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Abstract. We consider Poisson random balls in Rd, with the pair (center, radius)
given by a Poisson point process in Rd×(0,+∞). According to the intensity measure
of the Poisson process, we investigate the eventuality of covering the whole space
with the union of the balls. We exhibit a disjunction phenomenon between the
coverage with large balls (low frequency) and the coverage with small balls (high
frequency). Concerning the second type of coverage, we prove the existence of a
critical regime which separates the case where coverage occurs almost surely and
the case where coverage does not occur almost surely. We give an explicit value of
the critical intensity and we prove that the Hausdorff measure of the set of points
which are not covered by the union of balls is linked with this value. We also
compare with other critical regimes appearing in continuum percolation.

1. Introduction and setting

In this paper, we adopt the following general framework. Let µ be a locally finite
non-negative measure on (0,+∞). Let Φ be a Poisson point process on Rd×(0,+∞)
whose intensity measure ν is the product of the Lebesgue measure on Rd and of the
measure µ. We denote by B(x, r) the open Euclidean ball of Rd centered at x with
radius r. With the previous point process Φ we associate the following random set:

Ξ =
⋃

(x,r)∈Φ

B(x, r),

in which each point is covered at least once by a ball. If µ is a finite measure, we
can write µ = λm where λ is the total mass of µ and m is a probability measure.
In this case, the set Ξ can be obtained as the union of balls of iid random radii
with distribution m, centered at points of a homogeneous Poisson point process
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with intensity λ. It is known in stochastic geometry as the Boolean or germ-grain
model (see Stoyan et al. (1987), Serra (1984), Meester and Roy (1996), Hall (1988)
for instance).

Then, the space Rd is partitioned into two regions: the occupied region Ξ and the
vacant regionRdrΞ. Let us say that coverage occurs if the whole spaceRd is covered
by Ξ, that is, if Rd = Ξ, a.s. If coverage does not occur, then one can wonder how
large (the notion will be made more precise later on) are the occupied and the vacant
regions. Answering these questions is the purpose of occupancy percolation studies,
respectively vacancy percolation. Several authors studied continuum percolation for
Boolean models (see Hall (1985a, 1988) or Meester and Roy (1996) for an exhaustive
survey). The main aim of this paper is to study coverage in our more general
setting. Since percolation questions are naturally linked, we will also discuss them.
In particular, we provide a new criterion for coverage which yields the existence of
a critical intensity for coverage. The exact computation of this critical intensity
allows us to exhibit new bounds for critical percolation intensities. We also obtain
new results concerning the Hausdorff dimension of the vacant region.

Concerning the coverage question, a simple computation gives

P(0 6∈ Ξ) = P ({(x, r) ∈ Φ; 0 ∈ B(x, r)} = ∅) = exp

(
−vd

∫ +∞

0

rdµ(dr)

)
(1.1)

where vd denotes the volume of the unit ball in Rd. Therefore, we get the following
necessary condition for covering:

∫ +∞

0

rdµ(dr) = +∞. (1.2)

Indeed, if the integral is finite, then P(0 6∈ Ξ) is positive and therefore Rd is not
almost surely covered. If the integral is infinite, then P(0 ∈ Ξ) = 1. By Fubini’s
theorem, this ensures that the Lebesgue measure of the complement of Ξ is almost
surely 0. This is not sufficient in general to ensure the almost sure coverage of Rd.
Getting a necessary and sufficient condition is an old question initiated in the sixties
for the Dvoretsky’s problem of covering the circle with random arcs (see Dvoretzky
(1956), Gilbert (1965), Kahane (1985) and Kahane (2000) for an historical survey
of this problem). To our knowledge, there are only two situations for which the
problem is totally solved.

The first situation concerns the dimension d = 1, which was Dvoretsky’s initial
question. Shepp (1972) and Mandelbrot (1972) solved the problem in dimension
one giving an if and only if condition for R to be almost surely (a.s.) covered by

∪
(x,r)∈Φ

(x, x + r). In our setting, with B(x, r) = (x − r, x + r), this necessary and

sufficient condition is
∫ 1

0

exp

(
2

∫ +∞

u

(r − u)µ(dr)

)
du = +∞ . (1.3)

The second case concerns the germ-grain model, i.e. when the measure µ is
finite. In that case, it is known (see Hall (1985b, 1988); Meester and Roy (1996))
that Rd is a.s. covered if and only if (1.2) holds, which is equivalent to saying that
the balls have an infinite mean Lebesgue measure. In particular, this forbids the
coverage of Rd with balls of an equal radius.
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Apart from the random balls coverage problem, many results have been obtained
on related topics. Let us mention for instance that the generalization of Dvoret-
sky’s problem to higher dimension was considered by El Helou (1978) who gives
sufficient and necessary conditions in his thesis. Kahane (1990), partially inspired
by the ideas of Shepp (1972) and Janson (1986), solved the coverage problem in
dimension d > 1 in a general setting where B(x, r) is replaced by x + rC, with C
belonging to a certain class of open bounded convex sets of Rd. Let us emphasize
that this class of sets does not contain Euclidean balls. Actually, the restriction
imposed on the convex set C is only required for the sufficient condition of a.s. cov-
erage. We also mention more recent papers. Molchanov and Scherbakov (2003) are
concerned with an inhomogeneous framework where the radii are random variables
that depend on the center locations. In a one-dimensional setting, Barral and Fan
(2004) consider the asymptotic behavior of the number of Poisson intervals which
cover a point. Finally, Athreya et al. (2004) introduce a weaker notion of coverage,
called eventual coverage, which consists in covering the orthant (t,+∞)d for some
t ∈ (0,+∞). Then, a critical behavior is also observed for germ-grain models, but
only for dimension d = 1.

