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ON THE PERIMETER OF EXCURSION SETS OF SHOT NOISE
RANDOM FIELDS
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Université de Poitiers * and CNRS, Ecole Normale Superieure de Cachan 1

In this paper, we use the framework of functions of bounded
variation and the coarea formula to give an explicit computation
for the expectation of the perimeter of excursion sets of shot noise
random fields in dimension n > 1. This will then allow us to derive
the asymptotic behavior of these mean perimeters as the intensity of
the underlying homogeneous Poisson point process goes to infinity.
In particular, we show that two cases occur: we have a Gaussian
asymptotic behavior when the kernel function of the shot noise has
no jump part, whereas the asymptotic is non-Gaussian when there
are jumps.

1. Introduction. We will consider here a shot noise random field which is a real-valued
random field given on R" by

(1.1) X(x) :Zg(az—mi,mi), r e R",
i€l

where g is a given (deterministic) measurable function (it will be called the kernel function
of the shot noise), the {x;};c; are the points of a homogeneous Poisson point process on R"”
of intensity A, the {m,};cr are called the marks and they are independent copies of a random
variable m, also all independent of {z;};c;. Such a random field is a very common model
in Physics and Telecommunications, where it has many applications [5, 6]. It is a natural
generalization of shot noise processes (n = 1), introduced by [16] to model shot effect noise in
electronic devices. More recently, it has also become a widely used model in image processing,
mainly for applications in texture synthesis and analysis [13].

Geometric characteristics of random surfaces is an important subject of modern probability
research, linked with extremal theory [2, 4] and based on the study of random fields excursion
sets. The excursion set of level ¢ of the random field X in an open subset U of R" is defined
by

Ex(t,U) := {x € U such that X (z) > t}.

Most of the results are obtained for stationary Gaussian random fields but recent works have
allowed to drop the Gaussian assumption. In particular, in [1], asymptotics for the distri-
bution of critical points and Fuler characteristics are obtained for a large class of infinite
divisible stationary random fields with suitable regularity assumptions. Central limit theorem
for volumes of excursion sets have also been considered in [10] for general stationary random
fields, including some shot noise and Gaussian random fields. In this paper, we will be inter-
ested in the “perimeter” of excursion sets of shot noise random fields (we will give the precise
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definition of it in the first section), measured as the n — 1 dimensional Hausdorff measure of
its boundary:

Lx(t,U) :=H" Y (0Ex(t,U)NU).
In dimension n = 1, the “perimeter” of an excursion set is the number of crossings of the
considered level, in dimension n = 2 it measures the length of the boundary of the excursion
set, in dimension n = 3 it measures its surface area, and so on.

The shot noise random field is not necessarily smooth or differentiable (this happens for
instance when the kernel function is an indicator function) and therefore we cannot use the
framework of Adler et. al ([2] or [1]) to compute its geometric features (such as the Euler
characteristic or intrinsic volumes). Even in the case where the shot noise random field is
smooth, it may not satisfy the regularity conditions on the marginal or conditional probability
densities of the field and its gradient ([7]).

As a consequence, we will adopt a different viewpoint, and we will study the excursion
sets via the whole function ¢t — Lx(¢,U), and not only its value for a particular fixed t. A
convenient functional framework to define and compute these perimeters is the framework
of functions of bounded variation. Our main tool will be the so-called coarea formula that
relates the integral of the perimeter of all excursion sets to the integral of the differential of
the function. The coarea formula has been already used in a similar situation by Wschebor
[18] and by Zé&hle in [19] to obtain a general Rice formula for continuous random fields in
dimension d. It has also been used by Azais and Wschebor in [4] to have a proof of the
theorem that computes the expected number of crossings of a random field as a function of
some of its marginal and conditional probability densities. See also Adler and Taylor [2] p.283
for a discussion about this theorem. The coarea formula approach is in some sense a weak
approach since we will obtain a formula for almost every level ¢ (and not for a specific value
of t). But the advantage is that we will be able to make explicit computations in a situation
where the methods of [2] or [1] cannot be applied. Let us also mention that in our previous
paper [8] we started using the same approach in dimension n = 1, but we worked under
a piecewise regularity assumption more restrictive than functions of bounded variation. We
propose here a much more general setting, allowed for any dimension n > 1. Note also that
our results on coarea formula only rely on a functional assumption and not on a distribution
assumption. In particular, they are valid for some processes with jumps and allow to recover
partially some recent results in dimension n = 1 on Rice formula for the number of crossings
for the sum of a smooth process and a pure jump process [11] or for piecewise deterministic
Markov processes [9]. However, we focus here on shot noise random fields for which we set
convenient assumptions to ensure the bounded variation, derive explicit computation and
obtain asymptotic regime as the underlying intensity tends to infinity.

The paper is organized as follows: we start in Section 2 to give some notations and prop-
erties of the functions of bounded variation. Then, in Section 3, we define precisely the shot
noise random field and give an explicit computation of the perimeter of its excursion sets. We
illustrate our results with some examples. Finally in Section 4, we derive two different asymp-
totic behavior for the perimeters as the intensity of the underlying homogeneous Poisson point
process goes to infinity.

2. Coarea formula.

2.1. The framework of functions of bounded variation. For sake of completeness, we first
recall here some definitions and properties of functions of bounded variation. We will mainly
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use the framework and notations of Ambrosio, Fusco and Pallara in [3]. We shall also some-
times refer to Evans and Gariepy [12]. In all the following £™ will denote the n-dimensional
Lebesgue measure in R", and H* will denote the k-dimensional Hausdorff measure (we will
most of the time use it with £ =n — 1 and keep L" for kK = n). When there is no ambiguity
we will simply denote dz instead of L™(dz) for the Lebesgue measure in integrals. We will
also use the notation /A to denote the restriction of a measure p to a set A.

