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Abstract

We give a new proof and provide new bounds for the speed of convergence in the Central Limit
Theorem of Breuer Major on stationary Gaussian time series, which generalizes to particular
triangular arrays. Our assumptions are given in terms of the spectral density of the time series.
We then consider generalized quadratic variations of Gaussian fields with stationary increments
under the assumption that their spectral density is asymptotically self-similar and prove Central
Limit Theorems in this context.
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1 Introduction

In this paper we essentially develop Central Limit Theorems that are well adapted to obtain asymp-
totic properties of quadratic variations of Gaussian fields with stationary increments. Moreover, we
give bounds for the speed of convergence, which partially improve the bounds given by Nourdin
and Peccati in [22]. We rely heavily on their methods but adopt a spectral point of view, which is
particularly adapted to applications in signal processing.

Before describing our theoretical results, let us describe the scope of applications that we have in
mind. The finite distributional properties of a real valued Gaussian field {Y (t); t ∈Rν}, indexed by
Rν (ν ≥ 1), with stationary increments, may be described from its variogram, that is, the function

vY (t) := E(((Y (s+ t)− Y (s))2) (1)

or from its spectral measure τ, which is such that

vY (t) = 2

∫

Rν
|e−i t·x − 1|2 dτ(x) , ∀t ∈Rν . (2)

Here t · x stands for the scalar product of the two vectors in Rν and |x | denotes the Euclidean norm
of the vector x . The spectral measure τ is a non negative even measure onRν . We will only consider
absolutely continuous spectral measures, that is, measures that can be written as dτ(x) := F(x)d x ,
where d x is the Lebesgue measure on Rν . The function F , called the spectral density of Y , is
assumed to be a non-negative even function of L1

�

Rν ,min
�

1, |x |2
�

d x
�

. A typical example of such
random fields is given by

Y (t) =

∫

Rν

�

e−i t·x − 1
�

F(x)1/2dfW ν(x), t ∈Rν , (3)

where fW ν is a complex centered Gaussian random measure on Rν with Lebesgue control measure,

such that fW ν(−A) = fW ν(A) a.s. for any Borel set A of Rν . In fact, if we are only interested by
finite distributions of the random field Y , we can always assume that Y is given by such a spectral
representation (3).

Centered Gaussian fields with stationary increments are widely used as models for real data, for
example to describe rough surfaces or porous media that possess some homogeneity properties. In
particular the fractional Brownian field (fBf), first defined in dimension ν = 1 through a stochastic
integral of moving-average type by Mandelbrot and Van Ness [20], admits such a representation
with spectral density given by

FH(x) =
c

|x |2H+ν , with c > 0 and H ∈ (0, 1) called the Hurst parameter.

The homogeneity of FH implies a self-similarity property of the corresponding random field YH ,
namely

∀λ > 0, {YH(λt) ; t ∈Rν}
f dd
= λH{YH(t) ; t ∈Rν}.

The choice of this power of the Euclidean norm for the spectral density is equivalent to the fact
that the variogram is vYH

(t) = cH |t|2H , for some positive constant cH . When ν ≥ 2, it induces the
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isotropy of the field YH (its law is invariant under vectorial rotations). Such a model is not adapted
when anisotropic features are observed. Anisotropic but still self-similar generalizations are simply
obtained by considering a spectral density given by F(x) = Ω(x)FH(x) with Ω an homogeneous
function of degree 0 satisfying Ω(x) = Ω(x/|x |). Then the corresponding variogram is given in a
similar form

v(t) =ω(t/|t|)|t|2H , with ω(t) = cH,ν

∫

|x |=1

|t · x |2HΩ(x)σ(d x),

where σ(d x) denotes the Lebesgue measure on Sν−1 := {x ∈ Rν ; |x | = 1}. When using such
a model, a typical question is the identification of the Hurst parameter H from real data. Many
estimators for the Hurst parameter of a one-dimensional fBf (called fractional Brownian motion)
have been proposed, based for example on time domain methods or spectral methods (see [10]
and [3] and references therein). Quadratic variations are relevant estimators when considering
H as the critical index of Hölder regularity for the sample paths. Moreover in [18] the authors
give precise bounds of the bias of the variance and show that minimax rates are achieved for this
kind of estimators. Generalized quadratic variations also apply to more general Gaussian processes
and fields with stationary increments with the same Hölder regularity (see [16, 17] or [8, 9] for
instance), for which the variogram satisfies

v(t) =ω(t/|t|)|t|2H + O
|t|→0

�

|t|2H+s
�

for H ∈ (0,1) and s ∈ (0,2− 2H) with ω a positive function on the sphere Sν−1 (and additional as-
sumptions of regularity). This kind of assumption can be replaced by an assumption on the spectral
density F (which is a priori stronger but does not require any extra assumption of regularity). More
precisely, we will be interested in random fields for which

F(x) =
Ω(x)
|x |2H+ν + O

|x |→+∞

�

1

|x |2H+ν+γ

�

, (4)

with Ω an even function on the sphere Sν−1 (or a constant when ν = 1), H > 0 and γ > 0. Our
particular interest in this situation, where the self-similar spectral density is perturbed by a rest that
decreases more rapidly at infinity, may be understood from previous work [7, 5]. This arises in
particular when one considers a weighted projection of a self-similar random field. We develop here
methods that reveal to be stable when adding such a perturbation to the spectral density. A source
of inspiration for us has also been the paper of Chan and Wood [8], which deals with stationary
random Gaussian fields with asymptotic self-similar properties.

The estimation of Ω or H goes through the consideration of quadratic variations of Y , observed on
finer and finer grids. Typically, we assume to have observed values of the random field on a grid with
uniform mesh, that is, {Y (k/n); k = (k1, . . . , kν) ∈Zν with 0≤ k1, . . . , kν ≤ n−1}. We want to have
Central Limit Theorems for the quadratic variation of this sequence when n tends to ∞. For fixed
n, this quadratic variation is related to the means of a discrete time series, whose spectral density is
obtained by periodization of F . Moreover, a central idea used in this paper consists in a change of
scale, so that we can as well consider a fixed mesh, but for a different discrete time series at each
scale. Because of the fact that F is asymptotically homogeneous, the rest does not appear in the limit,
and acts only on the speed of convergence, which is in n−α, for some α > 0 depending in particular
on γ. Once we have Central Limit Theorems for finite distributions through this scaling argument,
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we can also recover asymptotic properties for continuous time quadratic variations, which may be
used when dealing with increments of non linear functionals of Y instead of increments of Y .

