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ON THE PERIMETER OF EXCURSION SETS OF SHOT NOISE
RANDOM FIELDS1

BY HERMINE BIERMÉ AND AGNÈS DESOLNEUX

Université de Poitiers and CNRS, Ecole Normale Superieure de Cachan

In this paper, we use the framework of functions of bounded variation
and the coarea formula to give an explicit computation for the expectation
of the perimeter of excursion sets of shot noise random fields in dimension
n ≥ 1. This will then allow us to derive the asymptotic behavior of these mean
perimeters as the intensity of the underlying homogeneous Poisson point pro-
cess goes to infinity. In particular, we show that two cases occur: we have a
Gaussian asymptotic behavior when the kernel function of the shot noise has
no jump part, whereas the asymptotic is non-Gaussian when there are jumps.

1. Introduction. We will consider here a shot noise random field which is a
real-valued random field given on R

n by

X(x) = ∑
i∈I

g(x − xi,mi), x ∈R
n,(1.1)

where g is a given (deterministic) measurable function (it will be called the kernel
function of the shot noise), the {xi}i∈I are the points of a homogeneous Poisson
point process on R

n of intensity λ, the {mi}i∈I are called the marks and they are
independent copies of a random variable m, also all independent of {xi}i∈I . Such a
random field is a very common model in physics and telecommunications, where
it has many applications [5, 6]. It is a natural generalization of shot noise processes
(n = 1), introduced by Rice [16] to model shot effect noise in electronic devices.
More recently, it has also become a widely used model in image processing, mainly
for applications in texture synthesis and analysis [13].

Geometric characteristics of random surfaces is an important subject of modern
probability research, linked with extremal theory [2, 4] and based on the study of
random fields excursion sets. The excursion set of level t of the random field X in
an open subset U of Rn is defined by

EX(t,U) := {
x ∈ U such that X(x) > t

}
.
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Most of the results are obtained for stationary Gaussian random fields, but recent
works have dropped the Gaussian assumption. In particular, in [1], asymptotics
for the distribution of critical points and Euler characteristics are obtained for a
large class of infinite divisible stationary random fields with suitable regularity
assumptions. Central limit theorem for volumes of excursion sets have also been
considered in [10] for general stationary random fields, including some shot noise
and Gaussian random fields. In this paper, we will be interested in the “perimeter”
of excursion sets of shot noise random fields (we will give the precise definition of
it in the first section), measured as the (n − 1)-dimensional Hausdorff measure of
its boundary

LX(t,U) := Hn−1(
∂EX(t,U) ∩ U

)
.

In dimension n = 1, the “perimeter” of an excursion set is the number of crossings
of the considered level; in dimension n = 2 it measures the length of the boundary
of the excursion set; in dimension n = 3 it measures its surface area, and so on.

The shot noise random field is not necessarily smooth or differentiable (this
happens, e.g., when the kernel function is an indicator function), and therefore we
cannot use the framework of Adler et al. ([2] or [1]) to compute its geometric fea-
tures (such as the Euler characteristic or intrinsic volumes). Even in the case where
the shot noise random field is smooth, it may not satisfy the regularity conditions
on the marginal or conditional probability densities of the field and its gradient [7].

As a consequence, we will adopt a different viewpoint, and we will study the
excursion sets via the whole function t �→ LX(t,U), and not only its value for a
particular fixed t . A convenient functional framework to define and compute these
perimeters is the framework of functions of bounded variation. Our main tool will
be the so-called coarea formula that relates the integral of the perimeter of all
excursion sets to the integral of the differential of the function. The coarea formula
has been already used in a similar situation by Wschebor [18] and by Zähle in [19]
to obtain a general Rice formula for continuous random fields in dimension d . It
has also been used by Azaïs and Wschebor in [4] to have a proof of the theorem that
computes the expected number of crossings of a random field as a function of some
of its marginal and conditional probability densities. See also Adler and Taylor
[2], page 283, for a discussion about this theorem. The coarea formula approach
is in some sense a weak approach since we will obtain a formula for almost every
level t (and not for a specific value of t). But the advantage is that we will be able
to make explicit computations in a situation where the methods of [2] or [1] cannot
be applied. Let us also mention that in our previous paper [8] we started using the
same approach in dimension n = 1, but we worked under a piecewise regularity
assumption more restrictive than functions of bounded variation. We propose here
a much more general setting, allowed for any dimension n ≥ 1. Note also that our
results on the coarea formula only rely on a functional assumption and not on a
distribution assumption. In particular, they are valid for some processes with jumps
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and allow to recover partially some recent results in dimension n = 1 on Rice
formula for the number of crossings for the sum of a smooth process and a pure
jump process [11] or for piecewise deterministic Markov processes [9]. However,
we focus here on shot noise random fields for which we set convenient assumptions
to ensure the bounded variation, derive explicit computation and obtain asymptotic
regime as the underlying intensity tends to infinity.

The paper is organized as follows: we start in Section 2 to give some nota-
tion and properties of the functions of bounded variation. Then, in Section 3, we
define precisely the shot noise random field and give an explicit computation of
the perimeter of its excursion sets. We illustrate our results with some examples.
Finally in Section 4, we derive two different asymptotic behaviors for the perime-
ters as the intensity of the underlying homogeneous Poisson point process goes to
infinity.

2. Coarea formula.

2.1. The framework of functions of bounded variation. For sake of complete-
ness, we first recall here some definitions and properties of functions of bounded
variation. We will mainly use the framework and notations of Ambrosio, Fusco
and Pallara in [3]. We shall also sometimes refer to Evans and Gariepy [12]. In all
the following Ln will denote the n-dimensional Lebesgue measure in R

n, and Hk

will denote the k-dimensional Hausdorff measure (we will most of the time use it
with k = n−1 and keep Ln for k = n). When there is no ambiguity we will simply
denote dx instead of Ln(dx) for the Lebesgue measure in integrals. We will also
use the notation μ∠A to denote the restriction of a measure μ to a set A.

Let U be an open subset of Rn. A real-valued function f ∈ L1(U) is said to be
a function of bounded variation in U if

V (f,U) := sup
{∫

U
f divϕ dx|ϕ ∈ C1

c

(
U,Rn)

,‖ϕ‖∞ ≤ 1
}

< +∞,

where C1
c (U,Rn) denotes the set of continuously differentiable R

n-valued func-
tions with compact support in U . We will denote by BV(U) the space of func-
tions of bounded variation in U . An equivalent definition ([3], pages 117–120)
of f ∈ BV(U) is that f ∈ L1(U) is such that its distributional derivative (i.e., its
derivative in the sense of distributions) is representable by a finite Radon measure
in U , that is,∫

U
f (x)

∂φ

∂xl

(x) dx = −
∫
U

φ(x)Dlf (dx) ∀φ ∈ C∞
c (U,R),∀l = 1, . . . , n

for some R
n-valued measure Df = (D1f, . . . ,Dnf ). Its total variation is the pos-

itive Radon measure denoted by ‖Df ‖ and defined by

‖Df ‖(E) = sup
P∈P(E)

∑
k∈K

∥∥Df (Ek)
∥∥,
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for all measurable sets E ⊂ U , with P(E) the set of finite or countable partitions
P = (Ek)k∈K of E into disjoint measurable sets Ek , and where ‖Df (Ek)‖ denotes
the Euclidean norm (in R

n) of Df (Ek). Let us note Sn−1 the unit sphere of Rn.
According to the polar decomposition, which follows from Radon–Nikodym the-
orem (see Corollary 1.29 of [3]), there exists a unique Sn−1-valued function νf

that is measurable and integrable with respect to the measure ‖Df ‖ and such that
Df = ‖Df ‖νf . And we also have

V (f,U) = ‖Df ‖(U).