Let U be an open subset of R™. A real-valued function f € L(U) is said to be a function
of bounded variation in U if

V(f,U):= sup{/ fdivpdz | p € Ccl(U,R"), lolloo < 1} < 400,
U

where C} (U, R"™) denotes the set of continuously differentiable R"-valued functions with com-
pact support in U. We will denote by BV (U) the space of functions of bounded variation in
U. An equivalent definition ([3] p.117-120) of f € BV (U) is that f € L*(U) is such that its
distributional derivative (i.e. its derivative in the sense of distributions) is representable by a
finite Radon measure in U, i.e.

/f &m =—/U¢(x)le(dx) Vo € CX(UR), Vi=1,...,n

for some R™-valued measure Df = (D1 f,..., D, f). Its total variation is the positive Radon
measure denoted by || D f|| and defined by

IDFII(E) = sup > | Df(E)|

PEP(E) [ o

for all measurable sets £ C U, with P(E) the set of finite or countable partitions P = (Eg)kex
of F into disjoint measurable sets Fj, and where ||Df(E})| denotes the Euclidean norm (in
R™) of Df(E}). Let us note S™~! the unit sphere of R™. According to the polar decomposition,
which follows from Radon-Nikodym Theorem (see Corollary 1.29 of [3]), there exists a unique

Sn~1_valued function vy that is measurable and integrable with respect to the measure || D f||
and such that Df = ||Df|lv¢. And we also have

V(£,U) = IDFIIO).

In particular, according to [12] p.91, when f : U C R™ — R is Lipschitz, then it is differentiable

almost everywhere, and in that case if we denote Vf(x) = (%(m), e %(x)) € R" the

gradient of f at a point z, and ||V f(z)|| its Euclidean norm, then Df = VfL" ||Df|| =
[VAIIL™ and vy = V£/||Vf], so that

V(£.U) = |DSI(U / IV ()] da.
One can define a norm on BV (U) by

(2.1) I lBvw) = @) + IDFIU),

so that (BV(U), || - |pv()) is a Banach space ([3] p.121).



The framework of functions of bounded variation is of special interest to study the perimeter
of a set because of the following definition and property. Let E be an £™-measurable subset
of R™. Then for any open subset U C R", we say that F is a set of finite perimeter in U if
its indicator function xg is of bounded variation in U. In that case, we define the perimeter

Lg(U)of Ein U as V(xg,U), i.e.

Lg(U) :=sup {/ divpdz | ¢ € CHU,R™), ||¢]leo < 1}.
E

The term “perimeter” meets here its usual sense in dimension n = 2 as “the length of the
boundary”. Indeed, it can be shown (see [3] p.143) that for all sets E with piecewise C*
boundary in U and such that H" 1(OE N U) is finite, then by Gauss-Green theorem the
distributional derivative of xg is Dxg = vgH" ' ZOE, where vg is the inner unit normal to
FE, and that

Lp(U)=H"YOENU).

Let f € BV(U). For t € R, we can consider the excursion set (also sometimes called “upper
level set” or “superlevel”) of level t of f:

E¢(t,U) := {z € U such that f(z) > t}.

Then for £!-almost every t € R, the set Ef(t,U) is of finite perimeter in U. We will denote
its perimeter in U by L (t,U). Moreover, the function ¢ — L¢(t,U) belongs to L' (R) and we
have the coarea formula:

(2.2) IDFIU) = /R Ly(t,U) dt.

The proof of this formula can be found in [3] p.145, or also in [12] p.185.

Now, in order to use this formula, we need to be more explicit about the pointwise properties
of f and the decomposition of its distributional derivative D f. Let us recall that f is said
approximately continuous at x € U C R™ if

(2.3) lim " /B )= @)y =0,

p—0

where B,(xz) is the Euclidean ball of radius p and centered at x. The set Sy of points where
this property does not hold is a L™ negligible Borel set called approximate discontinuity set
(see [3] Proposition 3.64 p.160). A point x € Sy is called an approzimate jump point of f if
there exist fT(z), f~(z) € R and v¢(x) € S"! such that fT(z) > f~(z) with

i | £0) ~ (@] dy =0 and tim o | ) — f~ (@)l dy =0,
P B;(x,uf(x)) = B/; (xvl’f(z))

where B (x,v) (resp. B, (z,v)) denotes the half-ball determined by v € Sn=1 that is {y €
B,(x),(y — x,v) > 0} (resp. {y € By(x),{y — z,v) < 0}). The set of approximate jump
points is denoted by Jy¢, it is a Borel subset of Sy. Moreover, by Federer-Vol’pert theorem ([3]
Theorem 3.78 p.173), since f € BV (U), the set Sy is a countably H" !-rectifiable set with
Hn_l(Sf N Jf) =0 and

DfZJs = (ft— f vsH 1 2J;.
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By Radon-Nikodym theorem, the distributional derivative D f can be decomposed into the
sum of three terms (see [3] p.184):

Df =VfL + (f* — f)vH" 1 2J; + D°f.

