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ON THE PERIMETER OF EXCURSION SETS OF SHOT NOISE
RANDOM FIELDS

By Hermine Biermé∗, and Agnès Desolneux†

Université de Poitiers ∗ and CNRS, Ecole Normale Superieure de Cachan †

In this paper, we use the framework of functions of bounded
variation and the coarea formula to give an explicit computation
for the expectation of the perimeter of excursion sets of shot noise
random fields in dimension n ≥ 1. This will then allow us to derive
the asymptotic behavior of these mean perimeters as the intensity of
the underlying homogeneous Poisson point process goes to infinity.
In particular, we show that two cases occur: we have a Gaussian
asymptotic behavior when the kernel function of the shot noise has
no jump part, whereas the asymptotic is non-Gaussian when there
are jumps.

1. Introduction. We will consider here a shot noise random field which is a real-valued
random field given on Rn by

(1.1) X(x) =
∑
i∈I

g(x− xi,mi), x ∈ Rn,

where g is a given (deterministic) measurable function (it will be called the kernel function
of the shot noise), the {xi}i∈I are the points of a homogeneous Poisson point process on Rn
of intensity λ, the {mi}i∈I are called the marks and they are independent copies of a random
variable m, also all independent of {xi}i∈I . Such a random field is a very common model
in Physics and Telecommunications, where it has many applications [5, 6]. It is a natural
generalization of shot noise processes (n = 1), introduced by [16] to model shot effect noise in
electronic devices. More recently, it has also become a widely used model in image processing,
mainly for applications in texture synthesis and analysis [13].

Geometric characteristics of random surfaces is an important subject of modern probability
research, linked with extremal theory [2, 4] and based on the study of random fields excursion
sets. The excursion set of level t of the random field X in an open subset U of Rn is defined
by

EX(t, U) := {x ∈ U such that X(x) > t}.

Most of the results are obtained for stationary Gaussian random fields but recent works have
allowed to drop the Gaussian assumption. In particular, in [1], asymptotics for the distri-
bution of critical points and Euler characteristics are obtained for a large class of infinite
divisible stationary random fields with suitable regularity assumptions. Central limit theorem
for volumes of excursion sets have also been considered in [10] for general stationary random
fields, including some shot noise and Gaussian random fields. In this paper, we will be inter-
ested in the “perimeter” of excursion sets of shot noise random fields (we will give the precise
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definition of it in the first section), measured as the n− 1 dimensional Hausdorff measure of
its boundary:

LX(t, U) := Hn−1(∂EX(t, U) ∩ U).

In dimension n = 1, the “perimeter” of an excursion set is the number of crossings of the
considered level, in dimension n = 2 it measures the length of the boundary of the excursion
set, in dimension n = 3 it measures its surface area, and so on.

The shot noise random field is not necessarily smooth or differentiable (this happens for
instance when the kernel function is an indicator function) and therefore we cannot use the
framework of Adler et. al ([2] or [1]) to compute its geometric features (such as the Euler
characteristic or intrinsic volumes). Even in the case where the shot noise random field is
smooth, it may not satisfy the regularity conditions on the marginal or conditional probability
densities of the field and its gradient ([7]).

As a consequence, we will adopt a different viewpoint, and we will study the excursion
sets via the whole function t 7→ LX(t, U), and not only its value for a particular fixed t. A
convenient functional framework to define and compute these perimeters is the framework
of functions of bounded variation. Our main tool will be the so-called coarea formula that
relates the integral of the perimeter of all excursion sets to the integral of the differential of
the function. The coarea formula has been already used in a similar situation by Wschebor
[18] and by Zähle in [19] to obtain a general Rice formula for continuous random fields in
dimension d. It has also been used by Azäıs and Wschebor in [4] to have a proof of the
theorem that computes the expected number of crossings of a random field as a function of
some of its marginal and conditional probability densities. See also Adler and Taylor [2] p.283
for a discussion about this theorem. The coarea formula approach is in some sense a weak
approach since we will obtain a formula for almost every level t (and not for a specific value
of t). But the advantage is that we will be able to make explicit computations in a situation
where the methods of [2] or [1] cannot be applied. Let us also mention that in our previous
paper [8] we started using the same approach in dimension n = 1, but we worked under
a piecewise regularity assumption more restrictive than functions of bounded variation. We
propose here a much more general setting, allowed for any dimension n ≥ 1. Note also that
our results on coarea formula only rely on a functional assumption and not on a distribution
assumption. In particular, they are valid for some processes with jumps and allow to recover
partially some recent results in dimension n = 1 on Rice formula for the number of crossings
for the sum of a smooth process and a pure jump process [11] or for piecewise deterministic
Markov processes [9]. However, we focus here on shot noise random fields for which we set
convenient assumptions to ensure the bounded variation, derive explicit computation and
obtain asymptotic regime as the underlying intensity tends to infinity.

The paper is organized as follows: we start in Section 2 to give some notations and prop-
erties of the functions of bounded variation. Then, in Section 3, we define precisely the shot
noise random field and give an explicit computation of the perimeter of its excursion sets. We
illustrate our results with some examples. Finally in Section 4, we derive two different asymp-
totic behavior for the perimeters as the intensity of the underlying homogeneous Poisson point
process goes to infinity.

2. Coarea formula.

2.1. The framework of functions of bounded variation. For sake of completeness, we first
recall here some definitions and properties of functions of bounded variation. We will mainly
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use the framework and notations of Ambrosio, Fusco and Pallara in [3]. We shall also some-
times refer to Evans and Gariepy [12]. In all the following Ln will denote the n-dimensional
Lebesgue measure in Rn, and Hk will denote the k-dimensional Hausdorff measure (we will
most of the time use it with k = n− 1 and keep Ln for k = n). When there is no ambiguity
we will simply denote dx instead of Ln(dx) for the Lebesgue measure in integrals. We will
also use the notation µ∠A to denote the restriction of a measure µ to a set A.