The content of the present paper is the following. In Section 2, we start by
establishing a dichotomy result: when coverage holds, it is due to the contribution of
the small balls (high frequency coverage) or the large balls (low frequency coverage).
This result appears in Mandelbrot (1972) and Shepp (1972) in the one-dimensional
case, as a consequence of the one-dimensional characterization (1.3). In the same
section, we also quote that the low frequency coverage problem is very similar to
the germ-grain coverage problem. Then a lightly modified version of (1.2) appears
as a necessary and sufficient condition.

Section 3 is devoted to the existence of a critical coverage regime. Indeed, a
criterion for coverage or non-coverage is exhibited. In the case of high frequency

coverage, it relies on the compared asymptotics of
∫ 1

ε r
d µ(dr) and | ln ε| as ε goes to

0+. When coverage does not hold, the Hausdorff dimension of the vacant region is
computed following the ideas of El Helou (1978). Links with percolation questions,
as studied in Gouéré (2009) for occupancy percolation, or in Broman and Camia
(2010) for vacancy percolation, are explored.

In Section 4, we give relevant examples. A special attention is paid to the power
law models with measures of the type µ(dr) = r−β−1 1(0,+∞)(r) dr. In particular,
we focus on the scale invariant model, as in Broman and Camia (2010), which
corresponds to β = d and appears as a critical case. We also consider multiscale
Boolean models, as studied in Menshikov et al. (2001).

The last section contains the proofs. Bringing together the proofs allows us to
emphasize the links between the results of Section 2 and Section 3.

Throughout the paper, dimension d is fixed, dx denotes the Lebesgue measure

on Rd, and vd = πd/2

Γ(d/2+1) stands for the Lebesgue measure of the unit Euclidean

ball in Rd. The symbol ⊂ denotes the non-strict inclusion.
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2. High and low frequency coverage

Let us consider µ a locally finite non-negative measure on (0,+∞) and Φ a
Poisson point process in Rd × (0,+∞) with intensity dxµ(dr). We set

Ξ = ∪
(x,r)∈Φ

B(x, r),

the occupied region. Our main goal is to find necessary or sufficient conditions on
µ such that Rd is completely covered by Ξ. We denote by ψ(µ) the probability that
Rd is covered by Ξ

ψ(µ) = P(Rd ⊂ Ξ),

called “coverage probability”. We start with a useful lemma. It states a zero-one
law for the coverage probability, due to ergodicity of the Poisson point process of
the centers of the balls, and gives some criteria for coverage.

Lemma 2.1. Let µ be a locally finite non-negative measure on (0,+∞). Then,

i) ψ(µ) is either 0 or 1.
ii) If there existsK a compact set of Rd such that P(K ⊂ Ξ) < 1 then ψ(µ) = 0.
iii) If there exists K a compact set of Rd with non empty interior such that

P(K ⊂ Ξ) = 1 then ψ(µ) = 1.

Proof : i) The event {Rd = Ξ} is invariant under the action of the translations of
Rd and the result follows from ergodicity arguments (see for instance Chapter 2.1 in
Meester and Roy (1996)). ii) It is enough to note that P(Rd ⊂ Ξ) ≤ P(K ⊂ Ξ) < 1
and to use i) to conclude. iii) Since the interior of K is non empty, one has

Rd = ∪
q∈Qd

(q +K). Moreover, by stationarity one has P(K + q * Ξ) = P(K * Ξ),

which equals 0 by assumption, so that

1− ψ(µ) = P(Rd * Ξ) ≤
∑

q∈Qd

P(K + q * Ξ) = 0.

�

One can split the random set Ξ into two independent sets, one made of small
balls (radius less than 1), and the other one made of large balls (radius larger
than 1):

Ξ = ΞH ∪ ΞL where ΞH = ∪
(x,r)∈Φ; r<1

B(x, r) and ΞL = ∪
(x,r)∈Φ ; r≥1

B(x, r) .

Note that the radius size 1 is arbitrary and can be set to any positive real value. In
order to distinguish between the contribution of the small balls and the contribution
of the large balls, following Mandelbrot (1972) and Shepp (1972), we introduce the
following definition.

Definition. Let µ be a locally finite non-negative measure on (0,+∞) and let
us write µ = µ

H
+ µ

L
with

µ
H
(dr) = 1(0,1](r)µ(dr) and µ

L
(dr) = 1(1,+∞)(r)µ(dr) .

The measure µ is said to give a high frequency coverage if ψ(µ
H
) = 1 and a low

frequency coverage if ψ(µL) = 1.
A straightforward generalization of the germ-grain case (see Meester and Roy

(1996) or Hall (1988)) applies and concludes that the necessary and sufficient con-
dition remains valid for low frequency coverage.
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Proposition 2.2. (Necessary and sufficient condition for low frequency
coverage). Let µ be a locally finite non-negative measure on (0,+∞). Then

ψ(µ
L
) = 1 if and only if

∫ +∞

1

rdµ(dr) = +∞ .

Note that this condition remains valid whenever the measure µ is translated or
dilated. Then, for any a, δ ∈ (0,+∞), let us define

Ξ
>a

= ∪
(x,r)∈Φ; r>a

B(x, r) and Ξδ
>a

= ∪
(x,r)∈Φ ; r>a

B(x, δr) .