In particular, according to Evans and Gariepy ([12], page 91), when f :U ⊂ R
n →

R is Lipschitz, then it is differentiable almost everywhere, and in this case if
we denote ∇f (x) = (

∂f
∂x1

(x), . . . ,
∂f
∂xn

(x)) ∈ R
n the gradient of f at a point x,

and ‖∇f (x)‖ its Euclidean norm, then Df = ∇fLn, ‖Df ‖ = ‖∇f ‖Ln and
νf = ∇f/‖∇f ‖, so that

V (f,U) = ‖Df ‖(U) =
∫
U

∥∥∇f (x)
∥∥dx.

One can define a norm on BV(U) by

‖f ‖BV(U) = ‖f ‖L1(U) + ‖Df ‖(U),(2.1)

so that (BV(U),‖ · ‖BV(U)) is a Banach space ([3], page 121).
The framework of functions of bounded variation is of special interest to study

the perimeter of a set because of the following definition and property. Let E be
an Ln-measurable subset of Rn. Then for any open subset U ⊂ R

n, we say that E

is a set of finite perimeter in U if its indicator function χE is of bounded variation
in U . In this case, we define the perimeter LE(U) of E in U as V (χE,U), that is,

LE(U) := sup
{∫

E
divϕ dx|ϕ ∈ C1

c

(
U,Rn)

,‖ϕ‖∞ ≤ 1
}
.

The term “perimeter” meets here its usual sense in dimension n = 2 as “the length
of the boundary.” Indeed, it can be shown (see [3], page 143) that for all sets E

with piecewise C1 boundary in U and such that Hn−1(∂E ∩ U) is finite, then by
Gauss–Green theorem the distributional derivative of χE is DχE = νEHn−1∠∂E,
where νE is the inner unit normal to E, and that

LE(U) = Hn−1(∂E ∩ U).

Let f ∈ BV(U). For t ∈ R, we can consider the excursion set (also sometimes
called “upper level set” or “superlevel”) of level t of f ,

Ef (t,U) := {
x ∈ U such that f (x) > t

}
.

Then for L1-almost every t ∈ R, the set Ef (t,U) is of finite perimeter in U . We
will denote its perimeter in U by Lf (t,U). Moreover, the function t �→ Lf (t,U)

belongs to L1(R), and we have the coarea formula,

‖Df ‖(U) =
∫
R

Lf (t,U)dt.(2.2)
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The proof of this formula can be found in [3], page 145, or also in [12], page 85.
Now, in order to use this formula, we need to be more explicit about the point-

wise properties of f and the decomposition of its distributional derivative Df . Let
us recall that f is said approximately continuous at x ∈ U ⊂ R

n if

lim
ρ→0

ρ−n
∫
Bρ(x)

∣∣f (y) − f (x)
∣∣dy = 0,(2.3)

where Bρ(x) is the Euclidean ball of radius ρ and centered at x. The set Sf of
points where this property does not hold is a Ln negligible Borel set called an
approximate discontinuity set; see [3], Proposition 3.64, page 160. A point x ∈ Sf

is called an approximate jump point of f if there exist f +(x), f −(x) ∈ R and
νf (x) ∈ Sn−1 such that f +(x) > f −(x) with

lim
ρ→0

ρ−n
∫
B+

ρ (x,νf (x))

∣∣f (y) − f +(x)
∣∣dy = 0 and

lim
ρ→0

ρ−n
∫
B−

ρ (x,νf (x))

∣∣f (y) − f −(x)
∣∣dy = 0,

where B+
ρ (x, ν) [resp., B−

ρ (x, ν)] denotes the half-ball determined by ν ∈ Sn−1,
that is, {y ∈ Bρ(x), 〈y − x, ν〉 > 0} [resp., {y ∈ Bρ(x), 〈y − x, ν〉 < 0}]. The set of
approximate jump points is denoted by Jf , and it is a Borel subset of Sf . Moreover,
by the Federer–Vol’pert theorem ([3], Theorem 3.78, page 173), since f ∈ BV(U),
the set Sf is a countably Hn−1-rectifiable set with Hn−1(Sf \ Jf ) = 0 and

Df∠Jf = (
f + − f −)

νfHn−1∠Jf .

By the Radon–Nikodym theorem, the distributional derivative Df can be decom-
posed into the sum of three terms (see [3], page 184),

Df = ∇fLn + (
f + − f −)

νfHn−1∠Jf + Dcf.

These three terms are defined in the following way:

• Daf := ∇fLn is the absolutely continuous part of the Radon measure Df with
respect to the Lebesgue measure Ln. And moreover, ∇f is here the approximate
differential of f ; see [3], page 165 and Theorem 3.83, page 176.

• Djf := (f + − f −)νfHn−1∠Jf is the jump part of Df .
• The last term Dcf is the so-called Cantor part of Df . It has the property to

vanish on sets which have a Hn−1 finite measure.

2.2. A general coarea formula. In our framework, we will be interested in
functions that have no Cantor part in their distributional derivative (we will mainly
study piecewise C1 functions). These functions have been introduced by De Giorgi
and Ambrosio to study variational problems where both volume and surface en-
ergies are involved, and they are called “special functions of bounded variation.”
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Their set is denoted by SBV(U), and it is a closed subset of (BV(U),‖ · ‖BV(U));
see [3], Corollary 4.3, page 213.

As we already mentioned in the Introduction, our viewpoint will be to study
the function t → Lf (t,U). The coarea formula (2.2) only provides the integral of
t → Lf (t,U) on R, and we will extend it to the integral of t → h(t)Lf (t,U) on R

for any bounded continuous function h. This is the aim of the following theorem.

THEOREM 1. Let U be an open subset of Rn, and let f :U →R be a function
in SBV(U). Using the notation and definitions of the previous section, its distribu-
tional derivative is given by

Df = ∇fLn + (
f + − f −)

νfHn−1∠Jf ,

while

‖Df ‖ = ‖∇f ‖Ln + (
f + − f −)

Hn−1∠Jf .