Let U be an open subset of Rn. A real-valued function f ∈ L1(U) is said to be a function
of bounded variation in U if

V (f, U) := sup

{∫
U
fdivϕdx | ϕ ∈ C1

c (U,Rn), ‖ϕ‖∞ ≤ 1

}
< +∞,

where C1
c (U,Rn) denotes the set of continuously differentiable Rn-valued functions with com-

pact support in U . We will denote by BV (U) the space of functions of bounded variation in
U . An equivalent definition ([3] p.117-120) of f ∈ BV (U) is that f ∈ L1(U) is such that its
distributional derivative (i.e. its derivative in the sense of distributions) is representable by a
finite Radon measure in U , i.e.∫

U
f(x)

∂φ

∂xl
(x) dx = −

∫
U
φ(x)Dlf(dx) ∀φ ∈ C∞c (U,R), ∀l = 1, . . . , n

for some Rn-valued measure Df = (D1f, . . . ,Dnf). Its total variation is the positive Radon
measure denoted by ‖Df‖ and defined by

‖Df‖(E) = sup
P∈P(E)

∑
k∈K
‖Df(Ek)‖,

for all measurable sets E ⊂ U , with P(E) the set of finite or countable partitions P = (Ek)k∈K
of E into disjoint measurable sets Ek, and where ‖Df(Ek)‖ denotes the Euclidean norm (in
Rn) of Df(Ek). Let us note Sn−1 the unit sphere of Rn. According to the polar decomposition,
which follows from Radon-Nikodym Theorem (see Corollary 1.29 of [3]), there exists a unique
Sn−1-valued function νf that is measurable and integrable with respect to the measure ‖Df‖
and such that Df = ‖Df‖νf . And we also have

V (f, U) = ‖Df‖(U).

In particular, according to [12] p.91, when f : U ⊂ Rn → R is Lipschitz, then it is differentiable

almost everywhere, and in that case if we denote ∇f(x) =
(
∂f
∂x1

(x), . . . , ∂f∂xn (x)
)
∈ Rn the

gradient of f at a point x, and ‖∇f(x)‖ its Euclidean norm, then Df = ∇fLn, ‖Df‖ =
‖∇f‖Ln and νf = ∇f/‖∇f‖, so that

V (f, U) = ‖Df‖(U) =

∫
U
‖∇f(x)‖ dx.

One can define a norm on BV (U) by

(2.1) ‖f‖BV (U) = ‖f‖L1(U) + ‖Df‖(U),

so that (BV (U), ‖ · ‖BV (U)) is a Banach space ([3] p.121).
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The framework of functions of bounded variation is of special interest to study the perimeter
of a set because of the following definition and property. Let E be an Ln-measurable subset
of Rn. Then for any open subset U ⊂ Rn, we say that E is a set of finite perimeter in U if
its indicator function χE is of bounded variation in U . In that case, we define the perimeter
LE(U) of E in U as V (χE , U), i.e.

LE(U) := sup

{∫
E

divϕdx | ϕ ∈ C1
c (U,Rn), ‖ϕ‖∞ ≤ 1

}
.

The term “perimeter” meets here its usual sense in dimension n = 2 as “the length of the
boundary”. Indeed, it can be shown (see [3] p.143) that for all sets E with piecewise C1

boundary in U and such that Hn−1(∂E ∩ U) is finite, then by Gauss-Green theorem the
distributional derivative of χE is DχE = νEHn−1∠∂E, where νE is the inner unit normal to
E, and that

LE(U) = Hn−1(∂E ∩ U).

Let f ∈ BV (U). For t ∈ R, we can consider the excursion set (also sometimes called “upper
level set” or “superlevel”) of level t of f :

Ef (t, U) := {x ∈ U such that f(x) > t}.

Then for L1-almost every t ∈ R, the set Ef (t, U) is of finite perimeter in U . We will denote
its perimeter in U by Lf (t, U). Moreover, the function t 7→ Lf (t, U) belongs to L1(R) and we
have the coarea formula:

(2.2) ‖Df‖(U) =

∫
R
Lf (t, U) dt.

The proof of this formula can be found in [3] p.145, or also in [12] p.185.
Now, in order to use this formula, we need to be more explicit about the pointwise properties

of f and the decomposition of its distributional derivative Df . Let us recall that f is said
approximately continuous at x ∈ U ⊂ Rn if

(2.3) lim
ρ→0

ρ−n
∫
Bρ(x)

|f(y)− f(x)| dy = 0,

where Bρ(x) is the Euclidean ball of radius ρ and centered at x. The set Sf of points where
this property does not hold is a Ln negligible Borel set called approximate discontinuity set
(see [3] Proposition 3.64 p.160). A point x ∈ Sf is called an approximate jump point of f if
there exist f+(x), f−(x) ∈ R and νf (x) ∈ Sn−1 such that f+(x) > f−(x) with

lim
ρ→0

ρ−n
∫
B+
ρ (x,νf (x))

|f(y)− f+(x)| dy = 0 and lim
ρ→0

ρ−n
∫
B−ρ (x,νf (x))

|f(y)− f−(x)| dy = 0,

where B+
ρ (x, ν) (resp. B−ρ (x, ν)) denotes the half-ball determined by ν ∈ Sn−1, that is {y ∈

Bρ(x), 〈y − x, ν〉 > 0} (resp. {y ∈ Bρ(x), 〈y − x, ν〉 < 0}). The set of approximate jump
points is denoted by Jf , it is a Borel subset of Sf . Moreover, by Federer-Vol’pert theorem ([3]
Theorem 3.78 p.173), since f ∈ BV (U), the set Sf is a countably Hn−1-rectifiable set with
Hn−1(Sf r Jf ) = 0 and

Df∠Jf = (f+ − f−)νfHn−1∠Jf .
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By Radon-Nikodym theorem, the distributional derivative Df can be decomposed into the
sum of three terms (see [3] p.184):

Df = ∇fLn + (f+ − f−)νfHn−1∠Jf +Dcf.

These three terms are defined in the following way:

• Daf := ∇fLn is the absolutely continuous part of the Radon measure Df with respect
to the Lebesgue measure Ln. And moreover, ∇f is here the approximate differential of
f (see [3] p.165 and Theorem 3.83 p.176).
• Djf := (f+ − f−)νfHn−1∠Jf is the jump part of Df .
• The last term Dcf is the so-called Cantor part of Df , it has the property to vanish on

sets which have a Hn−1 finite measure.

2.2. A general coarea formula. In our framework, we will be interested in functions that
have no Cantor part in their distributional derivative (we will mainly study piecewise C1 func-
tions). These functions have been introduced by De Giorgi and Ambrosio to study variational
problems where both volume and surface energies are involved, and they are called “special
functions of bounded variation”. Their set is denoted by SBV (U), and it is a closed subset
of (BV (U), ‖ · ‖BV (U)) (see [3], Corollary 4.3 p.213).

As we already mentioned it in the introduction, our viewpoint will be to study the function
t → Lf (t, U). The coarea formula (2.2) only provides the integral of t → Lf (t, U) on R, and
we will extend it to the integral of t→ h(t)Lf (t, U) on R for any bounded continuous function
h. This is the aim of the following theorem.

Theorem 1. Let U be an open subset of Rn and let f : U → R be a function in SBV (U).
Using the notations and definitions of the previous section, its distributional derivative is
given by

Df = ∇fLn + (f+ − f−)νfHn−1∠Jf .

while
‖Df‖ = ‖∇f‖Ln + (f+ − f−)Hn−1∠Jf .