Since µ is assumed to be locally finite on (0,+∞) we clearly obtain that

ψ(µL) = P
(
Rd ⊂ Ξ

>a

)
= P

(
Rd ⊂ Ξδ

>a

)
. (2.1)

A particular and interesting consequence of this proposition is that low frequency
coverage implies that a.s. any point of Rd is covered by an infinite number of
arbitrarily large balls. Actually, it implies that

ψ(µL) = P

(
Rd ⊂ ∩

a>0
Ξ>a

)
.

The main result of this section is the following theorem. It states that the coverage
of Rd is equivalent to high or low frequency coverage.

Theorem 2.3. Let µ be a locally finite non-negative measure on (0,+∞). Then

ψ(µ) = max(ψ(µH ), ψ(µL)).

The proof of Theorem 2.3, which is given in Section 5, relies on the character-
ization of low frequency coverage. Then, similarly to the low frequency feature,
when high frequency coverage occurs, a.s. any point of Rd is covered by (an infinite
number of) arbitrarily small balls. Actually, denoting Ξ

≤ε
= ∪

(x,r)∈Φ; r≤ε
B(x, r) for

ε > 0 we get

ψ(µH) = P

(
Rd ⊂ ∩

ε>0
Ξ

≤ε

)
.

Beyond the one-dimensional case, which was solved by Shepp, high frequency cov-
ering is trickier than low frequency covering. One can give the following necessary
condition on the one hand and sufficient condition on the other hand.

Proposition 2.4. (Necessary condition for high frequency coverage). Let
µ be a locally finite non-negative measure on (0,+∞).

If ψ(µ
H
) = 1 then

∫ 1

0

ud−1 exp

(
vd

∫ 1

u

rd−1(r − u)µ(dr)

)
du = +∞ .

One notices that in the one-dimensional case the above necessary covering con-
dition coincides with the necessary and sufficient condition (1.3). Actually, the
necessary condition appears in Kahane (1990) with a proof based on a martingale
convergence argument. We give an analogous proof in Section 5, based on a second
moment argument.

The sufficient condition is obtained through more geometrical and combinatorial
arguments, close to the ones of El Helou (1978).



218 Hermine Biermé and Anne Estrade

Proposition 2.5. (Sufficient condition for high frequency coverage). Let
µ be a locally finite non-negative measure on (0,+∞). Then

If lim sup
u→0

ud exp

(
vd

∫ 1

u

(r − u)dµ(dr)

)
= +∞ then ψ(µ

H
) = 1 .

Even though different, these two conditions allow us to exhibit a critical regime
for coverage, as it often appears for percolation. We discuss this phenomenon in
the next section.

3. Critical regime

3.1. Critical intensity. By a coupling method, one can check that the map λ 7→
ψ(λµ) is non-decreasing. Let us define the critical intensity for coverage by

λ∗(µ) = inf{λ ≥ 0;ψ(λµ) > 0} ∈ [0,+∞] (3.1)

where, as usual, we set +∞ when the set is empty. One has λ∗(µ) = 0 if and only
if ψ(λµ) = 1 for all λ > 0. One has λ∗(µ) = +∞ if and only if ψ(λµ) = 0 for all
λ > 0. Moreover, when λ∗(µ) ∈ (0,+∞),

λ < λ∗(µ) ⇒ ψ(λµ) = 0 and λ > λ∗(µ) ⇒ ψ(λµ) = 1.

As a consequence of Propositions 2.4 and 2.5 one can derive the following explicit
value of λ∗(µ).

Theorem 3.1. Let µ be a locally finite non-negative measure on (0,+∞). Set

ℓ(µ) = lim sup
ε→0

(
| ln ε|−1 vd

∫ 1

ε

rd µ(dr)

)
∈ [0,+∞]. (3.2)

If
∫ +∞
1 rdµ(dr) = +∞ then λ∗(µ) = 0. Otherwise2,

λ∗(µ) = d/ℓ(µ). (3.3)

A straightforward consequence of this theorem is the following simple condition
to ensure, or not, high frequency coverage.

Remark 3.2. if ℓ(µ) > d then ψ(µ
H
) = 1 ; if ℓ(µ) < d then ψ(µ

H
) = 0.

When ℓ(µ) = d, different behaviors can be observed as we can see in the following
examples. Let us consider the measures µ+ and µ− defined by:

µ+(dr) = dv−1
d r−d−1(1 + 2| ln(r)|−1)1(0,a)(r)dr,

and
µ−(dr) = dv−1

d r−d−1(1− 2| ln(r)|−1)1(0,a)(r)dr,

where a > 0 is small enough to ensure that 1− 2| ln(r)|−1 is positive for r ∈ (0, a).
We easily obtain that ℓ(µ+) = ℓ(µ−) = d, so that λ∗(µ+) = λ∗(µ−) = 1, according
to Theorem 3.1. In other words, µ+ and µ− are both critical. Applying Propositions
2.4 and 2.5, we get that ψ(µ+) = 1 and ψ(µ−) = 0.

An interesting behavior is observed when λ∗(µ) ∈ (0,+∞), since it reveals a
sharp transition between coverage or no coverage. For a small enough intensity λ,
high frequency coverage never occurs whereas for a large enough λ, high frequency
coverage always occurs. A reformulation of Theorem 3.1 yields the following nec-
essary and sufficient condition for this to hold.

2We use the conventions d/0 = +∞ and d/+∞ = 0
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Remark 3.3. λ∗(µ) ∈ (0,+∞) if and only if

ℓ(µ) ∈ (0,∞) and

∫ +∞

1

rdµ(dr) <∞. (3.4)

In this case, the coverage clearly depends on the chosen intensity λ. Let us
emphasize that this result can only be obtained for high frequency coverage, using
not finite measures. Actually, for finite measures and associated Boolean models,
the coverage can only be a low frequency coverage that does not depend on λ.