Let us come back to the theoretical part of this paper, which constitutes its core. We revisit Breuer
Major’s Theorem, which is our main tool to obtain Central Limit Theorems, and use the powerful
theory developed by Nourdin, Nualart, Ortiz-Latorre, Peccati, Tudor and others to do so. This is
described in the next section and we refer to it for more details. We would like to attract attention
to a remark, which has its own interest: under appropriate additional assumptions, the square of

the norm of the Malliavin derivative of
1
p

n

n−1
∑

k=0

H(X (k)), where (X (k))k∈Z is a stationary Gaussian

time series and where the Hermite expansion of H starts with terms of order 2, can be written in
terms of the integrated periodogram of the sequence H ′(X (k)). Recall that the periodogram of this
time series is defined as

1

n

�

�

�

�

�

n−1
∑

k=0

H ′(X (k))eikx

�

�

�

�

�

2

.

Up to our knowledge, this link between two different theories had not been given before. As a con-
sequence, the techniques that we use for having the speed of convergence in Central Limit Theorems
may be used for consistency of estimators given in terms of integrated periodograms.

Section 2 is devoted to the theoretical aspects (Central Limit Theorems, integrated periodograms,
speed of convergence) in dimension one. We chose to give the proofs in this context, so that the
reader can easily follow them. Once this has been done, we hope that it is not difficult to see how
to adapt them in higher dimension, which we do more rapidly in Section 3. We then apply this to
generalized quadratic variations in Section 4.

Acknowledgements. This work was mostly done independently of the paper of Nourdin, Peccati
and Podolskij [23], which has been posted on the web while we were finishing to write this one.
Compared to their results, we deliberately restricted to simple cases, but have found better bounds
for the speeds of convergence (see Section 2.6). It would certainly be helpful to make a complete
synthesis between the two papers. We chose not to do it here, but to stick to our initial project
and to the applications we had in view, with assumptions given on spectral densities and not on
variograms.
We thank the referee for several comments and advices, and in particular for inducing us to clarify
the comparison with [23].

2 Breuer-Major Theorem revisited

In this section we will be interested in stationary centered Gaussian time series X = (X (k))k∈Z as
well as approximate ones. We will start from Breuer-Major Theorem and give a proof of it which
is based on the Malliavin Calculus, as exploited by Nourdin, Nualart, Ortiz-Latorre, Peccati, among
others, to develop Central Limit Theorems in the context of Wiener Chaos (see [27, 22] for instance).
This kind of proof is implicit in the work of these authors, and explicit in the last paper of Nourdin,
Peccati and Podolskij [23], where speeds of convergence are given in a very general context. Our
interest, here, is to see that assumptions are particularly simple and meaningful when they are
given on the spectral density of the time series. Meanwhile, we improve the estimates for the speed
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of convergence to the best possible through this method under the assumption that the spectral
density is in some Sobolev space. Also, this study will lead us to asymptotic estimates on integrated
periodograms, which have their own interest and are particularly relevant when one interests to
spectral densities.

Let us first state the theorem of Breuer Major in the simplest one dimensional case. For l ≥ 1, we
consider the stationary centered time series H

l
(X ) =

�

H
l
(X (k))

�

k∈Z where H
l

is the l-th Hermite
polynomial defined as

H
l
(t) = (−1)l e

t2

2
d l

d t l
e−

t2

2 , t ∈R.

Theorem 2.1 (Breuer-Major). Let (X (k))k∈Z be a centered stationary Gaussian time series. Assume
that for l ≥ 1, the sequence r(k) = E(X ( j)X ( j+ k)) satisfies the condition

∑

k∈Z
|r(k)|l <∞. (5)

Then we have the following asymptotic properties for n tending to infinity:

(i)

Var

 

1
p

n

n−1
∑

k=0

H
l
(X (k))

!

−→ σ2
l ,

(ii)
1
p

n

n−1
∑

k=0

H
l
(X (k))

d→N (0,σ2
l ),

with
σ2

l = l!
∑

k∈Z
r(k)l . (6)

For p ≥ 1, we introduce the Banach space `p(Z) of p-summable sequences equipped with the norm

‖u‖`p(Z) =

 

∑

k∈Z
|u(k)|p

!1/p

for u = (u(k))k∈Z ∈ `p(Z). Next, we identify 2π-periodic functions

both with functions on the torus T :=R/2πZ and functions on [−π,+π) and introduce the spaces
Lp(T) of measurable functions f on [−π,+π) such that

‖ f ‖p
p := ‖ f ‖p

Lp(T) :=
1

2π

∫

T

| f (x)|pd x =
1

2π

∫ +π

−π
| f (x)|pd x . (7)

Then, Assumption (5) can be written as r = (r(k))k∈Z ∈ `l(Z). We recall that the sequence r(k)
can be seen as the Fourier coefficients of a positive even periodic finite measure, called the spectral
measure of the time series (see [12] or [29] for instance). Most of the time, for the sake of simplicity,
we assume that the spectral measure of the stationary process is absolutely continuous with respect
to the Lebesgue measure and we call fX its density with respect to the Lebesgue µ. We speak of
spectral density of the time series as it is classical. Let us recall that fX is an even function of L1(T)
whose Fourier coefficients are given by the sequence r = (r(k))k∈Z, which means that

r(k) :=
1

2π

∫

T

e−ikx fX (x)d x =
1

2π

∫ +π

−π
e−ikx fX (x)d x . (8)
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Remark that the absolute continuity is only an additional property under (5) when l > 2. Actually,
when l = 2 the sequence r(k) is square summable and one can find fX ∈ L2(T) by Plancherel’s
Theorem.

Remark 2.2. Recall that, for U and V two centered Gaussian variables such that E(UV ) = ρ, we have
E(H

l
(U)H

l
(V )) = l!ρl . So, whenever the time series X has the spectral density fX , the time series

H
l
(X ) has the density fH

l
(X ) = l! f ∗lX , where the notation f ∗lX stands for l times the convolution of fX by

itself on the torus. Assumption (5) implies the absolute convergence of the Fourier series of the spectral
density of H

l
(X ). It also means that f ∗lX is continuous on T and that σ2

l = l! f ∗lX (0) according to (6).
For all l ≥ 2, Assumption (5) is in particular implied by the stronger assumption

fX ∈ L
l

l−1 (T), (9)

since ‖r‖`l (Z) ≤ ‖ fX‖ l
l−1

by Hausdorff-Young Inequality (see [19] for instance).

Remark 2.3. Note also that the assumption that the Gaussian time series X has a spectral density fX
implies in particular that the time series H

l
(X ) is a strictly stationary ergodic one, for any l ≥ 1, (see

[11] for instance).

We will give a new proof of the theorem of Breuer Major. We will use for instance Theorem 4 in [27],
which asserts that the Central Limit Theorem is a consequence of the convergence of the variance
given in (i) on one side, then of a quantity related to the Malliavin derivative on another side, so that
one does not need to consider all moments as in the original proof of Breuer and Major. In a first
subsection we recall the main tools in our framework in the classical context of stochastic integrals
of a Brownian Motion, which is adapted here to a spectral point view when using harmonizable
representation (see [12] for instance). This could be generalized to isonormal Gaussian processes,
as it is developed in the first chapter of [26] and used in [23], but we preferred to restrict to the
classical case for simplification, even if the general context is necessary in the vectorial case. The
price to pay is the fact that we only prove Breuer Major under Assumption (8) but the interested
reader can easily generalize our proof (see Remark 2.4).