Let h : R→ R be a continuous and bounded function. Then∫
R
h(t)Lf (t, U)dt =

∫
U
h(f(x))‖∇f(x)‖ dx+

∫
Jf∩U

(∫ f+(y)

f−(y)
h(s) ds

)
Hn−1(dy).

Proof. Let h : R → R be a continuous and bounded function. Let us first assume that
there exists an ε > 0 such that h(t) ≥ ε for all t ∈ R. We define for all t ∈ R,

H(t) =

∫ t

0
h(s) ds.

Then H is a C1 diffeomorphism from R to R. It is strictly increasing and since H ′(t) = h(t)
for all t ∈ R is bounded, it is also Lipschitz on R.
Now, let u be the function defined on U by u = H ◦ f . Then by the chain-rule (see [3] p.164
and Theorem 3.96 p.189) we have that u ∈ SBV (U), its jump set Ju = Jf , and its derivative
is given by
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Du = (h ◦ f)∇fLn +
(
H ◦ f+ −H ◦ f−

)
νfHn−1∠Jf .

Then by the coarea formula (2.2), we have that∫
R
Lu(s, U) ds = ‖Du‖(U) =

∫
U
h(f(x))‖∇f(x)‖ dx+

∫
Jf∩U

(
H(f+(y))−H(f−(y))

)
Hn−1(dy)

=

∫
U
h(f(x))‖∇f(x)‖ dx+

∫
Jf∩U

(∫ f+(y)

f−(y)
h(s) ds

)
Hn−1(dy).

But for all s ∈ R, we have that Eu(s, U) = Ef (H−1(s), U) where H−1 denotes the inverse of
the C1 diffeomorphismH. And thus for all s ∈ R, we also have that Lu(s, U) = Lf (H−1(s), U).
Then by the change of variable t = H−1(s) (see for instance [17] p.153), we get∫
R
h(t)Lf (t, U) dt =

∫
R
Lu(s, U) ds =

∫
U
h(f(x))‖∇f(x)‖ dx+

∫
Jf

(∫ f+(y)

f−(y)
h(s) ds

)
Hn−1(dy),

which is the announced formula.
In the general case, when h is not strictly positive, we simply apply the above formula to

h1 = 1 + sup(h, 0) and to h2 = 1 + sup(−h, 0), and then we have it for h = h1 − h2, which
ends the proof of the theorem.

3. Shot noise random fields. Let (Ω,A,P) be a probability space and Φ = {(xi,mi)}i∈I
be a Poisson point process on Rn×Rd with intensity λLn⊗F , with F a probability measure
on Rd. Let g : Rn × Rd → R be defined such that for F -almost every m ∈ Rd the function
gm := g(·,m) belongs to SBV (Rn). From Section 2, it follows that for such m ∈ Rd

Dgm = ∇gmLn + (g+
m − g−m)νgmHn−1∠Jgm

and

‖gm‖BV (Rn) = ‖gm‖L1(Rn) + ‖Dgm‖(Rn)

= ‖gm‖L1(Rn) + ‖∇gm‖L1(Rn) +

∫
Jgm

(g+
m(y)− g−m(y))Hn−1(dy) < +∞.

Under the assumption that

(3.1)

∫
Rd
‖gm‖L1(Rn)F (dm) < +∞,

one can define almost surely the shot noise random field

(3.2) XΦ =
∑
i∈I

τxigmi ,

as a random field in L1
loc(Rn), where τxigmi(x) := gmi(x− xi).

In the sequel we will also consider Φj = Φ r {(xj ,mj)} for j ∈ I and its associated shot
noise random field

XΦj =
∑

i∈I;i 6=j
τxigmi .

Throughout the paper we make the stronger assumption that

(3.3)

∫
Rd
‖gm‖BV (Rn)F (dm) < +∞.
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3.1. Regularity of the shot noise random fields. The aim of the following theorem is to
show that the shot noise random field inherits the regularity properties of the kernel functions
gm. The general idea is that if the kernel functions are special functions of bounded variation,
then so is locally the shot noise. The theorem also gives the decomposition of its distributional
derivative.

In the following, we will need the functional spaces L1
loc(Rn) and SBVloc(Rn). We recall

that they are defined by: a function f belongs to L1
loc(Rn) (resp. SBVloc(Rn)) if and only if

it belongs to L1(U) (resp. SBV (U)) for all bounded open subset U of Rn.

Theorem 2. Under Assumption (3.3), one can define almost surely (a.s.) in L1
loc(Rn)

the two shot noise random fields

XΦ :=
∑
i∈I

τxigmi and ∇XΦ :=
∑
i∈I

τxi∇gmi .

Moreover, a.s. XΦ ∈ SBVloc(Rn) with

DXΦ = ∇XΦLn + (X+
Φ −X

−
Φ )νXΦ

Hn−1∠JXΦ
,

and for Hn−1 almost every y ∈ JXΦ
, there exists a unique (xj ,mj) ∈ Φ such that y ∈ Jτxj gmj =

xj + Jgmj and

(3.4) X+
Φ (y) = τxjg

+
mj (y) +XΦj (y) and X−Φ (y) = τxjg

−
mj (y) +XΦj (y).

Proof. Let U be a bounded open set of Rn. First, note that by Campbell’s formula,

E

(∑
i∈I
‖τxigmi‖BV (U)

)
=

∫
Rd

∫
Rn
‖τygm‖BV (U)λdyF (dm)

= λ

∫
Rd

∫
Rn

(
‖τygm‖L1(U) + ‖τyDgm‖(U)

)
dyF (dm).

By Fubini’s theorem and by the translation invariance of Ln we have∫
Rd

∫
Rn
‖τygm‖L1(U) dyF (dm) = Ln(U)

∫
Rd
‖gm‖L1(Rn) F (dm).