Let us mention that ℓ(µ) also appears in the one-dimensional setting of Barral
and Fan (2004), where it is linked to the Hausdorff dimension of the set of points
which are not covered infinitely many times. In the next section, we obtain a similar
result for the vacant region itself, which is valid whatever dimension d is.

3.2. Hausdorff dimensions. We notice that ℓ(µ) > 0 implies in particular condition
(1.2) so that a.s. the set of points which are not high frequency covered has the
Lebesgue measure 0. The aim of this section is to determine its Hausdorff dimen-
sion, which is more relevant in this situation. In the sequel, for any set A in Rd, we
denote dimH(A) its Hausdorff dimension and refer to Falconer (1990) for a precise
definition. We will follow the proofs of El Helou (1978) which considers the Haus-
dorff dimension of the set of points of the torus Td which are not covered infinitely
many times by random open sets with a prescribed diameter. His results may be
adapted to our framework giving the following preliminary properties, whose proofs
are postponed in Section 5.

Proposition 3.4. Let µ be a locally finite non-negative measure on (0,+∞) and
ℓ(µ) be given by (3.2). Let A be a compact set of Rd. If ℓ(µ) < d and dimH(A) >
ℓ(µ) then with positive probability A * ΞH .

Proposition 3.5. Let µ be a locally finite non-negative measure on (0,+∞) and
ℓ(µ) be given by (3.2). Let A be a compact set of Rd. If ℓ(µ) > 0 and dimH(A) <
ℓ(µ) then almost surely A ⊂ ΞH .

In particular, when ℓ(µ) ∈ (0,+∞), one can consider

Ξλ
H = ∪

(x,r)∈Φλ
B(x, r)

obtained from a Poisson point process Φλ independent from Φ with intensity
λdxµH (dr) for λ > 0. Note that ΞH ∪ Ξλ

H has the same distribution than Ξ1+λ
H .

Then, let us consider F = [0, 1]d ∩ Ξc
H the compact set of points in [0, 1]d that

are not covered by ΞH , which is already known to be empty a.s. when ℓ(µ) > d
according to Theorem 3.1. Note that the choice of [0, 1]d as a region of interest
is arbitrary and can be replaced by any compact set with a non-empty interior.
On the one hand, let us choose λ > 0 such that λℓ(µ) < d and (1 + λ)ℓ(µ) > d,

then [0, 1]d is almost surely covered by Ξ1+λ
H so that F is almost surely covered

by Ξλ
H and dimH(F ) ≤ λℓ(µ) a.s. according to Proposition 3.4. This proves that

dimH(F ) ≤ max(d− ℓ(µ), 0) a.s. On the other hand, when moreover ℓ(µ) < d, let
us choose λ > 0 such that (1 + λ)ℓ(µ) < d, then with positive probability [0, 1]d

is not covered by Ξ1+λ
H . Therefore F * Ξλ

H and dimH(F ) ≥ λℓ(µ) with positive
probability according to Proposition 3.5. This proves the following theorem.
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Theorem 3.6. Let µ be a locally finite non-negative measure on (0,+∞) such that
ℓ(µ) > 0. Let F be the compact set of points in [0, 1]d that are not covered by ΞH ,
then

dimH(F ) ≤ d− ℓ(µ) a.s.

Moreover, if ℓ(µ) ≤ d, then

P (dimH(F ) = d− ℓ(µ)) > 0.

3.3. Link with continuum percolation. In this section, we still consider the occupied
region Ξ = ∪

(x,r)∈Φ
B(x, r), and we set W the connected component of Ξ which

contains 0. Following Meester and Roy (1996), we consider a percolation function
defined by

θ(µ) = P(W is unbounded).

Note that in dimension 1, percolation occurs, ie θ(µ) > 0, if and only if coverage
occurs. Since θ is non-decreasing, a percolation critical intensity is defined as

λc(µ) = inf{λ ≥ 0; θ(λµ) > 0}, (3.5)

where we set λc(µ) = +∞ if there is no such λ. In dimension d ≥ 2, assuming that
µ is a non zero measure, one easily checks that the critical intensity for percolation
λc(µ) is always finite. Moreover, it is proven in Gouéré (2009) that λc(µ) is positive
if and only if

sup
ε>0

εdµ([ε, 1]) < +∞ and

∫ +∞

1

rdµ(dr) < +∞. (3.6)

Let us remark that sup
ε>0

εdµ([ε, 1]) = +∞ implies that
∫ 1

0
rdµ(dr) = +∞.

Compared with the coverage function introduced in Section 3, we clearly have
ψ(µ) ≤ θ(µ) and hence λc(µ) ≤ λ∗(µ) . The exact value of the critical intensity for
coverage yields an upper bound for the percolation critical intensity:

λc(µ) ≤
d

ℓ(µ)
,

where ℓ(µ) is given by (3.2). It is worth emphasizing that such a universal bound
can be very useful for applications. Actually, percolation thresholds are usually
estimated using numerical simulations (see Zuyev and Quintanilla (2003) for a
theoretical basis in the framework of 2 dimensional Boolean models).