2.1 Complex Wiener chaos and Malliavin calculus

Let W be a complex centered Gaussian random measure on [−π,+π) with Lebesgue control mea-
sure 1

2π
d x such that, for any Borel set A of [−π,π) we have W (−A) = W (A) almost surely. We

consider complex-valued functions ψ defined on [−π,+π), considered as periodic functions of the
torus that satisfy, for almost every x ∈T,

ψ(x) =ψ(−x).

We write L2
e (T) for the real vector space of such functions that are square integrable with respect to

the Lebesgue measure on T. Endowed with the scalar product of L2(T), which we also note

〈ψ,ϕ〉
L2(T)
=

1

2π

∫

T

ψ(x)ϕ(x)d x ,
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L2
e (T) is a real separable Hilbert space. Moreover, for any ψ ∈ L2

e (T), one can define its stochastic
integral with respect to W as

I1(ψ) =

∫ +π

−π
ψ(x)dW (x).

Then I1(ψ) is a real centered Gaussian variable with variance given by ‖ψ‖22, where ‖ · ‖2 is the
norm induced by the scalar product 〈·, ·〉

L2(T)
. To introduce the k-th Itô-Wiener integral, with k ≥ 1,

we consider the complex functions belonging to

L2
e (T

k) = {ψ ∈ L2(Tk) : ψ(−x) =ψ(x)}.

The inner product in the real Hilbert space of complex functions of L2
e (T

k) is given by

〈ψ,ϕ〉
L2(Tk)

=
1

(2π)k

∫

Tk

ψ(x)ϕ(x)d x .

The space L2
s (T

k) denotes the subspace of functions of L2
e (T

k) a.e. invariant under permutations of
their arguments. By convention L2

s (T
k) =R for k = 0. Let us define H(W ) the subspace of random

variables in L2(Ω,P) measurable with respect to W . The k-Itô-Wiener integral Ik is defined in such
a way that (k!)−1/2 Ik is an isometry between L2

s (T
k) and its rangeHk ⊂ H(W ), so that we have the

orthogonal decomposition

H(W ) =
∞
⊕

k=0

Hk,

whereH0 is the space of real constants. Each Y ∈ H(W ) has an L2(Ω,P) convergent decomposition

Y =
∞
∑

k=0

Ik(ψk), ψk ∈ L2
s (T

k).

When moreover
+∞
∑

k=1

(k + 1)!‖ψk‖22 < +∞, with ‖ψk‖22 = 〈ψk,ψk〉L2(Tk)
, the Malliavin derivative of

Y , denoted by DY , is defined as the complex valued random process given on T by

Dt Y =
+∞
∑

k=1

kIk−1
�

ψk (·, t)
�

, t ∈T.

Furthermore if Hk is the k-th Hermite polynomial for the standard Gaussian measure and denoting
by ψ�k the k-tensor product of the function ψ ∈ L2

e (T) we have

Hk(I1(ψ)) = Ik(ψ
�k) :=

∫

[−π,+π)k
ψ(x1) . . .ψ(xk)dW (x1) . . . dW (xk), (10)

so that its Malliavin derivative is given by DHk(I1(ψ)) = kHk−1(I1(ψ))ψ.
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2.2 New proof of Breuer Major Theorem

For sake of simplicity we provide a new proof under Assumption (8). As far as finite distributions
are concerned, when the time series X admits a covariance function given by (8) for some even
function fX ∈ L1(T), we can assume, without loss of generality, that

X (k) :=

∫ +π

−π
e−ikx g(x)dW (x), (11)

with g = f 1/2
X ∈ L2

e (T). Up to normalization, we can also assume that r(0) = 1, or equivalently that
‖g‖22 =

1
2π

∫

T
|g(x)|2d x = 1

2π

∫

T
fX (x)d x = 1. For any k ∈ Z, we write gk(x) = e−ikx g(x) ∈ L2

e (T)
so that X (k) may be written as the Itô-Wiener integral I1(gk). Moreover H

l
(X ) is in the Wiener

chaos of order l with
H

l
(X (k)) = Il

�

g�l
k

�

, k ∈Z.

Let us now proceed to the proof. The computation of the variance in (i) is direct. Let us write

Yn =
1
p

n

n−1
∑

k=0

H
l
(X (k)).

Then,

Var(Yn) =
1

n

n−1
∑

k=0

n−1
∑

k′=0

Cov(H
l
(X (k)), H

l
(X (k′)))

=
l!

n

n−1
∑

k=0

n−1
∑

k′=0

r(k− k′)l

= l!
n−1
∑

k=−(n−1)

�

1−
|k|
n

�

r(k)l , (12)

which tends to l!
∑

k∈Z
r(k)l = l!σ2

l . Recall that this last sum is absolutely convergent because of the

assumption on r. This concludes the proof when l = 1 since Yn is a Gaussian variable in this case.

When l ≥ 2 we write Yn = Il(Fn), with Fn =
1
p

n

n−1
∑

k=0

g�l
k . Then, by Theorem 4 of [27], to prove Part

(ii) it is necessary and sufficient to prove that



DYn





2
2 −→n→+∞

lσ2
l in L2(Ω,P),

with DYn the Malliavin’s Derivative of Yn, which is given by

DYn =
1
p

n

n−1
∑

k=0

lHl−1(I1(gk))gk.

369



We first remark that



DYn





2
2 =

l2

n

n−1
∑

k,k′=0

Hl−1(I1(gk))Hl−1(I1(gk′))〈gk, gk′〉L2(T)

=
l2

n

n−1
∑

k,k′=0

H
l−1
(X (k))H

l−1
(X (k′))r(k− k′)

=
l2

2π

∫ π

−π
Π(l−1)

n
(x) fX (x)d x ,

where

Π(l−1)
n
(x) =

1

n

n−1
∑

k,k′=0

H
l−1
(X (k))H

l−1
(X (k′))ei(k′−k)x =

1

n

�

�

�

�

�

n−1
∑

k=0

H
l−1
(X (k))eikx

�

�

�

�

�

2

,

is the periodogram of order n of the stationary sequence
�

H
l−1
(X (k))

�

k∈Z (see [14] for instance).
The end of the proof is a direct consequence of the next subsection, which is devoted to the limit of
integrated periodograms. The fact that the square of the norm of the Malliavin derivative may be
written in terms of the periodogram is an unexpected phenomenon.

Remark 2.4. The additional assumption (8) is not necessary to use the method above. Indeed, there is
always an isonormal Gaussian process {W (u) : u ∈ H}, where H is a separable Hilbert space, such that
X (k) may be seen as W (uk), with uk a sequence in H such that 〈uk, uk′〉H = r(k− k′). Then our proof
of Breuer Major is the same replacing L2(T) by H. This is in particular used in [23] to get the speed of
convergence under stronger assumptions than ours.