Moreover, recalling the notation χV to denote the indicator function of a set V , we have∫
Rn
‖τyDgm‖(U)dy =

∫
Rn
‖Dgm‖(U − y)dy

=

∫
Rn×Rn

χU−y(x)‖Dgm‖(dx)dy

= Ln(U)‖Dgm‖(Rn),

by Fubini’s theorem and the translation invariance of Ln. It follows that

E

(∑
i∈I
‖τxigmi‖BV (U)

)
= λLn(U)

∫
Rd
‖gm‖BV (Rn) F (dm) < +∞.
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Hence, almost surely
∑

i∈I ‖τxigmi‖BV (U) < +∞. Since (SBV (U), ‖ · ‖BV (U)) is a Banach
space, it implies that XΦ =

∑
i∈I τxigmi is almost surely in (SBV (U), ‖ · ‖BV (U)). Now, let

us identify DXΦ. First, remark that
∑

i∈I ‖τxigmi‖BV (U) < +∞ implies that

∑
i∈I
‖τxi∇gmi‖L1(U) +

∑
i∈I

∫
Jτxigmi∩U

(
τxig

+
mi(y)− τxig−mi(y)

)
Hn−1(dy) < +∞,

so that the vectorial Radon measure∑
i∈I

τxi∇gmiLn∠U +
∑
i∈I

(
τxig

+
mi − τxig

−
mi

)
ντxigmiH

n−1∠U∩Jτxigmi

is well-defined. By uniqueness of the Radon Nikodym decomposition we get

∇XΦLn∠U =
∑
i∈I

τxi∇gmiLn∠U ,(3.5)

(X+
Φ −X

−
Φ )νXΦ

Hn−1∠U∩JXΦ
=

∑
i∈I

(
τxig

+
mi − τxig

−
mi

)
ντxigmiH

n−1∠U∩Jτxigmi .(3.6)

Note in particular that the last equality implies that

Hn−1
(
U ∩ JXΦ

∩
(
∪i∈IJτxigmi

)c)
= 0,

where for a set S, Sc denotes the complement of S.
For a fixed point (xj ,mj) ∈ Φ, let us remark that since XΦ and τxjgmj are both in SBV (U)

we also have XΦj = XΦ − τxjgmj ∈ SBV (U). Analogously, we get

Hn−1
(
U ∩ JXΦj

∩
(
∪i∈I;i 6=jJτxigmi

)c)
= 0.

Note that when y ∈ Jτxj gmj ∩S
c
XΦj
∩U we obtain that y ∈ JXΦ

with (3.4) satisfied. Therefore,

it suffices to prove that the set of points in U that belong to ∪j∈I(Jτxj gmj ∩ SXΦj
) is Hn−1

negligible. We have

E
(
Hn−1

(
∪j∈I(Jτxj gmj ∩ SXΦj

) ∩ U
))

≤ E

∑
j∈I
Hn−1

(
Jτxj gmj ∩ SXΦj

∩ U
)

≤
∫
Rd

∫
Rn

E
(
Hn−1 (Jτxgm ∩ SXΦ

∩ U)
)
λdxF (dm),

by Mecke’s formula (see [6]). Now, using Fubini’s theorem, for F -a.e. m∫
Rn

E
(
Hn−1 (Jτxgm ∩ SXΦ

∩ U)
)
dx = E

(∫
SXΦ

∩U
Ln(y + Jgm)Hn−1(dy)

)
,

since Jτxgm = x + Jgm for all x ∈ Rn. But Ln(y + Jgm) = Ln(Jgm) = 0 for all y ∈ Rn,

which implies that Hn−1
(
∪j∈IJτxj gmj ∩ SXΦj

∩ U
)

= 0 almost surely. Finally, we conclude

the proof using the fact that Rn is covered by a countable union of bounded open sets so that
a.s. XΦ is in SBVloc(Rn).
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Under Assumption (3.3), XΦ is well-defined a.s. as a function in SBV (Rn) but we can also
consider XΦ as a real random field indexed by Rn. More precisely, let us define

DΦ =

{
x ∈ Rn such that XΦ(x) =

∑
i∈I

τxigmi(x)

}
∩ ScXΦ

.

Note that the convergence in L1
loc(Rn) implies that a.s. Ln(DcΦ) = 0 so that E (Ln(DcΦ)) = 0.

Moreover, for U a bounded open set in Rn, by Fubini’s theorem, one has

E (Ln(DcΦ ∩ U)) =

∫
U
P(x ∈ DcΦ)dx = P(0 ∈ DcΦ)Ln(U),

where the last equality comes from P(x ∈ DcΦ) = P(0 ∈ DcΦ), by stationarity of the point
process {xi}i∈I . It follows that for all x ∈ Rn, P(x ∈ DcΦ) = 0 and a.s. x ∈ ScXΦ

and
XΦ(x) =

∑
i∈I τxigmi(x). The same remark may be applied to ∇XΦ since Ln(S∇XΦ

) = 0
as ∇XΦ ∈ L1

loc(Rn). This allows to compute the finite dimensional law of the random field
{(XΦ(x),∇XΦ(x));x ∈ Rn} itself. In particular, the shot noise random fields have the nice
property that their characteristic function is explicit (see for instance [6] Chapter 2). More
precisely, in our framework, the shot noise field {(XΦ(x),∇XΦ(x));x ∈ Rn} is stationary and
therefore the joint characteristic function of XΦ(x) and ∇XΦ(x) is independent of x and is
given for all u ∈ R and all v ∈ Rn by
(3.7)

ψ(u, v) := E(eiuXΦ(x)+i〈v,∇XΦ(x)〉) = exp

(
λ

∫
Rd

∫
Rn

(eiugm(y)+i〈v,∇gm(y)〉 − 1) dyF (dm)

)
.

In the following we will also simply denote ψ(u) = ψ(u, 0) = E(eiuXΦ(x)) the characteristic
function ofXΦ(x). Let us also mention that the real random variablesXΦ(x), ∂XΦ

∂x1
(x), . . . , ∂XΦ

∂xn
(x)

are integrable with

E (XΦ(x)) = λ

∫
Rd

∫
Rn
gm(y)dyF (dm) and E

(
∂XΦ

∂xl
(x)

)
= λ

∫
Rd

∫
Rn

∂gm
∂xl

(y)dyF (dm),

for all l = 1, . . . , n, implying that ‖∇XΦ‖ is also integrable. Moreover, under the additional
assumption that

(3.8)

∫
Rd

∫
Rn
gm(y)2dyF (dm) < +∞ and

∫
Rd

∫
Rn
‖∇gm(y)‖2dyF (dm) < +∞,

the real random variables XΦ(x), ∂XΦ
∂x1

(x), . . . , ∂XΦ
∂xn

(x) are also square integrable with

Var (XΦ(x)) = λ

∫
Rd

∫
Rn
gm(y)2dyF (dm) and Var

(
∂XΦ

∂xl
(x)

)
= λ

∫
Rd

∫
Rn

(
∂gm
∂xl

(y)

)2

dyF (dm),

for all l = 1, . . . , n.

3.2. Perimeter of the excursion sets. We consider the excursion set of XΦ defined as
previously by

EXΦ
(t, U) = {x ∈ U such that XΦ(x) > t},
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as well as LXΦ
(t, U) its perimeter in U . According to Theorem 1, when h : R → R is a

continuous and bounded function, one has a.s. the coarea formula∫
R
h(t)LXΦ

(t, U)dt =

∫
U
h(XΦ(x))‖∇XΦ(x)‖ dx+

∫
JXΦ
∩U

(∫ X+
Φ (y)

X−Φ (y)
h(s) ds

)
Hn−1(dy).