These three terms are defined in the following way:

e Df =V fL" is the absolutely continuous part of the Radon measure D f with respect
to the Lebesgue measure £™. And moreover, V f is here the approzimate differential of
f (see [3] p.165 and Theorem 3.83 p.176).

o Dif:=(ft— f)vyH"12J; is the jump part of Df.

e The last term D¢f is the so-called Cantor part of Df, it has the property to vanish on
sets which have a H"~! finite measure.

2.2. A general coarea formula. In our framework, we will be interested in functions that
have no Cantor part in their distributional derivative (we will mainly study piecewise C' func-
tions). These functions have been introduced by De Giorgi and Ambrosio to study variational
problems where both volume and surface energies are involved, and they are called “special
functions of bounded variation”. Their set is denoted by SBV(U), and it is a closed subset
of (BV(U), || - llsv()) (see [3], Corollary 4.3 p.213).

As we already mentioned it in the introduction, our viewpoint will be to study the function
t = L¢(t,U). The coarea formula (2.2) only provides the integral of ¢t — L¢(¢t,U) on R, and
we will extend it to the integral of t — h(t)Ls(¢,U) on R for any bounded continuous function
h. This is the aim of the following theorem.

THEOREM 1. Let U be an open subset of R™ and let f : U — R be a function in SBV (U).
Using the notations and definitions of the previous section, its distributional derivative is
given by

Df = Vfﬁn + (er — fi)l/f'Hnill,]f.
while
IDFI = IV FIL™ + (FF = f R 2Ty

Let h: R = R be a continuous and bounded function. Then

)
= x x)|| dx s)ds n—l .
[ roLsev= [ ne@)vi@d+ | - ( / NG ) 1 (dy)

PROOF. Let h : R — R be a continuous and bounded function. Let us first assume that
there exists an € > 0 such that h(t) > € for all t € R. We define for all ¢ € R,

H(t) = /0 "hs) ds.

Then H is a C! diffeomorphism from R to R. It is strictly increasing and since H'(t) = h(t)
for all ¢t € R is bounded, it is also Lipschitz on R.

Now, let u be the function defined on U by u = H o f. Then by the chain-rule (see [3] p.164
and Theorem 3.96 p.189) we have that v € SBV (U), its jump set J, = J, and its derivative
is given by



Du= (ho f)VfL" "+ (Ho f* —Ho f ) ysH" 1 2J;.
Then by the coarea formula (2.2), we have that

/RLU(&U) ds = [|Dul|(U) = h(f(a;))||Vf(a:)\|dx+/ (H(f*(y) = H(f~ () H" " (dy)

U Jpnu

fH(y)
T z)|| dx s)ds n—l .
JRECIEIE +/W (/f_(y) h(s)d ) 1 (dy)

But for all s € R, we have that E,(s,U) = Ef(H 1(s),U) where H™! denotes the inverse of
the C! diffeomorphism H. And thus for all s € R, we also have that Ly (s,U) = Lg(H1(s),U).
Then by the change of variable t = H~1(s) (see for instance [17] p.153), we get

)
= s 5= x z)|| dx s)ds n—l
[ nonsevyat= [ 1. v)ds= [ n@)Ivs@i +/Jf (/f(y) h(s)d ) W (dy),

which is the announced formula.

In the general case, when h is not strictly positive, we simply apply the above formula to
hi =1+ sup(h,0) and to he = 1 + sup(—h,0), and then we have it for h = hy — hg, which
ends the proof of the theorem. O

3. Shot noise random fields. Let (2, A, P) be a probability space and ® = {(z;, m;) }icr
be a Poisson point process on R™ x R¢ with intensity AL" ® F, with F' a probability measure
on R4 Let g : R® x R — R be defined such that for F-almost every m € R¢ the function
gm = g(-,m) belongs to SBV(R"). From Section 2, it follows that for such m € R?

Dgm = VgmL™ + (g5 — g )Van H" 12T,
and

lgmllBv@ny = lgmllLi@n) + [1Dgmll(R™)

= IlgmHLl(Rn)+IIng\ILl(Rn>+/ (95 (y) — g (y))H"H(dy) < +o0.

am

Under the assumption that

(31) [ Womlos oy Plam) <+
one can define almost surely the shot noise random field
(32) X<I> = ZTZigmp

i€l

as a random field in L}, (R™), where Ty, gm, (z) := gm, (x — ;).
In the sequel we will also consider ®; = ® \ {(z;,m;)} for j € I and its associated shot

noise random field
XCI)]- - Z Txlgmz
iel;ij
Throughout the paper we make the stronger assumption that

(33 [ Vnllavan Pldm) < +o.
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3.1. Regularity of the shot noise random fields. The aim of the following theorem is to
show that the shot noise random field inherits the regularity properties of the kernel functions
gm- The general idea is that if the kernel functions are special functions of bounded variation,
then so is locally the shot noise. The theorem also gives the decomposition of its distributional
derivative.

In the following, we will need the functional spaces Li, .(R") and SBV,.(R"). We recall
that they are defined by: a function f belongs to Li (R") (resp. SBVj..(R™)) if and only if

loc

it belongs to LY(U) (resp. SBV (U)) for all bounded open subset U of R™.

THEOREM 2. Under Assumption (3.3), one can define almost surely (a.s.) in L} (R™)
the two shot noise random fields

XCI) = Zszgmz and VXq) = ZT%ngz
icl il

Moreover, a.s. X¢ € SBVj,(R™) with

DXg = VXoL" + (X§ — Xg)vx, H" ' L, s

and for H" 1 almost every y € Jx,, there exists a unique (xj,m;) € ® such thaty € ijgmj =
xj+J, . and

(3.4) Xg () = Tu;90,(v) + Xo,(y) and Xg(y) = 72,9, (y) + Xa; (y).