Another percolation point of view consists in considering the existence of large
connected components in the complementary set of Ξ, called vacancy percolation.
For this purpose, following Broman and Camia (2010) and Meester and Roy (1996),
let us consider the new critical intensity λf (µ) as follows. Let θf (µ) be the proba-
bility that F = [0, 1]d ∩ Ξc contains a connected component larger than one point.
Then

λf (µ) = inf{λ ≥ 0; θf (λµ) = 0}.
Note that dimH(F ) < 1 implies that F is totally disconnected, which means that
connected components are reduced to points (see Falconer (1990)). Therefore The-
orem 3.6 yields the following upper bound

λf (µ) ≤
d− 1

ℓ(µ)
.
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In particular, when ℓ(µ) ∈ (0,+∞), we clearly have λf (µ) < λ∗(µ) so that, as λ
increases, a phase transition of ”dust” is observed in Ξc until it becomes empty.

We illustrate these results with typical examples in the next section.

4. Examples

4.1. Power law type. In a former study Biermé et al. (2010) studied random balls
models with the locally finite measure µ specified to be, as r → 0 or r → +∞,
asymptotically of a power law type

r−β−1 1(0,+∞)(r) dr.

Our concern was to exhibit self-similar properties of the associated shot-noise
field. Concerning the covering problem, these measures are canonical test examples
and two different behaviors are observed for β less or greater than d. Indeed,
applying Propositions 2.2, 2.4 and 2.5 to measures µ, that behave asymptotically
like a power law yields the following.

• For µ(dr) = f(r)1(0,+∞)(r) dr with f(r) ∼
r→+∞

λ r−β−1 for some λ > 0 and

β ∈ R,
ψ(µ

L
) = 1 if and only if β ≤ d .

• For µ(dr) = f(r)1(0,+∞)(r) dr with f(r) ∼
r→0

λ r−β−1 for some λ > 0 and

β ∈ R,

if β > d then ψ(µ
H
) = 1, and if β < d then ψ(µ

H
) = 0 .

Let us now concentrate on the case β = d where a phase transition appears. So
let us consider

µ(dr) = r−d−11(0,+∞)(r) dr . (4.1)

In this case the associated intensity measure ν(dx, dr) = dxµ(dr) is scale invariant
in the following sense: for measurable sets A ⊂ Rd × (0,+∞) with ν(A) < +∞,
writing sA = {y ∈ Rd × (0,+∞); y/s ∈ A} we get

ν(sA) = ν(A).

Such an intensity is usually chosen when considering multiplicative cascades (see
Barral and Mandelbrot (2002) or Chainais (2007) for instance), or Poisson random
fractals as in Broman and Camia (2010). It is straightforward to get that λ∗(µ

L
) =

0 while ℓ(µ) = vd ∈ (0,+∞), so that, following Theorem 3.1, we obtain

λ∗(µH ) =
d

vd
.

Note that, for the one-dimensional case, the critical value (equal to 1/2) is men-
tioned in Kahane (2000). One can also remark that in dimension d, vd > d when
d ≤ 5 whereas vd < d when d ≥ 6. Therefore, high frequency coverage is obtained
for the scale invariant intensity measure (λ∗(µH) < 1) if and only if d ≤ 5. When
d ≥ 6, almost surely Rd is not covered by ΞH and considering F the vacant region
inside [0, 1]d, its Hausdorff measure is given by d − vd with positive probability,
according to Theorem 3.6.

In Broman and Camia (2010), considering the scale invariance of (4.1), the
authors investigate the connectivity properties of

Ξ̃
H
= ∪

(x,r)∈Φ;r≤1
B(x, r).
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More precisely they consider vacancy percolation and prove in Theorem 2.4 that

there exists λ̃f (µ) ∈ (0,+∞) such that with probability one the complement of

Ξ̃H in any domain of Rd contains connected components larger than one point if

λ ≤ λ̃f (µ) and is totally disconnected if λ > λ̃f (µ). Note that λ̃f (µ) ≤ λf (µH),
where λf (µH) has been introduced in Section 3.3, such that

λ̃f (µ) ≤ λf (µ) ≤
d− 1

vd
<

d

vd
= λ∗(µH).

Moreover, Proposition 2.4 can be adapted to prove that when λ < λ∗(µH) the set

Ξ̃
H
does not cover Rd almost surely. This reveals the existence of a phase transition

of dust before coverage.
Finally, it is also clear that µH satisfies (3.6) so that λc(µH) ∈ (0, λ∗(µH)]. We

conjecture that λc(µH) < λ∗(µH) so that a phase transition should also be observed
between percolation and coverage. Another issue should be to compare λc(µH) and
λf (µH) in order to exhibit (when d ≥ 3) or not (when d = 2) coexistence of
unbounded connected components in the vacant and in the occupied region as it is
the case in the Boolean model (see Penrose (1996)).

4.2. Multiscale Boolean model, coverage and percolation. For all ρ > 1, we consider
the measure µρ defined by:

µρ =
∑

n≥0

ρndδρ−n ,

where δρ−n is the Dirac measure at point ρ−n. The associated random set Ξρ can be
built as the union of independent copies of ρ−nΞ

=1
, n ≥ 1, where Ξ

=1
is the random

set associated with the Dirac measure δ1. Actually, Ξ
=1

is the classical Boolean
model made of balls of identical radius 1. The random set Ξρ is called Multiscale
Boolean model and has been studied for instance in Chapter 8 of Meester and Roy
(1996) (case d = 2, ρ = 2) and more generally in Menshikov et al. (2001) and Gouéré
(2009).

We can simply compute ℓ(µρ) = vd
ln(ρ) . Then, applying Theorem 3.1, we get, for

all ρ > 0

λ∗(µρ) =
d ln(ρ)

vd
.