By (3.4), the jump part rewrites as∫
JXΦ
∩U

(∫ X+
Φ (y)

X−Φ (y)
h(s) ds

)
Hn−1(dy) =

∑
j∈I

∫
Jτxj gmj ∩U

(∫ τxj g
+
mj

(y)+XΦj
(y)

τxj g
−
mj

(y)+XΦj
(y)

h(s) ds

)
Hn−1(dy)

=
∑
j∈I

∫
Jτxj gmj ∩U

(∫ τxj g
+
mj

(y)

τxj g
−
mj

(y)
h(s+XΦj (y)) ds

)
Hn−1(dy).(3.9)

We compute the expectation of the jump part of the coarea formula in the next proposition.

Proposition 1. Let h : R→ R be a continuous and bounded function. Then,

E

(∫
JXΦ
∩U

(∫ X+
Φ (y)

X−Φ (y)
h(s) ds

)
Hn−1(dy)

)

= λLn(U)

∫
Rd

∫
Jgm

(∫ g+
m(y)

g−m(y)
E (h(s+XΦ(0))) ds

)
Hn−1(dy)F (dm).

Proof. From Mecke’s formula (see [6]), taking the expectation in (3.9), we get

E

(∫
JXΦ
∩U

(∫ X+
Φ (y)

X−Φ (y)
h(s) ds

)
Hn−1(dy)

)

=

∫
Rn×Rd

∫
Jτxgm∩U

(∫ τxg
+
m(y)

τxg
−
m(y)

E (h(s+XΦ(y))) ds

)
Hn−1(dy)λdxF (dm)

=

∫
Rn×Rd

∫
Jgm∩(U−x)

(∫ g+
m(y)

g−m(y)
E (h(s+XΦ(x+ y))) ds

)
Hn−1(dy)λdxF (dm),

by translation invariance of Hn−1. Moreover, by stationarity of XΦ, for all s ∈ R, and x, y ∈
Rn,

E (h(s+XΦ(x+ y))) = E (h(s+XΦ(0))) .

By Fubini’s theorem, integrating with respect to x, this last integral is equal to

λLn(U)

∫
Rd

∫
Jgm

∫ g+
m(y)

g−m(y)
E (h(s+XΦ(0))) dsHn−1(dy)F (dm),

which is the announced result.

We can now give our main result about the mean value of the perimeter of the shot noise
random field. It is a direct consequence of the coarea formula of Theorem 1, when taking for
h the function h(t) = eiut, and of the computation of the expectation of the jump part of the
coarea formula given in Proposition 1.
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Theorem 3. Let XΦ be a shot noise random field given on Rn by (3.2) and such that
Assumption (3.3) is satisfied. For all t ∈ R, let us denote

CXΦ
(t) = E (LXΦ

(t, (0, 1)n)) .

Then the function t 7→ CXΦ
(t) belongs to L1(R) and its Fourier transform is given for all

u ∈ R, u 6= 0 by

ĈXΦ
(u) = E(eiuXΦ(0)‖∇XΦ(0)‖)+E(eiuXΦ(0))

λ

iu

∫
Rd

∫
Jgm

(eiug
+
m(y)−eiug

−
m(y))Hn−1(dy)F (dm)

and for u = 0, we have

ĈXΦ
(0) = E(V (XΦ, (0, 1)n)) = E(‖∇XΦ(0)‖) + λ

∫
Rd

∫
Jgm

(g+
m(y)− g−m(y))Hn−1(dy)F (dm).

A direct consequence of Theorem 3 is the following corollary that gives a Rice formula in
a weak sense (i.e. for almost every level t) and includes the “jump part”.

Corollary 1. Under the assumptions of Theorem 3, and if we moreover assume that
the random variable XΦ(0) admits a probability density on R, denoted by t 7→ pXΦ(0)(t), then
for almost every t ∈ R we have

CXΦ
(t) = E(‖∇XΦ(0)‖|XΦ(0) = t)pXΦ(0)(t)+λ

∫
Rd

∫
Jgm

∫ g+
m(y)

g−m(y)
pXΦ(0)(t−s) dsHn−1(dy)F (dm).

Proof. Note that since XΦ(0) admits pXΦ(0) for density we may define the positive mea-
surable function

C(t) := E(‖∇XΦ(0)‖|XΦ(0) = t)pXΦ(0)(t)+λ

∫
Rd

∫
Jgm

∫ g+
m(y)

g−m(y)
pXΦ(0)(t−s) dsHn−1(dy)F (dm),

for almost every t ∈ R. Moreover,∫
R
C(t)dt = E(‖∇XΦ(0)‖) + λ

∫
Rd

∫
Jgm

(
g+
m(y)− g−m(y)

)
Hn−1(dy)F (dm)

≤ E(‖∇XΦ(0)‖) + λ

∫
Rd
‖gm‖BV (Rn)F (dm) < +∞,

by Assumption (3.3). Then we may compute its Fourier transform and find Ĉ = ĈXΦ
. The

result follows from the injectivity of the Fourier transform.

Let us quote that sufficient conditions for XΦ(0) to admit a probability density are given
in section 3.2 of [7].
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3.3. Some particular cases. In order to have explicit formulas for the mean perimeter
CXΦ

(t) = E (LXΦ
(t, (0, 1)n)), we need to be able to compute the two terms of ĈXΦ

(u) in the
formula of Theorem 3. We will give in this section many situations in which the computations
are doable. The first case is the one of piecewise constant functions gm, since in that case the
first term vanishes. The second case is when E(‖∇XΦ(0)‖2) is finite, because we are then able
to use the joint characteristic function of XΦ(0) and ∇XΦ(0) to have an explicit formula for
the term E(eiuXΦ(0)‖∇XΦ(0)‖). This will be the aim of the next section.

Let us start with the piecewise constant case. When the functions gm are piecewise constant
then ∇XΦ(0) = 0 a.s. and therefore we simply have

ĈXΦ
(u) = E(eiuXΦ(0))

λ

iu

∫
Rd

∫
Jgm

(eiug
+
m(y) − eiug

−
m(y))Hn−1(dy)F (dm).

Example 1: we consider a shot-noise process XΦ in R2 made of random shapes, i.e. we
assume that n = 2, that the marks m are given by m = (β, r) with β ≥ 0, r ≥ 0 and with
the distribution F given by F (dm) = Fβ(dβ)Fr(dr) (having thus β and r independent). We
also assume that the functions gm are of the form gm(x) = βχKr(x) for all x ∈ R2, where for
each r, Kr is a compact set of R2 with piecewise smooth boundary and such that the mean
perimeter and the mean area respectively defined by

p =

∫
R+

H1(∂Kr)Fr(dr) and a =

∫
R+

L2(Kr)Fr(dr)

are both finite. Then in that case, we have

∀u ∈ R, u 6= 0, ĈXΦ
(u) = λp

F̂β(u)− 1

iu
eλa(F̂β(u)−1),

where F̂β(u) =
∫
R+
eiuβFβ(dβ).