PRrROOF. Let U be a bounded open set of R™. First, note that by Campbell’s formula,

E (Z”Twigmi”BV(U)> = /Rd /Rn |7y gm | Bv @) Ady F'(dm)

i€l
= 3 [ Umgallow + lm Do ) dyF ().
By Fubini’s theorem and by the translation invariance of £™ we have
L inamlose dubtdm) = @) [ gl Fidm).
Rd JR? Rd

Moreover, recalling the notation yy to denote the indicator function of a set V', we have

| ImDal@dy = [ 19l = iy

_ / XU—y(@)[| Dguml|(dz)dy
R™ xR™
= L"(U)||DgmlI(R"),

by Fubini’s theorem and the translation invariance of L™. It follows that

E (Z HTwigmi’BV(U)> = \"(U) /Rd |gm |l Bv®ny F(dm) < +oo.

el
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Hence, almost surely > .c; |72, 9m; || pv@) < +oo. Since (SBV(U), | - [|pv)) is a Banach
space, it implies that Xe¢ = ;7 7o, gm, is almost surely in (SBV(U), || - [[sv())- Now, let
us identify D Xg. First, remark that Y, ||7z,m; || vy < +oo implies that

> 1 Vgmllan + / (7.9 (U) = Tas G, () H" ™ (dy) < +o0,
el el J‘rfcigmi nu

so that the vectorial Radon measure

- —1
Z Te; V9m; L'y + Z (Txig;—% - Txigmi) Vre,gm, H" AUﬁJmigmi
i€l iel

is well-defined. By uniqueness of the Radon Nikodym decomposition we get

(3.5) VXoL"Zy = Y 70,Vgm L' Ly,
iel
(3.6) (X{ — X )vxoH" Y Lunyy. = (TG, — Tas9m,) Veoogm, K" Zura,, o -
) 7 T g 7 K3
el

Note in particular that the last equality implies that
H (U N Jxy N (VierJr, g,.)°) =0,

where for a set S, S¢ denotes the complement of S.
For a fixed point (z;,m;) € ®, let us remark that since X¢ and 7, gy,, are both in SBV (U)
we also have Xg, = X¢ — 7u;9m, € SBV(U). Analogously, we get

-1 (U N Jxg, N (Uiel;i;éjJTwiWi)C) =0

Note that when y € J.

zjgmj

NS%, NU we obtain that y € Jx, with (3.4) satisfied. Therefore,
J

it suffices to prove that the set of points in U that belong to Ujcs(Jr, 4. N Sx, ) is H" !
p J 5 9m; @

T

negligible. We have

E <Hn_1 (UJEI(JTIijj n SX(I)J') : U)) = B ZHn_l (JTIjQMj " SX(I)j i U)
Jjel

< / / E(H" " (Jrogn N Sxe NU)) AdaF(dm),
R4 n

by Mecke’s formula (see [6]). Now, using Fubini’s theorem, for F-a.e. m

/ E (Hnil (JTxgnL m SX@ m U)) dx = ]E (/ £n(y + J TVL)Hnl(dy)> Y
" qu)ﬂU

since Jr,g,, = x + Jg, for all z € R™. But L™(y + J,,,) = L"(Jy,) = 0 for all y € R",
which implies that H"~! <Uj€1J7-

2 gm; 1) Sx, NU ) = 0 almost surely. Finally, we conclude
J

the proof using the fact that R™ is covered by a countable union of bounded open sets so that
a.s. Xo is in SBVj,(R™). O
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Under Assumption (3.3), X¢ is well-defined a.s. as a function in SBV (R™) but we can also
consider Xg as a real random field indexed by R"™. More precisely, let us define

Dy = {x € R" such that X¢(z ZTmlgmz } N Sg%.
el

Note that the convergence in Li (R") implies that a.s. £*(D§) = 0 so that E (£L"(D§)) = 0.
Moreover, for U a bounded open set in R™, by Fubini’s theorem, one has

E(L"(DS N U)) = /Um € DS)dz = P(0 € DG)L™(U),

where the last equality comes from P(z € Dg) = P(0 € Dg), by stationarity of the point
process {z;}ier. It follows that for all x € R", P(x € Dg) = 0 and as. x € S5, and
Xo(z) = ZZE[ Tz 9m,; (). The same remark may be applied to VXg since £"(Svx,) = 0
as VXo € Lj,.(R"). This allows to compute the finite dimensional law of the random field
{(Xo(x),VXs(x));x € R"} itself. In particular, the shot noise random fields have the nice
property that their characteristic function is explicit (see for instance [6] Chapter 2). More
precisely, in our framework, the shot noise field {(Xg(z), VXg(z)); z € R™} is stationary and
therefore the joint characteristic function of Xg(x) and VXg(z) is independent of x and is
given for all u € R and all v € R” by

(3.7)

Y(u,v) = E(eXe @+ VXe(@))) — oxp </\/ / (e™gmW)Fiv,VamW)) _ 1) dyF(dm)> )
Rd n

In the following we will also simply denote ¥(u) = ¥ (u,0) = E(e™X*(*)) the characteristic
function of X¢(x). Let us also mention that the real random variables X¢(z), %ﬁf (x),..., %f: ()
are integrable with