Note that when ρ = 2 and d = 2 one has λ∗(µρ) = 2 ln(2)
π . This significantly

improves Meester and Roy (1996) that only gives a lower bound equal to 2 ln(2)
45

and an upper bound equal to 8 ln(2). Moreover, a consequence of Theorem 8.1 of

Meester and Roy (1996) and Theorem 3.6 is that 0 < λf (µ
ρ) ≤ ln(2)

π , so that we
also obtain a phase transition of dust. Note that in the general case d ≥ 2 and
ρ > 1, one can still observe a phase of dust since

λf (µ
ρ) ≤ (d− 1) ln(ρ)

vd
< λ∗(µρ) .

For d ≥ 2, concerning the occupancy percolation, one can check that
sup
ε>0

εdµρ([ε, 1]) = 1
d ln(ρ) such that µρ satisfies (3.6). Moreover, it is clear that

λc(µ
ρ) ≤ λc(δ1). Then, according to Menshikov et al. (2001, Theorem 1.1), we get

lim
ρ→+∞

λc(µ
ρ) = λc(δ1).
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Remark that lim
ρ→+∞

λ∗(µρ) = +∞ = λ∗(δ1). Hence, for ρ large enough, λc(µ
ρ) <

λ∗(µρ) and for any λ ∈ (λc(µ
ρ), λ∗(µρ)), the measure λµρ gives percolation without

covering the whole space.

5. Proofs

5.1. Proof of Theorem 2.3. The only thing to prove is that both asumptions ψ(µL)=
0 and ψ(µ) = 1 imply ψ(µ

H
) = 1. We start with the following lemma, which states

that if Rd is not covered by Ξ
L

then no given ball intersects Ξ
L

with positive
probability.

Lemma 5.1. If low frequency coverage does not hold, i.e. if ψ(µ
L
) = 0, then

∀y ∈ Rd, ∀ρ > 0, P (B(y, ρ) ∩ Ξ
L
= ∅) > 0 .

Proof : Assume that P
(
Rd ⊂ ΞL

)
= 0. By stationarity the result follows if we prove

that

∀ρ > 0, P (B(0, ρ) ∩ Ξ
L
= ∅) > 0.

Let ρ > 0 and denote δ = 1 + 2ρ. By (2.1), P
(
Rd ⊂ Ξδ

>1

)
= 0, and according to

Lemma 2.1 iii),

P
(
B(0, ρ) * Ξδ

>1

)
> 0 .

Let y ∈ B(0, ρ). Assume that y /∈ Ξδ
>1
. Then for any (x, r) ∈ Φ with r > 1,

|x| ≥ |x− y| − |y| ≥ δr − ρ ≥ r + ρ

which implies that B(0, ρ) ∩ B(x, r) = ∅. Hence B(0, ρ) ∩ ΞL = ∅. We have
established that

{B(0, ρ) * Ξδ
>1
} ⊂ {B(0, ρ) ∩ Ξ

L
= ∅}

and Lemma 5.1 follows. �

Let us come back to the proof of Theorem 2.3 and suppose that low
frequency coverage does not hold whereas coverage does. By Lemma 5.1,
P (B(0, 1) ∩ ΞL = ∅) > 0. Denoting by η > 0 this probability and using the coverage
assumption we get

η = P
(
(B(0, 1) ∩ ΞL = ∅) ∩ (B(0, 1) ⊂ Ξ)

)

= P
(
(B(0, 1) ∩ ΞL = ∅) ∩ (B(0, 1) ⊂ ΞH )

)

= P(B(0, 1) ∩ ΞL = ∅)× P(B(0, 1) ⊂ Ξ
H
)

= η × P(B(0, 1) ⊂ ΞH )

and therefore P(B(0, 1) ⊂ Ξ
H
) = 1. Lemma 2.1 iii) implies that high frequency

coverage occurs, which concludes the proof of Theorem 2.3.

5.2. Proof of Propositions 2.4 and 3.4. We can assume that the measure µ is sup-
ported by (0, 1], so that µ = µH , and consider A a compact set of [0, 1]d. We will
establish that one of the following assumptions

• either

∫ 1

0

ud−1 exp

(
vd

∫ 1

u

rd−1(r − u)µ(dr)

)
du < +∞,

• or ℓ(µ) < d and dimH(A) > ℓ(µ),
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implies P (A 6⊂ Ξ) > 0. This will prove either Proposition 2.4 (using Lemma 2.1 ii)
) or Proposition 3.4.

Hence, let m be a probability measure supported by A. We recall that for ε > 0,
Ξ

≥ε
denotes ∪

(x,r)∈Φ;r≥ε
B(x, r). We consider

mε = m
(
A ∩ Ξc

≥ε

)
=

∫

A

1y/∈Ξ
≥ε
m(dy).

Then, by Fubini,

E(mε) =

∫

A

P(y /∈ Ξ
≥ε
)m(dy),

and with a similar computation as for (1.1), we get for any y ∈ Rd,

P(y /∈ Ξ
≥ε
) = e−κε ,

where κε := vd

∫ 1

ε

rdµ(dr). Since m is a probability measure on A, we get

E(mε) = e−κε .

Moreover, by Fubini again,

E(m2
ε) =

∫

A×A

P(y /∈ Ξ
≥ε
, z /∈ Ξ

≥ε
)m(dy)m(dz).