• In particular if β follows an exponential distribution of parameter µ > 0 then F̂β(u) =
µ

µ−iu , and then

ĈXΦ
(u) = λp

1

µ− iu
e
λa iu

µ−iu .

We recognize here (thanks to tables of Fourier transforms !) the Fourier transform of a non-
central chi-square distribution, and we thus have

for a.e. t ∈ R+, CXΦ
(t) = λµpe−λa−µtI0(2

√
λµat),

where I0 is the modified Bessel function of the first kind of order 0 that is given for all t ∈ R
by I0(t) = 1

π

∫ π
0 et cos θdθ.

• Another explicit and simple case is when β = 1 a.s., which implies that F̂β(u) = eiu.

Then ĈXΦ
(u) is the product of two Fourier transforms: the one of a Poisson distribution and

the one of the indicator function of the interval [0, 1]. Therefore we get

∀k ∈ N, for a.e. t ∈ (k, k + 1), CXΦ
(t) = λp

(λa)k

k!
e−λa.

We illustrate this result on Figure 1 where we show a sample of a shot-noise process made of
two indicator functions of squares.
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Fig 1. We show here on the left a sample (in the square domain (0, 2000)2) of a shot noise process made of
two indicator functions of squares of respective side length 60 and 200, and with respective probability 1/2; with
a Poisson point process intensity λ = 2.10−4. In the middle we show the boundaries of some of the excursion
sets. And on the right we plot the empirical distribution of the perimeter of the excursion sets as a function of
the level, together with the expected values of these perimeters (red stars).

3.4. Link with directional derivatives. In the general case, when the functions gm are not
piecewise constant, we need to be able to compute the term E(eiuXΦ(0)‖∇XΦ(0)‖). In order
to have an explicit formula for it in terms of the characteristic function of the shot noise (that
is given by (3.7)), we will first prove the following proposition.

Proposition 2. Let X and Y be two random variables, such that X is real-valued and
Y takes values in Rn, n ≥ 1. Let φ be the joint characteristic function of X and Y given by

∀u ∈ R, ∀v ∈ Rn, φ(u, v) := E(eiuX+i〈v,Y 〉).

Assume that E(‖Y ‖2) < +∞, then

∀u ∈ R, E(eiuX‖Y ‖) =
−1

2πωn−1

∫
Sn−1

∫ +∞

0

1

t2
(φ(u, tv) + φ(u,−tv)− 2φ(u, 0)) dtHn−1(dv),

where ωn−1 is the Ln−1 measure of the unit ball of Rn−1.

Proof. We first use the well-known identity:

‖Y ‖ =
1

2ωn−1

∫
Sn−1

|〈v, Y 〉|Hn−1(dv).

Now, for any y ∈ R, we have that

−1

π

∫ +∞

0

1

t2
(eity + e−ity − 2) dt =

2|y|
π

∫ +∞

0

1

t2
(1− cos(t)) dt = |y|.

We can use this identity for each 〈v, Y 〉, integrate on v ∈ Sn−1, multiply by eiuX and finally
take the expectation. Then, since for any t and y in R, we have |eity + e−ity − 2|/t2 ≤
min(4/t2, y2), and since E(‖Y ‖2) < +∞, we obtain by Fubini’s theorem that

E(eiuX‖Y ‖) =
−1

2πωn−1

∫
Sn−1

∫ +∞

0

1

t2

(
E(eiuX+it〈v,Y 〉) + E(eiuX−it〈v,Y 〉)− 2E(eiuX)

)
dtHn−1(dv),

which is the announced result.
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Example 2: we give here an example of the use of Proposition 2 in the particular case of
radial functions gm. To have simpler formulas, we will compute only the total variation of the
field. We assume here that n = 2, that the functions gm are “cone” functions (with no jumps)
given by gm(x1, x2) = (1 − m

√
x2

1 + x2
2)χB(0, 1

m
)(x1, x2), and that the marks m ∈ R+ are

distributed with the Γ(3, 1) distribution. In that case, the characteristic function of ∇XΦ(0)
is given by

ψ(0, v1, v2) = exp

(
λ

2

∫
R+

∫
B(0, 1

m
)
(e
−im v1x1+v2x2√

x2
1+x2

2 − 1)m2e−m dx1 dx2 dm

)

= exp

(
λ

2

∫
R+

∫ 2π

0

∫ 1
m

0
(e−im(v1 cos θ+v2 sin θ) − 1)m2e−mr dr dθ dm

)
.

Therefore, for any v = (v1, v2) ∈ S1 and any t ∈ R, we have ψ(0, tv1, tv2) = ψ(0, t, 0) and we
can further compute

ψ(0, t, 0) = exp

(
λ

2

∫
R+

∫ 2π

0

∫ 1
m

0
(e−imt cos θ − 1)m2e−mr dr dθ dm

)

= exp

(
λ

4

∫
R+

∫ 2π

0
(e−imt cos θ − 1)e−m dθ dm

)
= exp

(
λ

4

∫ 2π

0
(

1

1 + it cos θ
− 1) dθ

)
= exp

(
−λπ

2
+
λ

2

∫ π

0

1

1 + t2 cos2 θ
dθ

)
= exp

(
−λπ

2
+

λπ

2
√

1 + t2

)
.

Finally, by Theorem 3 and Proposition 2 we can compute the expected total variation of the
shot noise random field in (0, 1)2, and we get

E(V (XΦ, (0, 1)2)) = E(‖∇Xφ(0)‖) =
−1

2

∫ +∞

0

1

t2
(ψ(0, t, 0) + ψ(0,−t, 0)− 2ψ(0, 0, 0)) dt

= e−
λπ
2

∫ +∞

0

e
λπ
2 − e

λπ

2
√

1+t2

t2
dt =

∫ π
2

0

1− e
λπ
2

(cosα−1)

sin2 α
dα.

This last integral is related to Bessel functions, and this is not a surprise since Bessel functions
are involved in systems that have cylindrical symmetries.