2.3 Integrated periodograms

We keep the notations of the last subsection, so that for l ≥ 1,

Π(l)
n
(x) :=

1

n

�

�

�

�

�

n−1
∑

k=0

H
l
(X (k))eikx

�

�

�

�

�

2

. (13)

The periodogram Π(l)
n

is used as an estimator of the spectral density of the stationary sequence
�

H
l
(X (k))

�

k∈Z, that is l! f ∗lX since its Fourier coefficients are equal to l!r(k)l . It is well known that

Π(l)
n
(x) is not a consistent estimate of l! f ∗lX (x), even when well defined because of continuity (see

[14] for instance). However we can hope consistency results for

Π(l)
φ,n :=

1

2π

∫ +π

−π
Π(l)n (x)φ(x)d x . (14)

Here φ is a test function, which is real, even, integrable and has some smoothness properties to be
stated later on. Such quantities Π(l)

φ,n are called integrated periodograms.

We have the following proposition, which gives in particular the asymptotic properties that are
required for the proof of Breuer Major Theorem. We introduce ck(φ) =

1
2π

∫

T
φ(x)e−ikx d x the k-th

Fourier coefficient of φ.
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Proposition 2.5. Assume that (r(k))k∈Z ∈ `l+1(Z) and
∑

k∈Z
|ck(φ)|l+1 <∞. Then, as n tends to∞,

(i) E(Π(l)
φ,n)−→

l!
2π

∫

T
f ∗lX (x)φ(x)d x;

(ii) Var
�

Π(l)
φ,n

�

−→ 0.

Remark that conditions on r and φ imply that we may give meaning to the integral
1

2π

∫

f ∗lX (x)φ(x)d x as
∑

k∈Z
r(k)l ck(φ), using the absolute convergence of the series. When φ = fX ,

as in the proof of Breuer Major Theorem, the limit of the expectation is l!
∑

k∈Z
r(k)l+1 = σ2

l+1/(l+1)

in view of (6).

Proof. The first assertion follows from the fact that

E(Π(l)
φ,n) = l!

n−1
∑

k=−n+1

�

1−
|k|
n

�

r(k)l ck(φ).

Next, in view of the second assertion, we consider the components of


DYn





2
2 in the Wiener chaos

and use for this the multiplication formula (see [15] for instance), which we recall now:

H
l
(X (k))H

l
(X (k′)) =

l
∑

p=0

p!(2(l − p))!
�

l

p

�2

I2l−2p(g
�l
k ⊗̃p g�l

k′ ),

with
g�l

k ⊗̃p g�l
k′ = 〈gk, gk′〉p

L2(T)

�

g
�l−p

k ⊗ g
�l−p

k′

�

s
.

Here, when ψ ∈ L2
e (T

k), we write (ψ)s its symmetrization in L2
s (T

k), for k ≥ 2. For simplification,
we note s(k) := ck(φ). Then we have

Π(l)
φ,n−E(Π

(l)
φ,n) =

l−1
∑

p=0

p!(2(l − p))!
�

l

p

�2

Up,n,

with

Up,n =
1

n

n−1
∑

k,k′=0

s(k− k′)I2l−2p(g
�l
k ⊗̃p g�l

k′ )

=
1

n

n−1
∑

k,k′=0

s(k− k′)r(k− k′)p I2l−2p((g
�l−p

k ⊗ g
�l−p

k′ )s).

Using orthogonality between components, it is sufficient to consider each of them separately. The
next lemma gives the convergence in L2(Ω,P) of each term.

Lemma 2.6. Assume that
∑

k∈Z
|r(k)|l+1 <∞ and

∑

k∈Z
|s(k)|l+1 <∞. Let p < l. Then E(|Up,n|2) tends

to 0 for n tending to∞.
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Proof. We can write Up,n as I2(l−p)

�

�

Fp,n

�

s

�

, with

Fp,n :=
1

n

n−1
∑

k,k′=0

s(k− k′)r(k− k′)p g
�l−p

k ⊗ g
�l−p

k′ .

By isometry, the L2(Ω,P) norm of Up,n is equal, up to the constant (2(l−p))!1/2, to the L2
s

�

T2(l−p),
�

norm of
�

Fp,n

�

s
. Now

�

Fp,n

�

s
may be written as the mean of (2(l − p))! terms, corresponding to

permutations of the 2(l − p) variables. It is easy to see that all terms have the same norm, so that
the L2

s

�

T2(l−p)
�

norm of
�

Fp,n

�

s
is bounded by the L2

e

�

T2(l−p)
�

norm of one of the terms, that is



Fp,n





L2(T2(l−p))
=













1

n

n−1
∑

k,k′=0

s(k− k′)r(k− k′)p g
�l−p

k ⊗ g
�l−p

k′













L2(T2(l−p))

.

Finally,


Fp,n





2

L2(T2(l−p))
is equal to

(2(l − p))!

(2π)2l−2p

∫

(−π,+π)l−p×(−π,+π)l−p

Kp,n(x , y) fX (x1) · · · fX (x l−p) fX (y1) · · · fX (yl−p)d xd y,

with

Kp,n(x , y) :=

�

�

�

�

�

�

1

n

n−1
∑

k,k′=0

r(k− k′)ps(k− k′)e−ik(x1+···+x l−p)eik′(y1+···+yl−p)

�

�

�

�

�

�

2

=
1

n2

n−1
∑

j, j′,k,k′=0

r(k− k′)ps(k− k′)r( j− j′)ps( j− j′)e−i(k− j)(x1+···+x l−p)ei(k′− j′)(y1+···+yl−p).

Then



Fp,n





2

L2(T2(l−p))
=

1

n2

n−1
∑

j, j′,k,k′=0

r(k− k′)ps(k− k′)r( j− j′)ps( j− j′)r(k− j)l−pr(k′− j′)l−p. (15)

We pose ρ1(k) := |r(k)|p|s(k)| and ρ2(k) = |r(k)|l−p, for k ∈ Z and denote by ρ1,n(k), (resp.
ρ2,n(k)) the truncated sequence ρ1,n(k) = ρ1(k) (resp. ρ2,n(k) = ρ2(k)) when |k| ≤ n− 1 and 0
otherwise. Then,



Fp,n





2

L2(T2(l−p))
≤

1

n2

n−1
∑

j, j′,k,k′=0

ρ1,n(k− k′)ρ1,n( j− j′)ρ2,n(k− j)ρ2,n( j
′− k′)

≤
1

n2

n−1
∑

k, j′=0

�

ρ1,n ∗ρ2,n(k− j′)
�2

.