Lemma 5.2. There exists some positive constant b ≤ 1/2 such that for any y, z ∈
Rd,

P(y /∈ Ξ
≥ε
, z /∈ Ξ

≥ε
) ≤ e−2κε exp

(
vd

∫ 1

ε

rd−1 (r − b|y − z|)+ µ(dr)
)

Proof of the lemma: For any y, z ∈ Rd, we write

P(y /∈ Ξ
≥ε
, z /∈ Ξ

≥ε
) = exp

(
−
∫

Rd

∫ 1

ε

1B(y,r)∪B(z,r)(x)dxµ(dr)

)

= exp

(
−2κε +

∫

Rd

∫ 1

ε

1B(y,r)∩B(z,r)(x)dxµ(dr)

)

= e−2κε exp

(∫ 1

ε

γd(|y − z|, r)µ(dr)
)

where for u, r > 0, γd(u, r) denotes the Lebesgue measure of the intersection of
two balls in Rd with a common radius r and whose centers are at distance u (in
Kahane (1990), γd is called “pagoda” function). We will prove that γd satisfies the
following: there exists a constant b ∈ (0, 1/2] such that for any u ≥ 0, r > 0

γd(u, r) ≤ vd r
d−1(r − bu)+ (5.1)

where (x)+ denotes the positive part of any real x, ie (x)+ = x1x≥0. First let us
assume that d = 1 and remark that γ1(u, r) = 2 (r − u/2)+ = v1 (r − u/2)+ so
that (5.1) is satisfied with b = 1/2. In the general case d ≥ 2, on the one hand we
notice that γd(u, r) = 0 for all u ≥ 2r so that (5.1) holds in this case whatever the
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constant b ≤ 1/2 is. On the other hand, for u < 2r, let us write for e ∈ Rd a fixed
direction

γd(u, r) = rd
∫

Rd

1B((u/r)e,1)∩B(0,1)(ξ)dξ

= rd
∫

z∈Rd−1;|z|<1

γ1

(
u/r,

√
1− |z|2

)
dz

= rd
∫

z∈Rd−1;|z|<1

(
2
√
1− |z|2 − u/r

)
+
dz = vdr

d − δ(u, r),

where

δ(u, r) = rd

(∫

z∈Rd−1;2
√

1−|z|2≤u/r

2
√
1− |z|2 dz + u

r

∫

z∈Rd−1;2
√

1−|z|2>u/r

dz

)
.

In order to establish inequality (5.1), we will prove that δ(u, r) ≥ Curd−1 for some
positive constant C, distinguishing the two cases: u/r less or greater than 1. If
u/r < 1 then

δ(u, r) ≥ rd
u

r

(∫

z∈Rd−1;2
√

1−|z|2>1

dz

)
,

whereas, if 1 ≤ u/r < 2 then

δ(u, r) ≥ rd
u

r

(∫

z∈Rd−1;2
√

1−|z|2≤1

√
1− |z|2 dz

)
.

Hence, taking b = min(1/2 , C) concludes the proof of Lemma 5.2. �

Therefore,

E(m2
ε) ≤ e−2κε

∫

A×A

exp

(
vd

∫ 1

ε

rd−1 (r − b|y − z|)+ µ(dr)
)
m(dy)m(dz). (5.2)

First case: Let us consider A = [0, 1]d and m the Lebesgue measure on A. By
translation invariance and change in polar coordinates we get

E(m2
ε) ≤ e−2κε

∫

Rd

1|z|≤
√
d exp

(
vd

∫ 1

ε

rd−1 (r − b|z|)+ µ(dr)
)

dz

= e−2κε dvd b
−d

∫ b
√
d

0

ud−1 exp

(
vd

∫ 1

ε

rd−1 (r − u)+ µ(dr)

)
du

≤ Jd(µ)e
−2κε ,

where Jd(µ) = dvd b
−d
∫ b

√
d

0
ud−1 exp

(
vd
∫ 1

0
rd−1 (r − u)+ µ(dr)

)
du ∈ (0,+∞)

when assuming that
∫ 1

0

ud−1 exp

(
vd

∫ 1

u

rd−1(r − u)µ(dr)

)
du < +∞ .

Second case: Let us assume that ℓ(µ) < d and considerA such that dimH(A) > ℓ(µ).
Then, let us choose δ > 0 such that dimH(A) > ℓ(µ) + 2δ > ℓ(µ). According
to Frostman’s lemma (see Falconer (1990) for instance), one can choose for m a
measure carried by A such that

Iℓ(µ)+δ(m) :=

∫

A×A

|y − z|−(ℓ(µ)+δ)m(dy)m(dz) ∈ (0,+∞).
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According to the definition of ℓ(µ) (see (3.2)), for all y, z ∈ [0, 1]d such that b|y− z|
is small enough,

vd

∫ 1

b|y−z|
rd µ(dr) ≤ −(ℓ(µ) + δ) ln(b|y − z|) .

Then, using (5.2), one can find a positive constant Cδ such that

E(m2
ε) ≤ Cδe

−2κεIℓ(µ)+δ(m).

Therefore, in both cases, using Cauchy-Schwarz inequality we obtain

P(mε > 0) ≥ E(mε)
2

E(m2
ε)

≥ c ,

with c = 1/Jd(µ) > 0 in the first case and c = 1/(CδIℓ(µ)+δ(m)) > 0 in the second
case. Hence,

P(A 6⊂ Ξε) ≥ c.

Taking the limit as ε tends to 0 we get

P

(
⋂

ε>0

{A 6⊂ Ξε}
)

≥ c.

Using the compactness of A we finally obtain

P (A 6⊂ Ξ) ≥ c > 0.

This concludes the proof of Proposition 2.4 and Proposition 3.4.