Example 3: we consider a shot-noise process in R2 made of a deterministic function with
random amplitude. More precisely, we assume that n = 2 and that the marks m are in R (i.e.
d = 1) with the distribution F (dm) given by the exponential distribution with parameter 1
so that F̂ (u) = 1

1−iu . We consider the function g(x) = g(x1, x2) = e−x1χR+(x1)χ[0,1](x2) and

gm = m× g. Note that g ∈ SBV (R2) with Jg = ({0} × [0, 1]) ∪ (R+ × {0}) ∪ (R+ × {1}) and

∇g(x1, x2) =

(
−e−x1

0

)
χR+(x1)χ[0,1](x2). It follows that the joint characteristic function of

XΦ(x) and ∇XΦ(x) is given by

ψ(u, v1, v2) = exp

(
λ

∫ +∞

0

∫ 1

0

(
F̂
(
e−y1 (u− v1)

)
− 1
)
dy1dy2

)
= (1− i(u− v1))−λ .
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Fig 2. On this figure we show a sample of the shot noise random field of example 3 (exponential in the horizontal
direction, with random amplitudes). The sample here (left image) is shown on the square domain (0, 10)2 and
we have taken λ = 4. In the middle we show the boundaries of some of the excursion sets. And on the right we
plot the empirical distribution of the perimeter of some excursion sets as a function of the level (blue circles),
together with the expected values of these perimeters (red curve) given by Formula (3.10).

Now, we notice that here the gradient ∇g is non-zero only in the x1 direction, and that
moreover it is always non-positive in that direction. Therefore we have

E(eiuXΦ(0)‖∇XΦ(0)‖) = −E
(
eiuXΦ(0)∂XΦ(0)

∂x1

)
= i

∂ψ

∂v1
(u, 0, 0)

= λ (1− iu)−λ−1 .

By Theorem 3, it remains to compute the second term corresponding to the jump part to get
an explicit expression for ĈXΦ

. In this example, for u 6= 0, we have

1

iu

∫
Rd

∫
Jgm

(eiug
+
m(y) − eiug

−
m(y))Hn−1(dy)F (dm) =

F̂ (u)− 1

iu
+ 2

∫ +∞

0

F̂ (ue−t)− 1

iu
dt.

Therefore,

ĈXΦ
(u) = 2λ (1− iu))−λ−1 − 2λ

log(1− iu)

iu
(1− iu)−λ .

The second term corresponds to the Fourier transform of the function

f(t) =
2λ

Γ(λ)
χR+(t)

∫ t

0
sλ−1e−s (κ(λ)− log(s)) ds,

where κ is the logarithmic derivative of the Γ function and thus finally we get

(3.10) for a.e. t ∈ R+, CXΦ
(t) =

2λtλe−t

Γ(λ+ 1)
+ f(t).

This example is also illustrated by Figure 2, where we show a sample of such a shot noise
random field together with the empirical and the theoretical expected length of its excursion
sets.
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4. Asymptotic Gaussian behaviour. We assume in this section that∫
Rd

∫
Rn
g2
m(y) dyF (dm) < +∞.

As the intensity λ of the Poisson point process goes to infinity, it is well-known (see for
instance [14] or [15]) that the shot noise random field converges (after normalization) to a
Gaussian random field. More precisely, if we denote by Xλ the shot noise field defined by
Equation (3.2) with a homogeneous Poisson point process {xi}i∈I of intensity λ, then the
random field Zλ defined by

(4.1) ∀x ∈ Rn, Zλ(x) =
Xλ(x)− λ

∫∫
gm(y) dyF (dm)√
λ

converges, in the sense of finite dimensional distributions, to a stationary Gaussian random
field B of mean 0 and covariance function E(B(x)B(0)) =

∫∫
gm(y − x)gm(y) dyF (dm). The

aim of the following theorem is to give the asymptotic behavior of the mean perimeter of the
excursion sets of Zλ as λ goes to infinity. It shows in particular that when there are no jumps,
we have a finite Gaussian asymptotic whereas when there are jumps, the mean perimeters
are not bounded anymore and behave like

√
λ.

Theorem 4. Let Zλ be the normalized shot noise random field defined by Equation (4.1).
Assume that the functions gm satisfying condition (3.3), also satisfy the following conditions:

σ2 :=

∫∫
g2
m(y) dyF (dm) < +∞ , σ2

∇ :=

∫∫
‖∇gm(y)‖2 dyF (dm) < +∞ ,

and

∫∫
(g+
m(y)− g−m(y))(|g+

m(y)|+ |g−m(y)|)Hn−1(dy)F (dm) < +∞ .

Then we have two different asymptotic behaviors:

(a) If there are no jumps, that is if
∫∫

(g+
m(y)− g−m(y))Hn−1(dy)F (dm) = 0 then as λ goes

to +∞, we have for any fixed u ∈ R:

ĈZλ(u) =
1

ωn−1

√
2π
e−u

2σ2/2

∫
Sn−1

√∫∫
〈v,∇gm(y)〉2 dyF (dm)Hn−1(dv) + o(1).

(b) If there are jumps, that is if
∫∫

(g+
m(y)− g−m(y))Hn−1(dy)F (dm) > 0 then as λ goes to

+∞, we have for any fixed u ∈ R:

ĈZλ(u) =
√
λe−u

2σ2/2

[∥∥∥∥∫∫ ∇gm(x) dxF (dm)

∥∥∥∥+

∫∫
(g+
m(y)− g−m(y))Hn−1(dy)F (dm)

]
+o(
√
λ).

Proof. Let us denote µ :=
∫∫

gm(y) dyF (dm), and let us recall that

E(Xλ(0)) = λµ and Var(Xλ(0)) = λ

∫∫
g2
m(y) dyF (dm) = λσ2 ,

and for all v ∈ Sn−1,

E(〈v,∇Xλ(0)〉) = λ

∫∫
〈v,∇gm(y)〉 dyF (dm) =: λµ∇(v)
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and Var(〈v,∇Xλ(0)〉) = λ

∫∫
〈v,∇gm(y)〉2 dyF (dm) =: λσ2

∇(v).

Since Zλ = (Xλ − λµ)/
√
λ, the function ĈZλ is related to the function ĈXλ by the rela-

tionship

ĈZλ(u) =
1√
λ
e−iuµ

√
λĈXλ(

u√
λ

).

And therefore, for u 6= 0, we have

ĈZλ(u) =
1√
λ
E
(
e
iu
Xλ(0)−µλ√

λ ‖∇Xλ(0)‖
)

+
√
λE(e

iu
Xλ(0)−µλ√

λ )

∫∫
e
i u√

λ
g+
m(y) − ei

u√
λ
g−m(y)

iu/
√
λ

Hn−1(dy)F (dm),

and when u = 0, the expected total variation of Zλ is

E(V (Zλ, (0, 1)n)) = ĈZλ(0) =
1√
λ
E(‖∇Xλ(0)‖) +

√
λ

∫∫
(g+
m(y)− g−m(y))Hn−1(dy)F (dm).