It follows that

E
�

|Up,n|2
�

≤
(2(l − p))!

n

∑

| j|≤n−1

�

1−
| j|
n

�

�

ρ1,n ∗ρ2,n( j)
�2

, (16)
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The convolution product of ρ1,n and ρ2,n is bounded by

ρ1,n ∗ρ2,n(k) =
∑

k′∈Z

ρ1,n(k− k′)ρ2,n(k
′)≤ ‖ρ1,n‖

`
l+1
p+1 (Z)

‖ρ2,n‖
`

l+1
l−p (Z)

.

Assumption on r implies that ρ2 ∈ `
l+1
l−p (Z) with ‖ρ2,n‖

`
l+1
l−p (Z)

≤ ‖ρ2‖
`

l+1
l−p (Z)

≤ ‖r‖l−p
`l+1(Z)

. Together

with Assumption on s and Hölder Inequality, ρ1 ∈ `
l+1
p+1 (Z) , with ‖ρ1,n‖

`
l+1
p+1 (Z)

≤ ‖r‖p
`l+1(Z)

‖s‖`l+1(Z).

Therefore E
�

|Up,n|2
�

is uniformly bounded with

E(|Up,n|2)≤ (2(l − p))!‖r‖2l
`l+1(Z)

‖s‖2
`l+1(Z)

.

Let us now prove that E(|Up,n|2) tends to 0. We will use a density argument. For es a sequence with
finite support, the quantity

1

n2E

�

�

�

�

�

�

n−1
∑

k,k′=0

es(k− k′)I2l−2p(g
�l−1
k ⊗p g�l−1

k′ )(k
′)

�

�

�

�

�

�

2

tends to 0. To prove the same with s in place of es, for a given ε > 0 we write s as the sum of some es
with finite support such that

∑

k∈Z
|es(k)− s(k)|l < ε. We conclude by a standard argument.

We have completed the proof of Proposition 2.5, and in the same time the proof of Breuer Major
Theorem under the assumption that the spectral measure has a density, see also Remark 2.4 for the
general case.

In the present context, this proposition on periodograms seems new. Actually Part (i) proves the
asymptotic unbiasedness of the estimator Π(l)

φ,n, while Part (ii) implies its consistency.

Remark 2.7. If we are only interested in asymptotic unbiasedness, continuity of the function f ∗l ∗φ
at 0 is sufficient, see [13]. Remark that the assumptions given here imply that its Fourier series is
absolutely convergent. Note also that consistency is proved through asymptotic normality under stronger
assumptions of integrability in [13]. This proposition may also be compared with [2], where Central
Limit Theorems are developed for integrated periodograms when the test functions are in the Sobolev
spaceH α for α > 1/2.

Recall thatH α :=H α(T) is the space of functions ψ ∈ L2(T) such that
∑

k∈Z
|ck(ψ)|2(1+ |k|)2α <∞.

We now give a bound for the speed of convergence in Proposition 2.5 when φ is a test function that
satisfies a condition of Sobolev type. More precisely, we have the following proposition.

Proposition 2.8. Assume that r ∈ `l+1(Z) and
∑

k∈Z
|ck(φ)|l+1(1+ |k|)α(l+1) < ∞, for some α > 0.

Then, for some constant Cα and for all n≥ 1, we have

Var
�

Π(l)
φ,n

�

≤ Cα

¨

max(n−1, n−2α) if α 6= 1
2

n−1 log(n) if α= 1
2
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Proof. Going back to the last proof and its notations, in view of (16), it is sufficient to prove that

∑

| j|≤n−1

(ρ1,n ∗ρ2,n( j))
2 ≤ Cα

¨

max(1, n1−2α) if α 6= 1
2

log(n) if α= 1
2

We will only consider the case p = 0 and let the reader see that the proof is the same for the
other terms. In this case, ‖ρ2,n‖

`
l+1

l (Z)
≤ ‖r‖l

`l+1(Z)
. By Young Inequality, one has the inclusion

`
l+1

l (Z)∗`q(Z)⊂ `2(Z) when 1
q
= 1

2
+ 1

l+1
, with the corresponding norm inequality. So it is sufficient

to compute the norm of ρ1,n in `q(Z), which is elementary by Hölder Inequality. For this, we use
the fact that

∑

|k|≤n

(1+ |k|)−2α ≤ Cαmax(n1−2α, 1) when α 6=
1

2
and

∑

|k|≤n

(1+ |k|)−1 ≤ C 1
2

log(n).

This kind of proof can be generalized to other assumptions on data. We give now one computation
that leads to a bound for the speed of convergence in Breuer Major Theorem.

Proposition 2.9. Assume that
∑

k∈Z
|r(k)|l+1(1+ |k|)α(l+1) <∞ for some α > 0. Then, when l = 1, for

some Cα > 0 and for all n≥ 1 we have the uniform estimate

Var
�

Π(1)fX ,n

�

≤ Cαmax(n−1, n−4α).

For l ≥ 2, for some Cα > 0 and for all n≥ 1 we have

Var
�

Π(l)fX ,n

�

≤ Cα







n−2α(l+1) : α < 1
l(l+1)

n−2α− 2
l+1 : 1

l(l+1) < α <
1
2
− 1

l+1

n−1 : α > 1
2
− 1

l+1

.

Proof. Again, we go back to the previous notations and estimate
∑

| j|≤n−1

(ρ1,n ∗ ρ2,n( j))
2 in view of

(16). Let us first consider l = 1. The only case to consider is p = 0, and we want to prove the
estimate

∑

| j|≤n−1

(ρ1,n ∗ρ2,n( j))
2 ≤ C max(1, n1−4α).

Here ρ1,n = ρ2,n coincides with |r| for |k| ≤ n − 1. Assume first that α < 1/4. It follows from
Hölder inequality that ‖ρ1,n‖`4/3(Z) ≤ Cαn1/4−α. Now the convolution of two sequences in `4/3(Z)
is in `2(Z), which allows to conclude in this case. For α > 1/4, the sequence ρ1 is in `4/3(Z) and
we conclude in the same way.
It remains to conclude for α = 1/4. We want to prove that

∑

| j|≤n−1

(ρ1,n ∗ ρ2,n( j))
2 is uniformly

bounded under the assumption that
∑

k∈Z
|r(k)|2(1+ |k|)1/2 <∞. Let hn be the trigonometric polyno-

mial with ρ1,n as Fourier coefficients. Then ρ1,n ∗ρ2,n = ρ1,n ∗ρ1,n are the Fourier coefficients of the
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function h2
n. The function hn is uniformly in the Sobolev space H 1/4. Now it follows from Sobolev

Theorem (see [19] for instance) that such functions are uniformly in L4(T). By Plancherel Identity,

∑

j∈Z
(ρ1,n ∗ρ1,n( j))

2 =
1

2π

∫

T

|hn(x)|4d x ≤ C . (17)

Let us now consider l ≥ 2 and estimate again the norm of ρ1,n ∗ ρ2,n in `2(Z). The worst case is
obtained for p = 0. Then ρ1,n coincides with |r| while ρ2 is equal to |r|l . Then

‖ρ1,n ∗ρ2,n‖`2(Z) ≤ ‖ρ1,n‖`2(Z)‖ρ2,n‖`1(Z).