Let h :R→R be a continuous and bounded function. Then∫
R

h(t)Lf (t,U)dt

=
∫
U

h
(
f (x)

)∥∥∇f (x)
∥∥dx +

∫
Jf ∩U

(∫ f +(y)

f −(y)
h(s) ds

)
Hn−1(dy).

PROOF. Let h :R → R be a continuous and bounded function. Let us first
assume that there exists an ε > 0 such that h(t) ≥ ε for all t ∈ R. We define for all
t ∈R,

H(t) =
∫ t

0
h(s) ds.

Then H is a C1 diffeomorphism from R to R. It is strictly increasing, and since
H ′(t) = h(t) for all t ∈ R is bounded, it is also Lipschitz on R.

Now, let u be the function defined on U by u = H ◦ f . Then by the chain-rule
(see [3], page 164 and Theorem 3.96, page 189) we have that u ∈ SBV(U), its
jump set Ju = Jf and its derivative is given by

Du = (h ◦ f )∇fLn + (
H ◦ f + − H ◦ f −)

νfHn−1∠Jf .

Then by the coarea formula (2.2), we have that∫
R

Lu(s,U)ds

= ‖Du‖(U)

=
∫
U

h
(
f (x)

)∥∥∇f (x)
∥∥dx +

∫
Jf ∩U

(
H

(
f +(y)

) − H
(
f −(y)

))
Hn−1(dy)

=
∫
U

h
(
f (x)

)∥∥∇f (x)
∥∥dx +

∫
Jf ∩U

(∫ f +(y)

f −(y)
h(s) ds

)
Hn−1(dy).
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But for all s ∈ R, we have that Eu(s,U) = Ef (H−1(s),U) where H−1 denotes
the inverse of the C1 diffeomorphism H . And thus for all s ∈ R, we also have
that Lu(s,U) = Lf (H−1(s),U). Then by the change of variable t = H−1(s) (see,
e.g., [17], page 153), we get∫
R

h(t)Lf (t,U)dt =
∫
R

Lu(s,U)ds

=
∫
U

h
(
f (x)

)∥∥∇f (x)
∥∥dx +

∫
Jf

(∫ f +(y)

f −(y)
h(s) ds

)
Hn−1(dy),

which is the announced formula.
In the general case, when h is not strictly positive, we simply apply the above

formula to h1 = 1 + sup(h,0) and to h2 = 1 + sup(−h,0), and then we have it for
h = h1 − h2, which ends the proof of the theorem. �

3. Shot noise random fields. Let (
,A,P) be a probability space, and
� = {(xi,mi)}i∈I be a Poisson point process on R

n ×R
d with intensity λLn ⊗ F ,

with F a probability measure on R
d . Let g :Rn × R

d → R be defined such that
for F -almost every m ∈ R

d the function gm := g(·,m) belongs to SBV(Rn). From
Section 2, it follows that for such m ∈ R

d

Dgm = ∇gmLn + (
g+

m − g−
m

)
νgmHn−1∠Jgm

and

‖gm‖BV(Rn) = ‖gm‖L1(Rn) + ‖Dgm‖(
R

n)
= ‖gm‖L1(Rn) + ‖∇gm‖L1(Rn) +

∫
Jgm

(
g+

m(y) − g−
m(y)

)
Hn−1(dy)

< +∞.

Under the assumption that∫
Rd

‖gm‖L1(Rn)F (dm) < +∞,(3.1)

one can define almost surely the shot noise random field

X� = ∑
i∈I

τxi
gmi

,(3.2)

as a random field in L1
loc(R

n), where τxi
gmi

(x) := gmi
(x − xi).

In the sequel we will also consider �j = � \ {(xj ,mj )} for j ∈ I and its asso-
ciated shot noise random field

X�j
= ∑

i∈I ;i �=j

τxi
gmi

.

Throughout the paper we make the stronger assumption that∫
Rd

‖gm‖BV(Rn)F (dm) < +∞.(3.3)
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3.1. Regularity of the shot noise random fields. The aim of the following theo-
rem is to show that the shot noise random field inherits the regularity properties of
the kernel functions gm. The general idea is that if the kernel functions are special
functions of bounded variation, then so is locally the shot noise. The theorem also
gives the decomposition of its distributional derivative.

In the following, we will need the functional spaces L1
loc(R

n) and SBV loc(R
n).

We recall that they are defined by the following: a function f belongs to L1
loc(R

n)

[resp., SBV loc(R
n)] if and only if it belongs to L1(U) [resp., SBV(U)] for all

bounded open subset U of Rn.

THEOREM 2. Under assumption (3.3), one can define almost surely (a.s.) in
L1

loc(R
n) the two shot noise random fields

X� := ∑
i∈I

τxi
gmi

and ∇X� := ∑
i∈I

τxi
∇gmi

.

Moreover, a.s. X� ∈ SBV loc(R
n) with

DX� = ∇X�Ln + (
X+

� − X−
�

)
νX�Hn−1∠JX�

,

and for Hn−1 almost every y ∈ JX� , there exists a unique (xj ,mj ) ∈ � such that
y ∈ Jτxj

gmj
= xj + Jgmj

and

X+
�(y) = τxj

g+
mj

(y) + X�j
(y) and X−

�(y) = τxj
g−

mj
(y) + X�j

(y).(3.4)

PROOF. Let U be a bounded open set of Rn. First, note that by Campbell’s
formula,

E

(∑
i∈I

‖τxi
gmi

‖BV(U)

)
=

∫
Rd

∫
Rn

‖τygm‖BV(U)λdyF(dm)

= λ

∫
Rd

∫
Rn

(‖τygm‖L1(U) + ‖τyDgm‖(U)
)
dyF(dm).

By Fubini’s theorem and by the translation invariance of Ln, we have∫
Rd

∫
Rn

‖τygm‖L1(U) dyF (dm) = Ln(U)

∫
Rd

‖gm‖L1(Rn)F (dm).

Moreover, recalling the notation χV to denote the indicator function of a set V , we
have ∫

Rn
‖τyDgm‖(U)dy =

∫
Rn

‖Dgm‖(U − y)dy

=
∫
Rn×Rn

χU−y(x)‖Dgm‖(dx) dy

= Ln(U)‖Dgm‖(
R

n)
,
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by Fubini’s theorem and the translation invariance of Ln. It follows that

E

(∑
i∈I

‖τxi
gmi

‖BV(U)

)
= λLn(U)

∫
Rd

‖gm‖BV(Rn)F (dm) < +∞.