We have then two cases, depending on whether there are jumps or not.
• We first consider the case (a), when there are no jumps, which means that

∫∫
(g+
m(y) −

g−m(y))Hn−1(dy)F (dm) = 0. Then for F -almost every m, the function gm is such that its
distributional derivative is given by Dgm = ∇gmLn. And since gm ∈ L1(Rn), we necessarily
have

∫
Rn ∇gm(x) dx = 0. (Indeed a way to see this is to consider the function t ∈ R 7→∫

Rn gm(x+tw) dx for any vector w ∈ Rn. This function is constant equal to
∫
gm and therefore

its derivative at t = 0 that is equal to
∫
Rn〈w,∇gm(x)〉 dx is equal to 0). We then have, using

the result of Proposition 2 and the change of variable t→ t/
√
λ,

ĈZλ(u) =
1√
λ
E
(
e
iu
Xλ(0)−µλ√

λ ‖∇Xλ(0)‖
)

=
−e−iuµ

√
λ

2πωn−1

∫
Sn−1

∫ +∞

0

1

t2
(ψλ(

u√
λ
,
tv√
λ

) + ψλ(
u√
λ
,− tv√

λ
)− 2ψλ(

u√
λ
, 0)) dtdv,

where

ψλ(
u√
λ
,
tv√
λ

) = E(e
i u√

λ
Xλ(0)+i t√

λ
〈v,∇Xλ(0)〉

).

On the one hand, using Formula (3.7) for ψλ, we have for any fixed t, u and v:

e−iuµ
√
λψλ(

u√
λ
,
tv√
λ

) −→
λ→+∞

e−u
2σ2/2−t2σ2

∇(v)/2.

And on the other hand, using the fact that |eix + e−ix− 2| ≤ min(4, x2) for any x real, we get∣∣∣∣ψλ(
u√
λ
,
tv√
λ

) + ψλ(
u√
λ
,− tv√

λ
)− 2ψλ(

u√
λ
, 0)

∣∣∣∣ ≤ min(4, t2
1

λ
E(〈v,∇Xλ(0)〉2)).

Now since E(〈v,∇Xλ(0)〉) = 0, we have E(〈v,∇Xλ(0)〉2)) = Var(〈v,∇Xλ(0)〉) = λσ2
∇(v) ≤

λσ2
∇. Therefore, we can use the dominated convergence theorem and obtain

ĈZλ(u) −→
λ→+∞

−e−u2σ2/2

2πωn−1

∫
Sn−1

∫ +∞

0

1

t2
(2e−t

2σ2
∇(v)/2 − 2) dtdv =

e−u
2σ2/2

ωn−1

√
2π

∫
Sn−1

√
σ2
∇(v) dv,
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which ends the proof of case (a).

• For the second case (b), when there are jumps, which means that
∫∫

(g+
m(y)−g−m(y))Hn−1(dy)F (dm)

is strictly positive, then
∫∫
∇gm(x) dxF (dm) is not necessarily equal to 0 anymore. In that

case, we will consider ĈZλ(u)/
√
λ and we will show that it converges to a finite strictly posi-

tive limit. To begin with, we use again Proposition 2 and the change of variable t 7→ t/λ, to
have:

1

λ
E
(
e
iu
Xλ(0)−µλ√

λ ‖∇Xλ(0)‖
)

=
−e−iuµ

√
λ

2πωn−1

∫
Sn−1

∫ +∞

0

1

t2
(ψλ(

u√
λ
,
tv

λ
)+ψλ(

u√
λ
,− tv

λ
)−2ψλ(

u√
λ
, 0)) dtdv.

Now, on the one hand, for any fixed t, u and v we have

e−iuµ
√
λψλ(

u√
λ
,
tv

λ
) −→
λ→+∞

e−u
2σ2/2+itµ∇(v).

On the other hand, we have∣∣∣∣ψλ(
u√
λ
,
tv

λ
) + ψλ(

u√
λ
,− tv

λ
)− 2ψλ(

u√
λ
, 0)

∣∣∣∣ ≤ min(4, t2
1

λ2
E(〈v,∇Xλ(0)〉2)).

Now here E(〈v,∇Xλ(0)〉2)) = Var(〈v,∇Xλ(0)〉) + E(〈v,∇Xλ(0)〉)2 = λσ2
∇(v) + λ2µ∇(v)2.

Therefore, we can again use the dominated convergence theorem and get

1

λ
E
(
e
iu
Xλ(0)−µλ√

λ ‖∇Xλ(0)‖
)

=
−e−u2σ2/2

2πωn−1

∫
Sn−1

∫ +∞

0

1

t2
(eitµ∇(v) + e−itµ∇(v) − 2) dtdv + o(1)

=
e−u

2σ2/2

2ωn−1

∫
Sn−1

|µ∇(v)| dv + o(1)

= e−u
2σ2/2

∥∥∥∥∫∫ ∇gm(x) dxF (dm)

∥∥∥∥+ o(1).

For the jump part, we use the inequality∣∣∣∣∣e
i u√

λ
g+
m(y) − ei

u√
λ
g−m(y)

iu/
√
λ

− (g+
m(y)− g−m(y))

∣∣∣∣∣ ≤ |u|
2
√
λ

(g+
m(y)− g−m(y))(|g+

m(y)|+ |g−m(y)|)

and the fact that

E(e
iu
Xλ(0)−µλ√

λ ) −→
λ→+∞

e−u
2σ2/2

to obtain, thanks to the hypothesis in the statement of the theorem, that

(4.2) E(e
iu
Xλ(0)−µλ√

λ )

∫∫
e
i u√

λ
g+
m(y) − ei

u√
λ
g−m(y)

iu/
√
λ

Hn−1(dy)F (dm)

= e−u
2σ2/2

∫∫
(g+
m(y)− g−m(y))Hn−1(dy)F (dm) + o(1).
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Using additional assumptions on the order-three moments of Xλ and ∇Xλ it is possible
to obtain bounds of convergence for ĈZλ(u) in a way similar to the technical result of our
previous paper [7] in the framework of smooth functions gm.

Example: Assume we are considering a shot noise random field on the plane (i.e. n = 2) and
such that there are no jumps. Then if we denote for i, j = 1 or 2,

γij =

∫
Rd

∫
R2

∂gm
∂xi

(x)
∂gm
∂xj

(x) dxF (dm),

then

ĈZλ(u) −→
λ→+∞

1

2
√

2π
e−u

2σ2/2

∫ 2π

0

√
γ11 cos2 θ + γ22 sin2 θ + 2γ12 cos θ sin θ dθ.

This shows that we have a weak convergence of CZλ(t) to the formula for the length of level
curves in the Gaussian case (that is exactly the formula obtained through Rice formula and
probability density functions of Gaussian fields in [4]).
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