5.3. Proof of Propositions 2.5 and 3.5. We can again assume that the measure µ
is supported by (0, 1]. Let us remark that for r > ε > 0

B(y, ε) ⊂ B(x, r) ⇔ y ∈ B(x, r − ε),

and that y + [−ε/
√
d, ε/

√
d]d ⊂ B(y, ε). Therefore,

P(y + [−ε/
√
d, ε/

√
d]d * Ξ)≤P(∀(x, r) ∈ Φ with r > ε, [−ε/

√
d, ε/

√
d]d * B(x, r))

≤P(∀(x, r) ∈ Φ with r > ε, 0 /∈ B(x, r − ε))

≤ exp

(
−vd

∫ 1

ε

(r − ε)dµ(dr)

)
. (5.3)

First case: (Proof of Proposition 2.5). Let us assume that

lim sup
ε→0

εd exp

(
vd

∫ 1

ε

(r − ε)dµ(dr)

)
= +∞. (5.4)

Then for any ε > 0,

P([0, 1]d * Ξ) ≤
√
d
d
ε−d P([−ε/

√
d, ε/

√
d]d * Ξ)

≤
√
d
d
ε−d exp

(
−vd

∫ 1

ε

(r − ε)dµ(dr)

)
.

Hence, according to (5.4) we can choose ε → 0 in an appropriate way such that
we get P([0, 1]d * Ξ) = 0 and Lemma 2.1 allows us to conclude that Rd is almost
surely covered by Ξ.
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Second case: (Proof of Proposition 3.5). Let us assume that ℓ(µ) > 0 and A is a
compact set of [0, 1]d with dimH(A) < ℓ(µ). Note that for any α > 1 and any small
enough ε > 0, the following inequality holds

∫ 1

ε

(r − ε)d µ(dr) ≥
∫ 1

αε

(r − ε)d µ(dr) ≥ (1− 1/α)d
∫ 1

αε

rd µ(dr) . (5.5)

Let us choose α > 1 and l ∈ (0, ℓ(µ)) such that l (1− 1/α)d > dimH(A) . Then, one
can find ε arbitrarily small such that

(
| ln(αε)|−1

∫ 1

αε

vdr
d µ(dr)

)
> l .

We get for an arbitrary small ε,

exp

(
−vd

∫ 1

ε

(r − ε)dµ(dr)

)
≤ exp

(
−l (1− 1/α)d| ln(αε)|

)
= αl(1−1/α)dεl (1−1/α)d .

(5.6)
Let η > 0 be fixed. Since dimH(A) < l (1 − 1/α)d , we can choose an appropriate

covering of A with N hypercubes Q1, . . . , QN of side size 2ε1/
√
d, . . . , 2εN/

√
d such

that ∑

1≤i≤N

(εi)
l (1−1/α)d ≤ η .

Using (5.3) and (5.6) for εi, we get

P(A * Ξ) ≤
∑

1≤i≤N

P(Qi * Ξ) ≤ αl(1−1/α)d η .

Hence P(A * Ξ) = 0, which proves that A is almost surely covered by Ξ.

5.4. Proof of Theorem 3.1. By Theorem 2.3, ψ(µ) = max(ψ(µ
H
), ψ(µ

L
)), and

therefore

λ∗(µ) = min(λ∗(µ
H
), λ∗(µ

L
)).

According to Proposition 2.2, we have λ∗(µ
L
) ∈ {0,+∞} with λ∗(µ

L
) = +∞ if and

only if
∫ +∞
1

rdµ(dr) < +∞. Hence, if this last integral is infinite, then λ∗(µ
L
) = 0.

Let us now be concerned with λ∗(µ
H
) and let us recall that the quantity ℓ(µ) is

introduced in (3.2). The following simple criterion follows from the necessary and
sufficient conditions of Propositions 2.4 and 2.5.

Lemma 5.3. Let µ be a locally finite non-negative measure on (0,+∞).

(i) If ℓ(µ) > d then ψ(µH ) = 1.
(ii) If ℓ(µ) < d then ψ(µ

H
) = 0.

Proof : (i) Let us assume that ℓ(µ) > d. Let l ∈ (d, ℓ(µ)) and choose α > 1 such
that l (1− 1/α)d > d . Then, one can find u arbitrarily small such that

(
| ln(αu)|−1

∫ 1

αu

vdr
d µ(dr)

)
> l .

Using similar inequalities as in (5.5), we get for an arbitrary small u,

ud exp

(
vd

∫ 1

u

(r − u)dµ(dr)

)
≥ ud exp

(
l (1− 1/α)d| ln(αu)|

)
.
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Writing the right hand side term as ud−l (1−1/α)dα−l(1−1/α)d proves that the suffi-
cient coverage condition of Proposition 2.5 holds and hence ψ(µH ) = 1. (ii) follows

easily from the obvious inequality
∫ 1

u r
d−1(r − u)µ(dr) ≤

∫ 1

u r
d µ(dr) and Proposi-

tion 2.4. �

Since ℓ(λµ) = λℓ(µ), for any λ > 0, we obtain that λ∗(µ
H
) = d/ℓ(µ) with

λ∗(µ
H
) = 0 if and only if ℓ(µ) = +∞, and λ∗(µ

H
) = +∞ if and only if ℓ(µ) = 0.
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(1978). MR532014.

K. Falconer. Fractal geometry. John Wiley & Sons Ltd., Chichester (1990). ISBN
0-471-92287-0. Mathematical foundations and applications; MR1102677.

E. N. Gilbert. The probability of covering a sphere with N circular caps. Biometrika
52, 323–330 (1965). MR0207005.
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