Hence, almost surely
∑

i∈I ‖τxi
gmi

‖BV(U) < +∞. Since (SBV(U),‖ · ‖BV(U)) is
a Banach space, it implies that X� = ∑

i∈I τxi
gmi

is almost surely in (SBV(U),

‖ · ‖BV(U)). Now, let us identify DX�. First, remark that
∑

i∈I ‖τxi
gmi

‖BV(U) <

+∞ implies that∑
i∈I

‖τxi
∇gmi

‖L1(U) + ∑
i∈I

∫
Jτxi

gmi
∩U

(
τxi

g+
mi

(y) − τxi
g−

mi
(y)

)
Hn−1(dy) < +∞,

so that the vectorial Radon measure∑
i∈I

τxi
∇gmi

Ln∠U + ∑
i∈I

(
τxi

g+
mi

− τxi
g−

mi

)
ντxi

gmi
Hn−1∠U∩Jτxi

gmi

is well defined. By uniqueness of the Radon–Nikodym decomposition, we get

∇X�Ln∠U = ∑
i∈I

τxi
∇gmi

Ln∠U,(3.5)

(
X+

� − X−
�

)
νX�Hn−1∠U∩JX�(3.6)

= ∑
i∈I

(
τxi

g+
mi

− τxi
g−

mi

)
ντxi

gmi
Hn−1∠U∩Jτxi

gmi
.

Note in particular that the last equality implies that

Hn−1
(
U ∩ JX� ∩

(⋃
i∈I

Jτxi
gmi

)c)
= 0,

where for a set S, Sc denotes the complement of S.
For a fixed point (xj ,mj ) ∈ �, let us remark that since X� and τxj

gmj
are both

in SBV(U), we also have X�j
= X� − τxj

gmj
∈ SBV(U). Analogously, we get

Hn−1
(
U ∩ JX�j

∩
( ⋃

i∈I ;i �=j

Jτxi
gmi

)c)
= 0.

Note that when y ∈ Jτxj
gmj

∩ Sc
X�j

∩ U , we obtain that y ∈ JX� with (3.4) sat-

isfied. Therefore, it suffices to prove that the set of points in U that belong to⋃
j∈I (Jτxj

gmj
∩ SX�j

) is Hn−1 negligible. We have

E

(
Hn−1

(⋃
j∈I

(Jτxj
gmj

∩ SX�j
) ∩ U

))

≤ E

(∑
j∈I

Hn−1(Jτxj
gmj

∩ SX�j
∩ U)

)

≤
∫
Rd

∫
Rn

E
(
Hn−1(Jτxgm ∩ SX� ∩ U)

)
λdxF(dm),
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by Mecke’s formula; see [6]. Now, using Fubini’s theorem, for F -a.e. m∫
Rn

E
(
Hn−1(Jτxgm ∩ SX� ∩ U)

)
dx = E

(∫
SX�

∩U
Ln(y + Jgm)Hn−1(dy)

)
,

since Jτxgm = x + Jgm for all x ∈ R
n. But Ln(y + Jgm) = Ln(Jgm) = 0 for all

y ∈ R
n, which implies that Hn−1(

⋃
j∈I Jτxj

gmj
∩ SX�j

∩ U) = 0 almost surely.
Finally, we complete the proof using the fact that Rn is covered by a countable
union of bounded open sets so that a.s. X� is in SBV loc(R

n). �

Under assumption (3.3), X� is well defined a.s. as a function in SBV(Rn), but
we can also consider X� as a real random field indexed by R

n. More precisely, let
us define

D� =
{
x ∈R

n such that X�(x) = ∑
i∈I

τxi
gmi

(x)

}
∩ Sc

X�
.

Note that the convergence in L1
loc(R

n) implies that a.s. Ln(Dc
�) = 0 so that

E(Ln(Dc
�)) = 0. Moreover, for U a bounded open set in R

n, by Fubini’s theo-
rem, one has

E
(
Ln(

Dc
� ∩ U

)) =
∫
U
P

(
x ∈ Dc

�

)
dx = P

(
0 ∈ Dc

�

)
Ln(U),

where the last equality comes from P(x ∈ Dc
�) = P(0 ∈ Dc

�), by stationarity of
the point process {xi}i∈I . It follows that for all x ∈ R

n, P(x ∈ Dc
�) = 0 and a.s.

x ∈ Sc
X�

and X�(x) = ∑
i∈I τxi

gmi
(x). The same remark may be applied to ∇X�

since Ln(S∇X�) = 0 as ∇X� ∈ L1
loc(R

n). This allows to compute the finite dimen-
sional law of the random field {(X�(x),∇X�(x));x ∈ R

n} itself. In particular, the
shot noise random fields have the nice property that their characteristic function
is explicit; see, for instance, [6], Chapter 2. More precisely, in our framework, the
shot noise field {(X�(x),∇X�(x));x ∈ R

n} is stationary, and therefore the joint
characteristic function of X�(x) and ∇X�(x) is independent of x and is given for
all u ∈ R and all v ∈R

n by

ψ(u, v) := E
(
eiuX�(x)+i〈v,∇X�(x)〉)

(3.7)

= exp
(
λ

∫
Rd

∫
Rn

(
eiugm(y)+i〈v,∇gm(y)〉 − 1

)
dyF(dm)

)
.

In the following we will also simply denote ψ(u) = ψ(u,0) = E(eiuX�(x)) the
characteristic function of X�(x). Let us also mention that the real random vari-
ables X�(x), ∂X�

∂x1
(x), . . . , ∂X�

∂xn
(x) are integrable with

E
(
X�(x)

) = λ

∫
Rd

∫
Rn

gm(y) dyF (dm) and

E

(
∂X�

∂xl

(x)

)
= λ

∫
Rd

∫
Rn

∂gm

∂xl

(y) dyF (dm),
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for all l = 1, . . . , n, implying that ‖∇X�‖ is also integrable. Moreover, under the
additional assumption that∫

Rd

∫
Rn

gm(y)2 dyF(dm) < +∞ and
(3.8) ∫

Rd

∫
Rn

∥∥∇gm(y)
∥∥2

dyF(dm) < +∞,

the real random variables X�(x), ∂X�
∂x1

(x), . . . , ∂X�
∂xn

(x) are also square integrable
with

Var
(
X�(x)

) = λ

∫
Rd

∫
Rn

gm(y)2 dyF(dm) and

Var
(

∂X�

∂xl

(x)

)
= λ

∫
Rd

∫
Rn

(
∂gm

∂xl

(y)

)2

dyF(dm),

for all l = 1, . . . , n.

3.2. Perimeter of the excursion sets. We consider the excursion set of X� de-
fined as previously by

EX�(t,U) = {
x ∈ U such that X�(x) > t

}
,

as well as LX�(t,U) its perimeter in U . According to Theorem 1, when h :R→R

is a continuous and bounded function, one has a.s. the coarea formula∫
R

h(t)LX�(t,U)dt

=
∫
U

h
(
X�(x)

)∥∥∇X�(x)
∥∥dx +

∫
JX�

∩U

(∫ X+
�(y)

X−
�(y)

h(s) ds

)
Hn−1(dy).

