ± 0.048 on 181 normal cases.

These results are close to those obtained in previous studies, using other estimators. In [4], the authors found

Hmean = 0.679±0.053 on 107 fracture cases versus Hmean = 0.696±0.030 on 197 control cases. Their estimation

is based on the x-ray images modeling by isotropic fractional Brownian field. The Hurst parameter is estimated

by an oriented fractal analysis [3]: following 36 directions, 100-300 parallel lines are modeled by fractional

Brownian motion for which the Hurst parameter is estimated by the maximum likelihood estimator [19]. For

each images a mean parameter Hmean is obtained by averaging the parameters estimated in the 36 directions.

As shown in Figure 10, line-based estimates of the Hurst index in horizontal direction Ĥ01 is significantly

greater than those in vertical direction Ĥ02. Since line-based restrictions of AFBF have same Hurst indices in

all directions, this result shows that bone radiographs cannot be exactly considered as realizations of AFBF

realizations. Such a result can be viewed as a direct evidence of the image anisotropy.
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Figure 10. The Hurst indices estimated in the horizontal and vertical directions with incre-

ment step Ĥmean = Ĥ01+Ĥ02
2 = 0.659 ± 0.05.

The bones radiographs anisotropy is further confirmed by results shown on Figure 11 (a) and (b). We

computed the discrete row- and column-wise projections of each ROI and the estimates of the directional Hurst

indices in both directions (ĥν
1 , ĥν

2 given by (21)). Due to the size of the images it seems that less biased values

are obtained for ν = 1: ĥ1
1 = 0.809 ± 0.190 and ĥ1

2 = 0.662± 0.105.
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These preliminary results emphasize the anisotropic nature of bones x-ray images. We believe that our

statistical tools developed for AFBF estimation should also be helpful for bone radiographs characterization.
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