The first estimate is obtained by taking the norm of ρ1,n in `2(Z) and the norm of ρ2,n in `1(Z), as
long as this last one is not uniformly bounded. For larger values of α, ρ2 is in `1(Z) and the bound
is given by the the norm of ρ1,n in `2(Z), as long as this last one is not uniformly bounded.

2.4 Variable spectral densities

In practice, the spectral density may change at each step of computation of the mean. This is what
happens for instance when we look at increments of a Gaussian process at different scales. It is
important to have still Central Limit Theorems in this context, as well as methods to compute the
speed of convergence. Let us first state a CLT in this framework, which may also be seen as a CLT
for particular triangular arrays.

Theorem 2.10. Let Xn =
�

Xn(k)
�

k∈Z be centered stationary Gaussian time series with spectral den-

sities fXn
. Let l ≥ 2. We assume that the functions fXn

belong uniformly to the space L
l

l−1 (T) and
converge in this space to a function fX . We call r(k) := 1

2π

∫

T
e−ikx fX (x)d x and assume, without loss

of generality, that r(0) = 1. Then we have the following asymptotic properties for n tending to infinity:

(i)

Var

 

1
p

n

n−1
∑

k=0

H
l
(Xn(k))

!

−→ σ2
l ,

(ii)
1
p

n

n−1
∑

k=0

H
l
(Xn(k))

d→N (0,σ2
l ),

with
σ2

l = l!
∑

k∈Z
r(k)l .

Proof. Let X be a centered stationary Gaussian time series with spectral density fX . We define Yn as
before. Let us define

Zn :=
1
p

n

n−1
∑

k=0

H
l
(Xn(k)).
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Similar computations as for Yn imply that

Var(Zn) = l!
n−1
∑

k=−(n−1)

�

1−
|k|
n

�

rn(k)
l .

It follows from the assumption and Hausdorff-Young Inequality that the sequence rn tends to r in
`l(Z). Then, one has the inequalities

�

�Var(Yn)− Var(Zn)
�

� = l!

�

�

�

�

�

�

n−1
∑

k=−(n−1)

�

1−
|k|
n

�

�

r(k)l − rn(k)
l
�

�

�

�

�

�

�

≤ C`‖r − rn‖`l (Z)

≤ C`‖ fX − fXn
‖ l

l−1
, (18)

according to Hausdorff-Young Inequality. This implies that Var(Yn) and Var(Zn) have the same limit.

We then have to prove that Var(‖DZn‖22) tends to 0 in place of Var(‖DYn‖22), with a variable spectral
density in place of a fixed one. For this, it is sufficient to revisit the proof of Lemma 2.6, where we
consider rn in place of r and s, and so, later on, eρ1,n and eρ2,n instead of ρ1,n and ρ2,n, which are
obtained when replacing r by rn. We write rn = r + r − rn and develop the corresponding formulas
by multi-linearity. When all rn’s are replaced by r, we have the limit 0 by Lemma 2.6. Now, when
one rn is replaced by r − rn somewhere, the proof goes the same way, except for the fact that r − rn
has an arbitrarily small norm in `l(Z). So the limit is 0.

Remark 2.11. The conclusion of Theorem 2.10 holds true under the weaker assumption that rn tends
to r in `l(Z). Moreover, one does not need to have spectral densities, according to Remark 2.4.

2.5 Speed of convergence in Breuer Major Central Limit Theorem

We are now able to bound the speed of convergence in Theorem 2.1 under the assumption that
∑

|r(k)|l(1 + |k|)lα is finite for some α > 0, as well as in Theorem 2.10. We recall that the Kol-
mogorov distance between the random variables Y and Z is defined as

dKol(Y, Z) = sup
z∈R
|P(Y ≤ z)− P(Z ≤ z)|. (19)

We will be particularly interested by the distance of Kolomogorov to some normal random variable
σN , where N ∼ N (0,1). We recall that (see [22] for instance), for Z a centered random variable
with variance 1 in the l-th Wiener chaos,

dKol(Z , N)≤

r

�

Var
�

1

l
‖DZ‖22

��

. (20)

The following lemma will be used to compute the required Kolmogorov distances.
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Lemma 2.12. For Y a centered random variable in the l-th Wiener chaos we have the inequality

dKol(Y,σN)≤
2

σ2 |Var(Y ))−σ2|+

r

�

Var
�

1

lσ2 ‖DY ‖22

��

.

Proof. When |Var(Y )−σ2|
σ2 > 1

2
there is nothing to prove. Otherwise we write

dKol(Y,σN)≤ dKol(Y,
p

Var(Y )N) + dKol(
p

Var(Y )N ,σN).

We use the Malliavin derivative for the first distance, then a direct computation of the distance
between N and a multiple of N . More precisely, for example for z > 0 and σ > 1, one has the
inequality P(z < N ≤ σz)≤ (σ− 1)ze−z2/2 ≤ σ− 1.

We can now state the first theorem of this subsection, which gives the speed of convergence in
Breuer Major Theorem.

Theorem 2.13. . Let (X (k))k∈Z be a centered stationary Gaussian time series with an absolutely
continuous spectral measure. Assume that r satisfies r(0) = 1 and the assumption

∑

k∈Z
|r(k)|l(1+ |k|)lα <∞ (21)

for some α > 0. Then, for l = 2, for some constant Cα > 0 and for all n≥ 1,

dKol

 

1
p

n

n−1
∑

k=0

H
2
(X (k)),σ2N

!

≤ Cαmax(n−2α, n−1/2), (22)

while, for l ≥ 3, for some constant Cα > 0 and for all n≥ 1,

dKol

 

1
p

n

n−1
∑

k=0

H
l
(X (k)),σl N

!

≤ Cα







n−αl : α < 1
l(l−1)

n−α−
1
l : 1

l(l−1) < α <
1
2
− 1

l

n−
1
2 : α > 1

2
− 1

l

. (23)

with σ2
l = l!

∑

k∈Z r(k)l .

Proof. Let us first prove that

|σ2
l − Var(Yn)| ≤ C max(n−αl , n−1). (24)

From the expression of Var(Yn) given in (12) we deduce that

l!−1
�

�σ2
l − Var(Yn)

�

�≤
1

n

n−1
∑

k=−(n−1)

|k||r(k)|l +
∑

|k|≥n

|r(k)|l .

We conclude directly using the fact that
∑

k∈Z
|r(k)|l(1+ |k|)lα <∞. Now the required estimate for

the Malliavin derivative is given by Proposition 2.9.
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Next we give the speed of convergence in Theorem 2.10, which also depends on the speed of con-
vergence of fXn

to fX .