By (3.4), the jump part rewrites as∫
JX�

∩U

(∫ X+
�(y)

X−
�(y)

h(s) ds

)
Hn−1(dy)

= ∑
j∈I

∫
Jτxj

gmj
∩U

(∫ τxj
g+
mj

(y)+X�j
(y)

τxj
g−
mj

(y)+X�j
(y)

h(s) ds

)
Hn−1(dy)(3.9)

= ∑
j∈I

∫
Jτxj

gmj
∩U

(∫ τxj
g+
mj

(y)

τxj
g−
mj

(y)
h
(
s + X�j

(y)
)
ds

)
Hn−1(dy).

We compute the expectation of the jump part of the coarea formula in the next
proposition.
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PROPOSITION 1. Let h :R→R be a continuous and bounded function. Then

E

(∫
JX�

∩U

(∫ X+
�(y)

X−
�(y)

h(s) ds

)
Hn−1(dy)

)

= λLn(U)

∫
Rd

∫
Jgm

(∫ g+
m(y)

g−
m(y)

E
(
h
(
s + X�(0)

))
ds

)
Hn−1(dy)F (dm).

PROOF. From Mecke’s formula (see [6]), taking the expectation in (3.9), we
get

E

(∫
JX�

∩U

(∫ X+
�(y)

X−
�(y)

h(s) ds

)
Hn−1(dy)

)

=
∫
Rn×Rd

∫
Jτxgm∩U

(∫ τxg+
m(y)

τxg−
m(y)

E
(
h
(
s + X�(y)

))
ds

)
Hn−1(dy)λdxF(dm)

=
∫
Rn×Rd

∫
Jgm∩(U−x)

(∫ g+
m(y)

g−
m(y)

E
(
h
(
s + X�(x + y)

))
ds

)
Hn−1(dy)λdxF(dm),

by translation invariance of Hn−1. Moreover, by stationarity of X�, for all s ∈ R

and x, y ∈ R
n,

E
(
h
(
s + X�(x + y)

)) = E
(
h
(
s + X�(0)

))
.

By Fubini’s theorem, integrating with respect to x, this last integral is equal to

λLn(U)

∫
Rd

∫
Jgm

∫ g+
m(y)

g−
m(y)

E
(
h
(
s + X�(0)

))
dsHn−1(dy)F (dm),

which is the announced result. �

We can now give our main result about the mean value of the perimeter of
the shot noise random field. It is a direct consequence of the coarea formula of
Theorem 1, when taking for h the function h(t) = eiut , and of the computation of
the expectation of the jump part of the coarea formula given in Proposition 1.

THEOREM 3. Let X� be a shot noise random field given on R
n by (3.2) and

such that assumption (3.3) is satisfied. For all t ∈R, let us denote

CX�(t) = E
(
LX�

(
t, (0,1)n

))
.

Then the function t �→ CX�(t) belongs to L1(R), and its Fourier transform is given
for all u ∈R, u �= 0 by

ĈX�(u) = E
(
eiuX�(0)

∥∥∇X�(0)
∥∥)

+E
(
eiuX�(0)) λ

iu

∫
Rd

∫
Jgm

(
eiug+

m(y) − eiug−
m(y))Hn−1(dy)F (dm),
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and for u = 0, we have

ĈX�(0) = E
(
V

(
X�, (0,1)n

))
= E

(∥∥∇X�(0)
∥∥) + λ

∫
Rd

∫
Jgm

(
g+

m(y) − g−
m(y)

)
Hn−1(dy)F (dm).

A direct consequence of Theorem 3 is the following corollary that gives a Rice
formula in a weak sense (i.e., for almost every level t) and includes the “jump
part.”

COROLLARY 1. Under the assumptions of Theorem 3, and if we moreover
assume that the random variable X�(0) admits a probability density on R, denoted
by t �→ pX�(0)(t), then for almost every t ∈ R we have

CX�(t) = E
(∥∥∇X�(0)

∥∥|X�(0) = t
)
pX�(0)(t)

+ λ

∫
Rd

∫
Jgm

∫ g+
m(y)

g−
m(y)

pX�(0)(t − s) dsHn−1(dy)F (dm).

PROOF. Note that since X�(0) admits pX�(0) for density, we may define the
positive measurable function

C(t) := E
(∥∥∇X�(0)

∥∥|X�(0) = t
)
pX�(0)(t)

+ λ

∫
Rd

∫
Jgm

∫ g+
m(y)

g−
m(y)

pX�(0)(t − s) dsHn−1(dy)F (dm),

for almost every t ∈ R. Moreover,∫
R

C(t) dt = E
(∥∥∇X�(0)

∥∥) + λ

∫
Rd

∫
Jgm

(
g+

m(y) − g−
m(y)

)
Hn−1(dy)F (dm)

≤ E
(∥∥∇X�(0)

∥∥) + λ

∫
Rd

‖gm‖BV(Rn)F (dm) < +∞,

by assumption (3.3). Then we may compute its Fourier transform and find Ĉ =
ĈX� . The result follows from the injectivity of the Fourier transform. �

Let us quote that sufficient conditions for X�(0) to admit a probability density
are given in Section 3.2 of [7].

3.3. Some particular cases. In order to have explicit formulas for the mean
perimeter CX�(t) = E(LX�(t, (0,1)n)), we need to be able to compute the two
terms of ĈX�(u) in the formula of Theorem 3. We will give in this section many
situations in which the computations are doable. The first case is the one of piece-
wise constant functions gm, since in this case the first term vanishes. The second
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case is when E(‖∇X�(0)‖2) is finite, because we are then able to use the joint
characteristic function of X�(0) and ∇X�(0) to have an explicit formula for the
term E(eiuX�(0)‖∇X�(0)‖). This will be the aim of the next section.

Let us start with the piecewise constant case. When the functions gm are piece-
wise constant, then ∇X�(0) = 0 a.s., and therefore we simply have

ĈX�(u) = E
(
eiuX�(0)) λ

iu

∫
Rd

∫
Jgm

(
eiug+

m(y) − eiug−
m(y))Hn−1(dy)F (dm).

EXAMPLE 1. We consider a shot-noise process X� in R
2 made of random

shapes; that is, we assume that n = 2, that the marks m are given by m = (β, r)

with β ≥ 0, r ≥ 0 and with the distribution F given by F(dm) = Fβ(dβ)Fr(dr)

(having thus β and r independent). We also assume that the functions gm are of
the form gm(x) = βχKr (x) for all x ∈ R

2, where for each r , Kr is a compact set
of R2 with piecewise smooth boundary and such that the mean perimeter and the
mean area, respectively, defined by

p =
∫
R+

H1(∂Kr)Fr(dr) and a =
∫
R+

L2(Kr)Fr(dr)

are both finite. Then in this case, we have

∀u ∈ R, u �= 0, ĈX�(u) = λp
F̂β(u) − 1

iu
eλa(F̂β(u)−1),

where F̂β(u) = ∫
R+ eiuβFβ(dβ):

In particular if β follows an exponential distribution of parameter μ > 0, then
F̂β(u) = μ

μ−iu
, and then

ĈX�(u) = λp
1

μ − iu
eλa(iu)/(μ−iu).