8Xq> . 39m
E(Xo(z) —)\/Rd/ngm )dyF(dm) and E( o, > )\/Rd/n axl y)dyF (dm),

for all I =1,...,n, implying that ||[VXs]|| is also integrable. Moreover, under the additional
assumption that

68 [ [ suwParm) <voo [ ] 19, @)lPayEEm) <+,

-y Go2(z) are also square integrable with

2
Var (Xg(z)) = )\/ / gm(y)?dyF (dm) and Var an) = /\/ / (9gm (y) ) dyF(dm),
R4 n 8.’17[ R4 n axl

foralll=1,...,n

the real random variables Xg (), %fgf’ (x), 9Xe

3.2. Perimeter of the excursion sets. We consider the excursion set of Xg¢ defined as
previously by
Ex,(t,U) = {xz € U such that Xg(z) > t},
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as well as Lx,(t,U) its perimeter in U. According to Theorem 1, when h : R — R is a
continuous and bounded function, one has a.s. the coarea formula

X{ () B
[ HOLx 0y = [ W@V do + /JU ( /. . h(s)ds> W (dy).

By (3.4), the jump part rewrites as

X1 () To; 9m; (V) +Xa; (y)
/ / B(s)ds | H' N (dy) = 3 / / h(s)ds | H*(dy)
Txe U \/Xg (v) jeI ' Irajom; 7oy 9m; () +Xe; (¥)
Trjg;*—nj(y) 1
(3.9) -/ |/ B(s + X, (y)) ds | H"(dy).
J T

jel T 9m; -rjg;bj (y)

We compute the expectation of the jump part of the coarea formula in the next proposition.

PROPOSITION 1. Let h: R — R be a continuous and bounded function. Then,

E ( / ( / )iq) v h(s) ds) H“l(dy)>
TxeNU \J X5 (v)

gm(y)
=A\L" s s n—l m).
— AL /Rd/] (/gm E (h(s + X(0))) d ) H L (dy) F(dm)

PRrROOF. From Mecke’s formula (see [6]), taking the expectation in (3.9), we get

Xi ) s o
e

T g (Y)
N / / ( / E (h(s + Xa(y))) ds) H" Y (dy)Adzx F(dm)
PXRES T gy WU\ Y Tz gim (y)

Txdm

gm(y)
- / / (/ E (h(s + Xo(z +))) ds) H" ! (dy)Adz F(dm),
XRES Jgm (U =2) \/gm(v)

by translation invariance of H"~!. Moreover, by stationarity of Xg, for all s € R, and z,y €
R™,
E(h(s + Xo(z +y))) = E(h(s + Xe(0))) .

By Fubini’s theorem, integrating with respect to x, this last integral is equal to

AL (U / /J / e (h(s + Xa(0))) dsH" 1 (dy) F (dm),

am

which is the announced result. O

We can now give our main result about the mean value of the perimeter of the shot noise
random field. It is a direct consequence of the coarea formula of Theorem 1, when taking for
h the function h(t) = €™, and of the computation of the expectation of the jump part of the
coarea formula given in Proposition 1.
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THEOREM 3. Let Xg be a shot noise random field given on R™ by (3.2) and such that
Assumption (3.3) is satisfied. For allt € R, let us denote

Cxa(t) = E(Lxy (¢ (0,1)")).

Then the function t — Cx,(t) belongs to LY(R) and its Fourier transform is given for all
ueR u#0 by

Crea (1) = E(@ X0 O 7 X (0)]) + E(e*Xe @) X / / (eM950) _ giuam)) 24n=1 () F(dim)
U JRd Jgm
and for u =0, we have

Cxa(0) = BV (X 0.1)") = BV +A [ [ (680) = g 1 @) P(am).

A direct consequence of Theorem 3 is the following corollary that gives a Rice formula in
a weak sense (i.e. for almost every level t) and includes the “jump part”.

COROLLARY 1. Under the assumptions of Theorem 3, and if we moreover assume that
the random variable X3(0) admits a probability density on R, denoted by t Pxy(0)(t), then
for almost every t € R we have

g (v) )
/ Py (0)(t—s) dsHP 1 (dy) F(dm).
g

m (Y)

Cxa(®) = BV Xo0)Xa(0) = a0+ [ [

am

PROOF. Note that since X (0) admits p X5 (0) for density we may define the positive mea-
surable function
gm(y) .
00 = BIVXaO11Xa0) = Opx, 0@+ [ [ [ o) dsh ) Plam),
am Y 9m\Y

for almost every t € R. Moreover,
[ewa = 2@ +A [ [ () = gn) w0 @) Flam)
am
< BVXoO)) + 2 [ lgmllveo Fldm) < +2c,

by Assumption (3.3). Then we may compute its Fourier transform and find C = C/X\q,. The
result follows from the injectivity of the Fourier transform. O

Let us quote that sufficient conditions for X (0) to admit a probability density are given
in section 3.2 of [7].
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3.3. Some particular cases. In order to have explicit formulas for the mean perimeter
Cx,(t) =E(Lx,(t,(0,1)")), we need to be able to compute the two terms of Cx, (u) in the
formula of Theorem 3. We will give in this section many situations in which the computations
are doable. The first case is the one of piecewise constant functions g,,, since in that case the
first term vanishes. The second case is when E(||V X (0)||?) is finite, because we are then able
to use the joint characteristic function of X¢(0) and VXg(0) to have an explicit formula for
the term E(e™X*(9)||V X4 (0)||). This will be the aim of the next section.