Theorem 2.14. Let Xn =
�

Xn(k)
�

k∈Z be centered stationary Gaussian time series with spectral densi-
ties fXn

which satisfy the assumptions of Theorem 2.10 with r(k) := 1
2π

∫

T
e−ikx fX (x)d x. We assume

moreover that the two following properties are satisfied.
∑

k∈Z
|r(k)|l(1+ |k|)αl <∞. (25)

‖ fXn
− fX‖ l

l−1
≤ Cn−β . (26)

Then, for l = 2, for some constant Cα,β and for all n≥ 1, we have

dKol

 

1
p

n

n−1
∑

k=0

H
2
(Xn(k)),σ2N

!

≤ Cα,β max(n−β , n−2α, n−1/2), (27)

while, for l ≥ 3, for some constant Cα,β and for all n≥ 1, we have

dKol

 

1
p

n

n−1
∑

k=0

H
l
(Xn(k)),σl N

!

≤ Cα,β







max(n−β , n−αl) : α < 1
l(l−1)

max(n−β , n−α−
1
l ) : 1

l(l−1) < α <
1
2
− 1

l

max(n−β , n−
1
2 ) : α > 1

2
− 1

l

. (28)

Proof. We go back to the notations used in the proof of Theorem 2.10. We will use Lemma 2.12
with Zn in place of Y . We first want to have the speed of convergence of Var(Zn)−σ2

l to 0. This
is given by (18) and (24). We then have to bound Var(‖DZn‖22) in place of Var(‖DYn‖22), with a
variable spectral density in place of a fixed one. So we have to consider eρ1,n and eρ2,n instead of ρ1,n
and ρ2,n, with r replaced by rn.
When l = 2 we use the fact that ‖eρ1,n‖`4/3(Z) ≤ ‖eρ1,n−ρ1,n‖`4/3(Z)+ ‖ρ1,n‖`4/3(Z), with

‖eρ1,n−ρ1,n‖4`4/3(Z)
≤ n‖rn− r‖4

`2(Z)
≤ Cn1−4β .

So ‖eρ1,n‖`4/3(Z) ≤ Cn1/4−α∧β . When l ≥ 3, similarly we use the fact that

‖eρ1,n‖2`2(Z) ≤ C
�

n
l−2

l ‖rn− r‖2
`l (Z)

+ ‖ρ1,n‖2`2(Z)

�

, and ‖eρ2,n‖2`1(Z) ≤ C
�

n
2
l ‖rn− r‖2

`l (Z)
+ ‖ρ2,n‖2`1(Z)

�

.

2.6 Comparisons with the results of [23]

The aim of this sub-section is to compare our results with the results of [23]. It should be emphasized
that these two papers have been written independently, with different purposes, even if both papers
address the use of the Malliavin derivative (as developed by Nourdin, Peccati, Tudor, Nualart, etc.)
in view of the theorem of Breuer Major and its quantitative generalizations. While we only consider
Hermite polynomials, the authors of [23] consider a general functional H, which they expand in the
basis of Hermite polynomials. This means that their results are certainly more general, but estimates
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for Hermite polynomials play a crucial role in this theory, so that their results can be improved by
our techniques. In fact a synthesis of the two papers has to be done in the future.

The link given here between the Malliavin derivative and the integrated periodogram is new. It
induces different notations, which may be helpful for readers coming from signal processing. But
the method that we develop is inspired by [22, 21] and is essentially the same up to the identity (15).
Then the way we estimate this sum is more accurate. The key point is the fact that it can be bounded
by an expression that involves convolution in sequence spaces. Then we can use Hausdorff-Young
inequalities in this context.

Let us first compare the results in an emblematic case that is used when dealing with the increments
(or generalized increments) of the Fractional Brownian Motion, see Section 4 below. Let us quote
that the sequence of the normalized increments of the Fractional Brownian motion with Hurst pa-
rameter H ∈ (0, 1) is a stationary Gaussian sequence with spectral density given by (36), whose
Fourier coefficients satisfy r(k) = O(|k|−2+2H). Because of the same application, this is also consid-
ered in Example 2.7 in [23], and had been considered before in Theorem 4.1 of [21] and Theorem
3.10 of [22]. We give our results as a proposition.

Proposition 2.15. Assume that r(k) = O(|k|−a). Then, for a > 1
2
, l = 2 and a 6= 3

4
,

dKol

 

1
p

n

n−1
∑

k=0

H
2
(X (k)),σ2N

!

≤ C max(n1−2a, n−1/2), (29)

while, for l ≥ 3 and a > 1
l

dKol

 

1
p

n

n−1
∑

k=0

H
l
(X (k)),σl N

!

≤ C







n−la+1 : a < 1
l−1

n−a : 1
l−1
< a < 1

2

n−
1
2 : a > 1

2

. (30)

Proof. The proof is a small variation of the proof of Theorem 2.13. See the proposition below, which
is the main step of the proof.

In comparison, the estimates given in [23] are the following: for l = 2,

dKol

 

1
p

n

n−1
∑

k=0

H
2
(X (k)),σ2N

!

≤ C max(n
1−2a

2 , n−1/2), (31)

while, for l ≥ 3 and a > 1
l

dKol

 

1
p

n

n−1
∑

k=0

H
l
(X (k)),σl N

!

≤ C







n
−la+1

2 : a < 1
l−1

n−a/2 : 1
l−1
< a < 1

n−
1
2 : a > 1

. (32)

Except for a > 1, these estimates of [23] are weaker than ours. This allows to answer negatively to
their question on the optimality of their bounds. Let us in particular mention that, for l = 2, one
has the speed n−1/2 from the value 3/4 of the parameter a. This means that for the increments of
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the Fractional Brownian Motion, one has this speed for H < 5/8 (and not only for H ≤ 1/2), which
had not been observed before.

Again, one may ask the question of the optimality of our estimates. We cannot answer this question,
since we do not know whether there is a loss or not when using the Malliavin derivative for the
computation of the Kolmogorov distance. But we can ask the same question for the variance of the
integrated periodogram, which we give now.

Proposition 2.16. Assume that r(k) = O(|k|−a) and |ck(φ)| = O(|k|−a). Then, for a > 1
2
, l = 1 and

a 6= 3
4
, for some constant C and for all n≥ 1, we have

Var
�

Π(l)
φ,n

�

≤ C max(n2(1−2a), n−1).

For all l ≥ 2, for some constant C and for all n≥ 1, we have

Var
�

Π(l)
φ,n

�

≤ C







n−2(l+1)a+2 : a < 1
l

n−2a : 1
l
< a < 1

2
n−1 : a > 1

2

.