We recognize here (thanks to tables of Fourier transforms!) the Fourier transform
of a noncentral chi-square distribution, and we thus have

for a.e. t ∈ R+, CX�(t) = λμpe−λa−μtI0(2
√

λμat),

where I0 is the modified Bessel function of the first kind of order 0 that is given
for all t ∈ R by I0(t) = 1

π

∫ π
0 et cos θ dθ .

Another explicit and simple case is when β = 1 a.s., which implies that F̂β(u) =
eiu. Then ĈX�(u) is the product of two Fourier transforms: one of a Poisson dis-
tribution and one of the indicator function of the interval [0,1]. Therefore we get

∀k ∈ N, for a.e. t ∈ (k, k + 1), CX�(t) = λp
(λa)k

k! e−λa.

We illustrate this result on Figure 1 where we show a sample of a shot-noise pro-
cess made of two indicator functions of squares.
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FIG. 1. We show here on the left a sample [in the square domain (0,2000)2] of a shot noise process
made of two indicator functions of squares of respective side length 60 and 200, and with respective
probability 1/2; with a Poisson point process intensity λ = 2 · 10−4. In the middle we show the
boundaries of some of the excursion sets. And on the right we plot the empirical distribution of the
perimeter of the excursion sets as a function of the level, together with the expected values of these
perimeters (red stars).

3.4. Link with directional derivatives. In the general case, when the func-
tions gm are not piecewise constant, we need to be able to compute the term
E(eiuX�(0)‖∇X�(0)‖). In order to have an explicit formula for it in terms of the
characteristic function of the shot noise [i.e., given by (3.7)], we will first prove
the following proposition.

PROPOSITION 2. Let X and Y be two random variables, such that X is real-
valued and Y takes values in R

n, n ≥ 1. Let φ be the joint characteristic function
of X and Y given by

∀u ∈ R,∀v ∈R
n, φ(u, v) := E

(
eiuX+i〈v,Y 〉).

Assume that E(‖Y‖2) < +∞. Then

∀u ∈R,

E
(
eiuX‖Y‖)

= −1

2πωn−1

∫
Sn−1

∫ +∞
0

1

t2

(
φ(u, tv) + φ(u,−tv) − 2φ(u,0)

)
dtHn−1(dv),

where ωn−1 is the Ln−1 measure of the unit ball of Rn−1.

PROOF. We first use the well-known identity

‖Y‖ = 1

2ωn−1

∫
Sn−1

∣∣〈v,Y 〉∣∣Hn−1(dv).

Now, for any y ∈ R, we have that

−1

π

∫ +∞
0

1

t2

(
eity + e−ity − 2

)
dt = 2|y|

π

∫ +∞
0

1

t2

(
1 − cos(t)

)
dt = |y|.
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We can use this identity for each 〈v,Y 〉, integrate on v ∈ Sn−1, multiply by eiuX

and finally take the expectation. Then, since for any t and y in R, we have |eity +
e−ity − 2|/t2 ≤ min(4/t2, y2), and since E(‖Y‖2) < +∞, we obtain by Fubini’s
theorem that

E
(
eiuX‖Y‖)

= −1

2πωn−1

∫
Sn−1

∫ +∞
0

1

t2

(
E

(
eiuX+it〈v,Y 〉)

+E
(
eiuX−it〈v,Y 〉) − 2E

(
eiuX))

dtHn−1(dv),

which is the announced result. �

EXAMPLE 2. We give here an example of the use of Proposition 2 in the
particular case of radial functions gm. To have simpler formulas, we will com-
pute only the total variation of the field. We assume here that n = 2, that the
functions gm are “cone” functions (with no jumps) given by gm(x1, x2) = (1 −
m

√
x2

1 + x2
2)χB(0,1/m)(x1, x2), and that the marks m ∈ R+ are distributed with the

�(3,1) distribution. In this case, the characteristic function of ∇X�(0) is given by

ψ(0, v1, v2)

= exp
(

λ

2

∫
R+

∫
B(0,1/m)

(
e
−im(v1x1+v2x2)/(

√
x2

1+x2
2 ) − 1

)
m2e−m dx1 dx2 dm

)
= exp

(
λ

2

∫
R+

∫ 2π

0

∫ 1/m

0

(
e−im(v1 cos θ+v2 sin θ) − 1

)
m2e−mr dr dθ dm

)
.

Therefore, for any v = (v1, v2) ∈ S1 and any t ∈ R, we have ψ(0, tv1, tv2) =
ψ(0, t,0), and we can further compute

ψ(0, t,0) = exp
(

λ

2

∫
R+

∫ 2π

0

∫ 1/m

0

(
e−imt cos θ − 1

)
m2e−mr dr dθ dm

)

= exp
(

λ

4

∫
R+

∫ 2π

0

(
e−imt cos θ − 1

)
e−m dθ dm

)

= exp
(

λ

4

∫ 2π

0

(
1

1 + it cos θ
− 1

)
dθ

)
= exp

(
−λπ

2
+ λ

2

∫ π

0

1

1 + t2 cos2 θ
dθ

)
= exp

(
−λπ

2
+ λπ

2
√

1 + t2

)
.

Finally, by Theorem 3 and Proposition 2 we can compute the expected total varia-
tion of the shot noise random field in (0,1)2, and we get

E
(
V

(
X�, (0,1)2)) = E

(∥∥∇Xφ(0)
∥∥)

= −1

2

∫ +∞
0

1

t2

(
ψ(0, t,0) + ψ(0,−t,0) − 2ψ(0,0,0)

)
dt
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= e−(λπ)/2
∫ +∞

0

e(λπ)/2 − e(λπ)/(2
√

1+t2)

t2 dt

=
∫ π/2

0

1 − e((λπ)/2)(cosα−1)

sin2 α
dα.

This last integral is related to Bessel functions, and this is not a surprise since
Bessel functions are involved in systems that have cylindrical symmetries.

EXAMPLE 3. We consider a shot-noise process in R
2 made of a determin-

istic function with random amplitude. More precisely, we assume that n = 2
and that the marks m are in R (i.e., d = 1) with the distribution F(dm) given
by the exponential distribution with parameter 1 so that F̂ (u) = 1

1−iu
. We con-

sider the function g(x) = g(x1, x2) = e−x1χR+(x1)χ[0,1](x2) and gm = m × g.
Note that g ∈ SBV(R2) with Jg = ({0} × [0,1]) ∪ (R+ × {0}) ∪ (R+ × {1})
and ∇g(x1, x2) = (−e−x1

0

)
χR+(x1)χ[0,1](x2). It follows that the joint characteris-

tic function of X�(x) and ∇X�(x) is given by

ψ(u, v1, v2) = exp
(
λ

∫ +∞
0

∫ 1

0

(
F̂

(
e−y1(u − v1)

) − 1
)
dy1 dy2

)
= (

1 − i(u − v1)
)−λ

.