Let us start with the piecewise constant case. When the functions g,, are piecewise constant
then VXg(0) =0 a.s. and therefore we simply have

Oy () =B ) 2 [ [ (@) — (a0 307y (i),
R ‘]gm

Example 1: we consider a shot-noise process Xg in R? made of random shapes, i.e. we
assume that n = 2, that the marks m are given by m = (8,r) with g > 0, » > 0 and with
the distribution F' given by F(dm) = Fg(df)F,(dr) (having thus S and r independent). We
also assume that the functions g,, are of the form g,,(x) = Bxk, (z) for all z € R?, where for
each r, K, is a compact set of R? with piecewise smooth boundary and such that the mean
perimeter and the mean area respectively defined by

p= HY(OK,) F,(dr) and a= L%(K,) F,(dr)
R, R,
are both finite. Then in that case, we have

— Fa(u) =1 o7
Yu e Ru#0, Cxy(u) = Apﬁ(l‘l)bem(mu)—n,

where Fj(u) = e, P Fg(dp).
e In particular if 3 follows an exponential distribution of parameter g > 0 then Z/J'E(u) =

£ and then
u—iu

1
w—u

—_iu
eAaM—W )

Cxa (1) = AP

We recognize here (thanks to tables of Fourier transforms !) the Fourier transform of a non-
central chi-square distribution, and we thus have

for a.e. t € Ry, Cx,(t) = M\upe M2/ \uat),

where Iy is the modified Bessel function of the first kind of order 0 that is given for all ¢ € R
by Iy(t) = %fow etcosfqp.

e Another explicit and simple case is when 8 = 1 a.s., which implies that Fg(u) = e,
Then C/'X\q)(u) is the product of two Fourier transforms: the one of a Poisson distribution and

the one of the indicator function of the interval [0, 1]. Therefore we get
(Ma)* o Xa
k! '

We illustrate this result on Figure 1 where we show a sample of a shot-noise process made of
two indicator functions of squares.

Vk €N, forae. t e (k,k+1), Cx,(t)=Ap
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FiG 1. We show here on the left a sample (in the square domain (0,2000)?) of a shot noise process made of
two indicator functions of squares of respective side length 60 and 200, and with respective probability 1/2; with
a Poisson point process intensity A = 2.107%. In the middle we show the boundaries of some of the excursion
sets. And on the right we plot the empirical distribution of the perimeter of the excursion sets as a function of
the level, together with the expected values of these perimeters (red stars).

3.4. Link with directional derivatives. In the general case, when the functions g,, are not
piecewise constant, we need to be able to compute the term E(e¥2(©)||V X4(0)|). In order
to have an explicit formula for it in terms of the characteristic function of the shot noise (that
is given by (3.7)), we will first prove the following proposition.

PROPOSITION 2. Let X and Y be two random variables, such that X 1is real-valued and
Y takes values in R™, n > 1. Let ¢ be the joint characteristic function of X andY given by

Vu € R,Vv € R", ¢(u,v) := E(eiuXJri(v,Y))‘

Assume that E(||Y||?) < +oo, then
wX —1 e ] n—1
VueR, E(EX|Y])=—— L (Gl tv) + Blu, —t) — 20(u,0)) dtH" (dv),
27Twn_1 sn—1 Jo t

where wy_1 is the L1 measure of the unit ball of R"~1.

PrROOF. We first use the well-known identity:

1 n—1
/Sn—1 [{(v, )| H" ™ (dv).

2wp—1

Yl =

Now, for any y € R, we have that
-1 [*t>°1 , 2 too
L ey ‘y’/ 11— cost)) dt = [y,
T 0 t 7T 0 t
We can use this identity for each (v,Y), integrate on v € S, multiply by ¢™X and finally
take the expectation. Then, since for any ¢ and y in R, we have [e!¥ + e — 2|/t? <
min(4/t2,y?), and since E(||Y||?) < 400, we obtain by Fubini’s theorem that

gz —1 e 1 U it(v uX —1t(v m n—
E(e™X[|Y]) = 27m}_1/371_1/0 o) <E(e X+t vY>)—|—E(e X—it( 7Y>) — 2E(e X)) dt H" Y (dv),

which is the announced result. O
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Example 2: we give here an example of the use of Proposition 2 in the particular case of
radial functions g,,. To have simpler formulas, we will compute only the total variation of the
field. We assume here that n = 2, that the functions g, are “cone” functions (with no jumps)
given by gm(z1,22) = (1 — my/a? —|—CL'%)XB(O’L)($1,$2), and that the marks m € R, are
distributed with the I'(3,1) distribution. In that case, the characteristic function of VXg(0)
is given by

m1T1tvaTy

P(0,v1,v2) = exp / / Vet+e3 —1)m26_mdfc1dazgdm
R4 J B(0, 1)

21 — ) .
= exp <2/ / / (e—zm(vl cos0+vasinf) 1)m26_m’l" dr do dm> ]
R, Jo Jo

Therefore, for any v = (v1,v2) € S! and any t € R, we have (0, tvy, tve) = (0,t,0) and we
can further compute
.
/ / (e~ cosf _ )m2e™"r dr df dm
Ry Jo Jo

2 )
/ (e—lth080 _ 1)e—m do dm)
0
(— L d9>

o 1-+itcosf
A 1 AT

— ¢ —+/ﬂd¢9 Cexp (AT AT
- 2 2 )y 1+1t%2cos?6 - 2 o/1+e2)°

Finally, by Theorem 3 and Proposition 2 we can compute the expected total variation of the
shot noise random field in (0,1)?, and we get

@
»
T

¥(0,¢,0) =

— S—

+

R

Il

o

o]

ko]
TN TN N

B> B> o] >

il/\w

Il
@
4
o]

_ +oo
BV (Xa (0.17) = E(IVX,0)1) = 5 [ 50(0.£0)+0(0.~4.0) = 26(0.0.0)

do.