Now, we notice that here the gradient ∇g is nonzero only in the x1 direction, and
that moreover it is always nonpositive in that direction. Therefore we have

E
(
eiuX�(0)

∥∥∇X�(0)
∥∥) = −E

(
eiuX�(0) ∂X�(0)

∂x1

)
= i

∂ψ

∂v1
(u,0,0)

= λ(1 − iu)−λ−1.

By Theorem 3, it remains to compute the second term corresponding to the jump
part to get an explicit expression for ĈX� . In this example, for u �= 0, we have

1

iu

∫
Rd

∫
Jgm

(
eiug+

m(y) − eiug−
m(y))Hn−1(dy)F (dm)

= F̂ (u) − 1

iu
+ 2

∫ +∞
0

F̂ (ue−t ) − 1

iu
dt.

Therefore,

ĈX�(u) = 2λ(1 − iu)−λ−1 − 2λ
log(1 − iu)

iu
(1 − iu)−λ.

The second term corresponds to the Fourier transform of the function

f (t) = 2λ

�(λ)
χR+(t)

∫ t

0
sλ−1e−s(κ(λ) − log(s)

)
ds,



538 H. BIERMÉ AND A. DESOLNEUX

FIG. 2. In this figure we show a sample of the shot noise random field of example 3 (exponential
in the horizontal direction, with random amplitudes). The sample here (left image) is shown on the
square domain (0,10)2, and we have taken λ = 4. In the middle we show the boundaries of some
of the excursion sets, and on the right we plot the empirical distribution of the perimeter of some
excursion sets as a function of the level (blue circles), together with the expected values of these
perimeters (red curve) given by formula (3.10).

where κ is the logarithmic derivative of the � function, and thus finally we get

for a.e. t ∈ R+, CX�(t) = 2λtλe−t

�(λ + 1)
+ f (t).(3.10)

This example is also illustrated by Figure 2, where we show a sample of such
a shot noise random field together with the empirical and the theoretical expected
length of its excursion sets.

4. Asymptotic Gaussian behaviour. We assume in this section that∫
Rd

∫
Rn

g2
m(y)dyF (dm) < +∞.

As the intensity λ of the Poisson point process goes to infinity, it is well known
(see, e.g., [14] or [15]) that the shot noise random field converges (after normal-
ization) to a Gaussian random field. More precisely, if we denote by Xλ the shot
noise field defined by equation (3.2) with a homogeneous Poisson point process
{xi}i∈I of intensity λ, then the random field Zλ defined by

∀x ∈ R
n, Zλ(x) = Xλ(x) − λ

∫∫
gm(y) dyF (dm)√
λ

(4.1)

converges, in the sense of finite dimensional distributions, to a stationary Gaussian
random field B of mean 0 and covariance function E(B(x)B(0)) = ∫∫

gm(y −
x)gm(y) dyF (dm). The aim of the following theorem is to give the asymptotic
behavior of the mean perimeter of the excursion sets of Zλ as λ goes to infinity.
It shows in particular that when there are no jumps, we have a finite Gaussian
asymptotic whereas when there are jumps, the mean perimeters are not bounded
anymore and behave like

√
λ.
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THEOREM 4. Let Zλ be the normalized shot noise random field defined by
equation (4.1). Assume that the functions gm satisfying condition (3.3), also satisfy
the following conditions:

σ 2 :=
∫∫

g2
m(y)dyF (dm) < +∞, σ 2∇ :=

∫∫ ∥∥∇gm(y)
∥∥2

dyF(dm) < +∞,

and ∫∫ (
g+

m(y) − g−
m(y)

)(∣∣g+
m(y)

∣∣ + ∣∣g−
m(y)

∣∣)Hn−1(dy)F (dm) < +∞.

Then we have two different asymptotic behaviors:

(a) If there are no jumps, that is, if
∫∫

(g+
m(y) − g−

m(y))Hn−1(dy)F (dm) = 0,
then as λ goes to +∞, we have for any fixed u ∈ R,

ĈZλ(u) = 1

ωn−1
√

2π
e−u2σ 2/2

∫
Sn−1

√∫∫ 〈
v,∇gm(y)

〉2
dyF(dm)Hn−1(dv)

+ o(1).

(b) If there are jumps, that is, if
∫∫

(g+
m(y)−g−

m(y))Hn−1(dy)F (dm) > 0, then
as λ goes to +∞, we have for any fixed u ∈ R,

ĈZλ(u) = √
λe−u2σ 2/2

[∥∥∥∥∫∫
∇gm(x) dxF (dm)

∥∥∥∥
+

∫∫ (
g+

m(y) − g−
m(y)

)
Hn−1(dy)F (dm)

]
+ o(

√
λ).

PROOF. Let us denote μ := ∫∫
gm(y) dyF (dm), and let us recall that

E
(
Xλ(0)

) = λμ and Var
(
Xλ(0)

) = λ

∫∫
g2

m(y)dyF (dm) = λσ 2,

and for all v ∈ Sn−1,

E
(〈
v,∇Xλ(0)

〉) = λ

∫∫ 〈
v,∇gm(y)

〉
dyF(dm) =: λμ∇(v)

and

Var
(〈
v,∇Xλ(0)

〉) = λ

∫∫ 〈
v,∇gm(y)

〉2
dyF(dm) =: λσ 2∇(v).

Since Zλ = (Xλ − λμ)/
√

λ, the function ĈZλ is related to the function ĈXλ by
the relationship

ĈZλ(u) = 1√
λ
e−iuμ

√
λĈXλ

(
u√
λ

)
.
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And therefore, for u �= 0, we have

ĈZλ(u) = 1√
λ
E

(
eiu(Xλ(0)−μλ)/

√
λ
∥∥∇Xλ(0)

∥∥)
+ √

λE
(
eiu(Xλ(0)−μλ)/

√
λ)

×
∫∫

ei(u/
√

λ)g+
m(y) − ei(u/

√
λ)g−

m(y)

iu/
√

λ
Hn−1(dy)F (dm),

and when u = 0, the expected total variation of Zλ is

E
(
V

(
Zλ, (0,1)n

))
= ĈZλ(0)

= 1√
λ
E

(∥∥∇Xλ(0)
∥∥) + √

λ

∫∫ (
g+

m(y) − g−
m(y)

)
Hn−1(dy)F (dm).

We have then two cases, depending on whether there are jumps or not.
We first consider case (a), when there are no jumps, which means that∫∫
(g+

m(y) − g−
m(y))Hn−1(dy)F (dm) = 0. Then for F -almost every m, the func-

tion gm is such that its distributional derivative is given by Dgm = ∇gmLn. And
since gm ∈ L1(Rn), we necessarily have

∫
Rn ∇gm(x) dx = 0. [Indeed, a way to see

this is to consider the function t ∈ R �→ ∫
Rn gm(x + tw)dx for any vector w ∈ R

n.
This function is constant equal to

∫
gm, and therefore its derivative at t = 0 that

is equal to
∫
Rn〈w,∇gm(x)〉dx is equal to 0.] We then have, using the result of

Proposition 2 and the change of variable t → t/
√

λ,

ĈZλ(u) = 1√
λ
E

(
eiu(Xλ(0)−μλ)/

√
λ
∥∥∇Xλ(0)

∥∥)
= −e−iuμ

√
λ

2πωn−1

∫
Sn−1

∫ +∞
0

1

t2

(
ψλ

(
u√
λ
,

tv√
λ

)

+ ψλ

(
u√
λ
,− tv√

λ

)
− 2ψλ

(
u√
λ
,0

))
dt dv,

where

ψλ

(
u√
λ
,

tv√
λ

)
= E

(
ei(u/

√
λ)Xλ(0)+i(t/

√
λ)〈v,∇Xλ(0)〉).

On the one hand, using formula (3.7) for ψλ, we have for any fixed t , u and v,

e−iuμ
√

λψλ

(
u√
λ
,

tv√
λ

)
−→

λ→+∞ e−u2σ 2/2−t2σ 2∇ (v)/2.
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And on the other hand, using the fact that |eix + e−ix − 2| ≤ min(4, x2) for any x

real, we get ∣∣∣∣ψλ

(
u√
λ
,

tv√
λ

)
+ ψλ

(
u√
λ
,− tv√

λ

)
− 2ψλ

(
u√
λ
,0

)∣∣∣∣
≤ min

(
4, t2 1

λ
E

(〈
v,∇Xλ(0)

〉2))
.

Now since E(〈v,∇Xλ(0)〉) = 0, we have E(〈v,∇Xλ(0)〉2) = Var(〈v,∇Xλ(0)〉) =
λσ 2∇(v) ≤ λσ 2∇ . Therefore, we can use the dominated convergence theorem and
obtain

ĈZλ(u) −→
λ→+∞

−e−u2σ 2/2

2πωn−1

∫
Sn−1

∫ +∞
0

1

t2

(
2e−t2σ 2∇ (v)/2 − 2

)
dt dv

= e−u2σ 2/2

ωn−1
√

2π

∫
Sn−1

√
σ 2∇(v) dv,

which completes the proof of case (a).
For case (b), when there are jumps, which means that

∫∫
(g+

m(y) − g−
m(y)) ×

Hn−1(dy)F (dm) is strictly positive, then
∫∫ ∇gm(x) dxF (dm) is not necessarily

equal to 0 anymore. In this case, we will consider ĈZλ(u)/
√

λ, and we will show
that it converges to a finite strictly positive limit. To begin with, we use again
Proposition 2 and the change of variable t �→ t/λ, to have

1

λ
E

(
eiu(Xλ(0)−μλ)/

√
λ
∥∥∇Xλ(0)

∥∥)
= −e−iuμ

√
λ

2πωn−1

∫
Sn−1

∫ +∞
0

1

t2

(
ψλ

(
u√
λ
,
tv

λ

)

+ ψλ

(
u√
λ
,− tv

λ

)
− 2ψλ

(
u√
λ
,0

))
dt dv.

Now, on the one hand, for any fixed t , u and v we have

e−iuμ
√

λψλ

(
u√
λ
,
tv

λ

)
−→

λ→+∞ e−u2σ 2/2+itμ∇ (v).

On the other hand, we have∣∣∣∣ψλ

(
u√
λ
,
tv

λ

)
+ ψλ

(
u√
λ
,− tv

λ

)
− 2ψλ

(
u√
λ
,0

)∣∣∣∣
≤ min

(
4, t2 1

λ2E
(〈
v,∇Xλ(0)

〉2))
.

Now, here E(〈v,∇Xλ(0)〉2) = Var(〈v,∇Xλ(0)〉) + E(〈v,∇Xλ(0)〉)2 = λσ 2∇(v) +
λ2μ∇(v)2. Therefore, we can again use the dominated convergence theorem and



542 H. BIERMÉ AND A. DESOLNEUX

get
1

λ
E

(
eiu(Xλ(0)−μλ)/

√
λ
∥∥∇Xλ(0)

∥∥)
= −e−u2σ 2/2

2πωn−1

∫
Sn−1

∫ +∞
0

1

t2

(
eitμ∇ (v) + e−itμ∇ (v) − 2

)
dt dv + o(1)

= e−u2σ 2/2

2ωn−1

∫
Sn−1

∣∣μ∇(v)
∣∣dv + o(1)

= e−u2σ 2/2
∥∥∥∥∫∫

∇gm(x) dxF (dm)

∥∥∥∥ + o(1).

For the jump part, we use the inequality∣∣∣∣ei(u/
√

λ)g+
m(y) − ei(u/

√
λ)g−

m(y)

iu/
√

λ
− (

g+
m(y) − g−

m(y)
)∣∣∣∣

≤ |u|
2
√

λ

(
g+

m(y) − g−
m(y)

)(∣∣g+
m(y)

∣∣ + ∣∣g−
m(y)

∣∣)
and the fact that

E
(
eiu(Xλ(0)−μλ)/

√
λ) −→

λ→+∞ e−u2σ 2/2

to obtain, thanks to the hypothesis in the statement of the theorem, that

E
(
eiu(Xλ(0)−μλ)/

√
λ) ∫∫

ei(u/
√

λ)g+
m(y) − ei(u/

√
λ)g−

m(y)

iu/
√

λ
Hn−1(dy)F (dm)

(4.2)
= e−u2σ 2/2

∫∫ (
g+

m(y) − g−
m(y)

)
Hn−1(dy)F (dm) + o(1). �

Using additional assumptions on the order-three moments of Xλ and ∇Xλ, it
is possible to obtain bounds of convergence for ĈZλ(u) in a way similar to the
technical result of our previous paper [7] in the framework of smooth functions gm.

EXAMPLE 4. Assume we are considering a shot noise random field on the
plane (i.e., n = 2) and such that there are no jumps. Then if we denote for i, j = 1
or 2,

γij =
∫
Rd

∫
R2

∂gm

∂xi

(x)
∂gm

∂xj

(x) dxF (dm),

then

ĈZλ(u) −→
λ→+∞

1

2
√

2π
e−u2σ 2/2

∫ 2π

0

√
γ11 cos2 θ + γ22 sin2 θ + 2γ12 cos θ sin θ dθ.

This shows that we have a weak convergence of CZλ(t) to the formula for the
length of level curves in the Gaussian case (i.e., exactly the formula obtained
through Rice formula and probability density functions of Gaussian fields in [4]).
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