AT
Can /+oo e%’ — ey /1+12 p /72’ 1— e%(cosa—l)
e 2 - = -
0 2 0 sin? o
This last integral is related to Bessel functions, and this is not a surprise since Bessel functions
are involved in systems that have cylindrical symmetries.

Example 3: we consider a shot-noise process in R? made of a deterministic function with

random amplitude. More precisely, we assume that n = 2 and that the marks m are in R (i.e.

d = 1) with the distribution F(dm) given by the exponential distribution with parameter 1

so that F'(u) = ——. We consider the function g(z) = g(z1,72) = e %I xg, (z1)X[0,1](72) and

gm = m X g. Note that g € SBV(R?) with J, = ({0} x [0,1]) U (R4 x {0}) U (R4 x {1}) and
_e_xl

Vyg(xi,x2) = < 0 > Xr. (71)X[0,1)(z2). It follows that the joint characteristic function of
Xo(z) and VXg(x) is given by

¥ (u,v1,v2) = exp ( /+°°/ (e™ (u—v1)) — ) dyldy2> =(1—i(u—uv1))"".
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F1G 2. On this figure we show a sample of the shot noise random field of example 8 (exponential in the horizontal
direction, with random amplitudes). The sample here (left image) is shown on the square domain (0,10)? and
we have taken A = 4. In the middle we show the boundaries of some of the excursion sets. And on the right we
plot the empirical distribution of the perimeter of some excursion sets as a function of the level (blue circles),
together with the expected values of these perimeters (red curve) given by Formula (3.10).

Now, we notice that here the gradient Vg is non-zero only in the z; direction, and that
moreover it is always non-positive in that direction. Therefore we have

Oy

0Xa(0)\ _ ;00
8’01

E(SWX@(O)HVXQ(O)H) - _E (eiuX<1>(0)) (u,0,0)

(91‘1
= A(1—iu)Mt.

By Theorem 3, it remains to compute the second term corresponding to the jump part to get
an explicit expression for Cx, . In this example, for u # 0, we have

~

. o _ ‘oo fryo—t) _
1/ / (e“‘g’i(y) — etan W)y H L (dy) F(dm) = 7F(u) ! + 2/ 7F(ue' ) 1dt.
W Jrd J g, 0

mu U

Therefore,

log(1 — iu)

Cxy (1) = 2\ (1 — iu)) 271 = 2) (1—iu)™.

iu
The second term corresponds to the Fourier transform of the function

£(t) = ﬁ(i)m (t /0 P1e™ (w(3) — log(s)) ds,

where k is the logarithmic derivative of the I' function and thus finally we get

At et

(310) for a.e. t € R+7 CX<1> (t) = m

+ f(t).

This example is also illustrated by Figure 2, where we show a sample of such a shot noise
random field together with the empirical and the theoretical expected length of its excursion
sets.
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4. Asymptotic Gaussian behaviour. We assume in this section that

/Rd / ghnly) dyF (dm) < +oc.

As the intensity A of the Poisson point process goes to infinity, it is well-known (see for
instance [14] or [15]) that the shot noise random field converges (after normalization) to a
Gaussian random field. More precisely, if we denote by X, the shot noise field defined by
Equation (3.2) with a homogeneous Poisson point process {x;};c; of intensity A, then the
random field Z) defined by

)‘ff gm dyF dm)
VA

converges, in the sense of finite dimensional distributions to a stationary Gaussian random
field B of mean 0 and covariance function E(B(z = [[ 9m(y — 2)gm(y) dyF (dm). The
aim of the following theorem is to give the asymptotic behav1or of the mean perimeter of the
excursion sets of Zy as A goes to infinity. It shows in particular that when there are no jumps,
we have a finite Gaussian asymptotic whereas when there are jumps, the mean perimeters
are not bounded anymore and behave like V.

(4.1) Ve e R", Zy(z)=

THEOREM 4. Let Zy be the normalized shot noise random field defined by Equation (4.1).
Assume that the functions gn, satisfying condition (3.3), also satisfy the following conditions:

2. / / 62, (y) dyF(dm) < +00, 0% = / 1 gun ()2 dyF (dm) < +0 |

and / / (65 ) — g )5 @)] + 197 ()]) H™ (dy) F(dm) < +00.

Then we have two different asymptotic behaviors:

(a) If there are no jumps, that is if [[(gh(y) — gm(y)) H* 1 (dy)F(dm) = 0 then as A goes
to +00, we have for any fired u € R:

. (u) = e~/ (v m)H" " (dv) + o
Cz,(u) wnn/% /S\/// » Vgm(y))? dyF (dm)H" ™" (dv) + o(1).

(b) If there are jumps, that is if [[(g,5(y) — gm(y)) H" H(dy)F(dm) > 0 then as X goes to
400, we have for any fized u € R:

G (u) = VA /[H J[ Fomte) dim) H [ 616 = ) = P am) | oV,

PROOF. Let us denote p:= [ gm(y) dyF (dm), and let us recall that

E(X(0)) = Ap and Var(X,(0 //gm )dyF(dm) = \o*
and for all v € S"71,

B0, VX)) = A [ [0, Vgn () dyF(dm) = A 0)
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and Var((v, VX, (0 / 0, Vgm ()2 dyF (dm) =: A\o& (v).

Since Z) = (X — )\u)/ﬁ, the function C’ZA is related to the function C/’;A by the rela-

tionship .
CZA (’LL) = Te_luuﬁCX)\(

A )

VA

And therefore, for u # 0, we have

o 1 A X)\(O— . X)\(O) LA e fgm _ vam) -
G () = E( IV X0 >H)+f E(e [/ 1 (dy) F(dm),

VA

and when u = 0, the expected total variation of Z) is

zu/\f

E(V(Zy, (0,1)")) = Tz, (0) = — ZLE(IVXAO)]) + VA / / 65() — g () HO L (dy) F (dm).

We have then two cases, depending on whether there are jumps or not.

e We first consider the case (a), when there are no jumps, which means that [[(g;(y) —
Im(¥)) HL(dy)F(dm) = 0. Then for F-almost every m, the function g, is such that its
distributional derivative is given by Dg,, = Vg, L". And since g,, € L'(R"), we necessarily
have [z, Vgm(z)dx = 0. (Indeed a way to see this is to consider the function ¢ € R ~—
f]R" gm(z+tw) dz for any vector w € R™. This function is constant equal to [ g, and therefore
its derivative at ¢ = 0 that is equal to [, (w, Vgm(x)) dz is equal to 0). We then have, using
the result of Proposition 2 and the change of variable ¢t — ¢/ VA,

X5 (0)—pA

o Hvxmu)

Cat) = B ("

—e VA +oo 1 u  tv
- M1 /Sn 1/ T 7)+¢/\(\f 7)_ l/}A(ﬁ 0)) dtdv,

where "
u v 1% X (0)+i— (v,V X (0))
UA(—=, —=) = E(e VA" TVA )-
VATV

On the one hand, using Formula (3.7) for ¢, we have for any fixed ¢, v and v:

tv 2 2,2
—zu,u\f —u202 /21202 (v)/2
¥ (\f N '

And on the other hand, using the fact that e + e~ — 2| < min(4, 2?) for any x real, we get

tv u

TV ) s

Now since E((v, VX,(0))) = 0, we have E({v, VX,(0))?)) = Var({(v, VX,(0))) = Ao (v) <
)\UQV. Therefore, we can use the dominated convergence theorem and obtain

o o—u?0?/2 +00 1 202 ()2 e—u?a?/2
C —rov\iE —2) dtdv = \/7
ZA( ))\—H-oo 27Twn 1 /;n 1/ ) v Wn—1V 2 /Sn 1

IA(Sm R (= 0)| < min(4, £ B((v, VX5(0))%),
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which ends the proof of case (a).

e For the second case (b), when there are jumps, which means that [[ (g, (y)—g;.(v)) H" 1 (dy) F (dm)
is strictly positive, then f [ Vgm(x)dzF(dm) is not necessarily equal to 0 anymore. In that
case, we will consider CZA( )/v/A and we will show that it converges to a finite strictly posi-
tive limit. To begin with, we use again Proposition 2 and the change of variable t — t/\, to
have:

1 iu XA 1A —e—tunVA oo 1 tv u tv u
‘R VX L N .
e (¢ o) = [ [ (e~ )20 (. 0))

Now, on the one hand, for any fixed ¢, u and v we have

—iu u tv —ulo i v
e u\f/\%(ﬁy X) Ajoo e ?/2+itpy (v)

On the other hand, we have

tv U

Now here E((v, VX,(0))?)) = Var({(v, VX,(0))) + E({v, VXA(0)))* = Ao&(v) + Npuv(v)*
Therefore, we can again use the dominated convergence theorem and get

(o, ) (L 0] < min(a, £ B((0, T X,(0))

1E Z,UX)\(\%—#A VX 0 e U 02/2 +ool tuv fﬂv() 9) dtd 1
- ~ _ el —1 v) t
B (e wnol) = S [T e )dtdv + of1)
e U 262/2
= — d 1
— /gnlmwv)\ o+ o(1)

e U 202/2

/ng d:rF(dm)H+0(1)

For the jump part, we use the inequality

GTRImW) _ ikIm®)

T S 1T g;(y»‘ S 650 =~ g (950 + Lo )
and the fact that
X (0)—pA )
E(emiﬁ ) )\_>_+>Oo e—u o?/2

to obtain, thanks to the hypothesis in the statement of the theorem, that

. xk(o) LA e fgm ei\%g%(y) .
(4.2) E(e / / R, f H" " (dy) F(dm)

ek / / 65) — g () H* (dy) F(dm) + o(1).
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Using additional assumptions on the order-three moments of X and VX, it is possible
to obtain bounds of convergence for Cz, (u) in a way similar to the technical result of our
previous paper [7] in the framework of smooth functions g,.

Example: Assume we are considering a shot noise random field on the plane (i.e. n = 2) and
such that there are no jumps. Then if we denote for i,j = 1 or 2,

agm 8gm
ij = rF
= [ G e ) deF ),

then

1
—
A—=+400 24/ 271‘

This shows that we have a weak convergence of Cyz, (t) to the formula for the length of level
curves in the Gaussian case (that is exactly the formula obtained through Rice formula and
probability density functions of Gaussian fields in [4]).

2T
Cyz, (u) e~ o?/2 /0 \/’Yll c0s2 0 4 799 5in? O + 2719 cos O sin 6 df.
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