So let us discuss the optimality of this proposition. We will prove it for l = 1. Again, for l ≥ 2, there
is a step of symmetrization and we only get an upper bound in (16). However, when l = 1, then

Var
�

Π(1)
φ,n

�

= 4‖F0,n‖2L2(T2),

where ‖F0,n‖2L2(T2)
is given by (15). We will use a particular spectral density fX . Namely, there exists

fX with positive Fourier coefficients given by r(k) = c|k|−a for k ≥ 1 (see [31] p.70). We also choose
φ = fX . Let us note rn(k) = r(k) or 0, depending whether |k| < n or not. Remark that, because of
the positivity of the Fourier coefficients, we not only have an estimate above as in (16), but also an
estimate below:

Var
�

Π(1)
φ,2n

�

≥
1

n

∑

| j|≤n−1

�

1−
| j|
n

�

�

rn ∗ rn( j)
�2 . (33)

Then rn ∗ rn( j) > c′max(| j|−a, | j|1−2a) for a 6= 1 and
∑

| j|≤n−1

�

1− | j|
n

�

�

rn ∗ rn( j)
�2 ≥

c′′max(1, n3−4a), which proves the optimality.

Let us also consider the exceptional values. The same kind of computations gives that, for a = 3/4,

Var
�

Π(1)
φ,n

�

≤
C log n

n

for all r such that r(k) = O(|k|−3/4), while such a converse inequality holds for our particular
example of sequence r. So again, this convergence is optimal.

For the value a = 1/2 (which corresponds to the case H = 3/4), the same kind of computations
shows that

Var
�

Π(1)
φ,n

�

≤
C

n
.
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But then we may have
∑

|r(k)|2 =∞. If we come back to the notations of the sub-section 2.2, and
the choice of the random sequence Yn, it was important that its variance be equivalent to a constant
for n tending to∞. To have convergence in this case, one has to divide Yn by log n. We then obtain
a speed of convergence in C/ log n, which improves the rate C/(log n)1/2 given in [22], Theorem
3.1. Moreover our estimate is optimal in the same way as the other ones.

Let us finally remark that the use of the linearity in φ of the integrated periodogram as well as a
standard density argument has allowed us to give a new proof of Breuer Major’s Theorem through
the consideration of Malliavin’s derivative. This had not been observed before, up to our knowledge.

We have deliberately restricted to the dimension one for this comparison, but this could be pursued
in higher dimension.

3 Vector-valued central limit theorem and generalizations

3.1 Vector-valued central limit theorem

We now describe a very useful extension of Theorem 2.10 to the vectorial case. Our main tool is
[28] where it is proved that vectorial Central Limit Theorems follow from Central Limit Theorems
for marginals and convergence of covariance matrix. For d ≥ 2 we consider a vector-valued centered
stationary Gaussian time series defined by

−→
X (k) = (X1(k), X2(k), · · · , Xd(k)). We assume that the

covariance matrix of
−→
X is given by

ri, j(k) = Cov(X i(k
′+ k), X j(k

′)) :=
1

2π

∫ +π

−π
e−ikx

�

f−→
X

�

i, j
(x)d x .

With a little abuse we say that the Hermitian d times d matrix f−→
X

is the spectral density of
−→
X . Then

we can consider the stationary vector-valued processes

H
l
(
−→
X (k)) = (H

l
(X1(k)), . . . , H

l
(Xd(k))), k ∈Z, l ≥ 1.

In fact we are interested in the more general case of variable spectral densities.

Theorem 3.1. Let
�−→

Xn(k)
�

k∈Z
be centered stationary time series with values in Rd . We call f−→

Xn
the

spectral density matrix of
−→
Xn. Let l ≥ 2. We assume that f−→

Xn
belongs uniformly to the space L

l
l−1 (T)

and converges in this space to a function f−→
X

(in the sense that ‖
�

f−→
Xn

�

i, j
−
�

f−→
X

�

i, j
‖ l

l−1
tends to 0 as n

tends to infinity for all 1≤ i, j ≤ d). We call ri, j(k) := 1
2π

∫

T
e−ikx

�

f−→
X

�

i, j
(x)d x and assume, without

loss of generality, that ri,i(0) = 1. Then we have the following vectorial CLT for n tending to infinity:

1
p

n

n−1
∑

k=0

H
l
(
−→
Xn(k))

d→N (0,Σl),

with
�

Σl
�

i, j = l!
∑

k∈Z
ri, j(k)

l .
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Proof. It is not very natural to write
−→
Xn as a Brownian stochastic integral, but we can still use an

isonormal Gaussian process (see Remark 2.4 and [23]), which allows us to use the results of [28].
Let us introduce as before

−→
Zn =

1
p

n

n−1
∑

k=0

H
l
(
−→
Xn(k)).

Once we have a one dimensional CLT for each coordinate of
−→
Zn, then it is sufficient to prove that

the covariance matrix of
−→
Zn tends to the matrix Σl (that is, Assumption 6 of Proposition 2 of [28]).

First, let us remark that for any 1≤ i ≤ d, Xn,i admits
�

f−→
Xn

�

i,i
for spectral density. Since ‖

�

f−→
Xn

�

i,i
−

�

f−→
X

�

i,i
‖ l

l−1
tends to 0 as n tends to infinity, we already know by Theorem 2.10 that the random

variable Zn,i converges in distribution to N
�

0, (Σl)i,i
�

. Now, for 1≤ i, j ≤ d, we have

Cov(Zn,i , Zn, j) =
1

n

n−1
∑

k=0

n−1
∑

k′=0

E(H
l
(Xn,i(k))Hl

(Xn, j(k
′)))

=
l!

n

n−1
∑

k=0

n−1
∑

k′=0

rn,i, j(k− k′)l

= l!
n−1
∑

k=−(n−1)

�

1−
|k|
n

�

rn,i, j(k)
l .

From this point, the proof that this quantity tends to (Σl)i, j is the same as for a scalar valued time
series.

Remark 3.1. One can also have a bound for the speed of convergence as in Section 2, based on results
of [25, 24]. One considers now the distance of Wasserstein

dW (
−→
Y ,
−→
Z ) = sup |E(Φ(

−→
Y ))−E(Φ(

−→
Z ))|,

where the supremum is taken on all Lipschitz functions with Lipschitz constant bounded by 1, under
the assumption that the matrix Σl is positive definite. When it is not the case, the function Φ is taken
of class C 2, with bounded second derivatives. Mutatis mutandis, the bounds obtained for the speed of
convergence are the same as in the last section, see Theorem 2.14.

3.2 Extension to stationary centered Gaussian fields

Until now, we have chosen to restrict our study to stationary centered Gaussian processes, essen-
tially for notational sake of simplicity. However, all previous results have their counterpart in the
framework of Gaussian random fields that are indexed by Zν for some integer ν ≥ 2 instead of Z.
Then Theorems 2.10 and 3.1 are generalized in the following setting.

Theorem 3.2. Let ν , d ≥ 1 integers. Let
−→
Xn =

�−→
Xn(k)

�

k∈Zν
be centered stationary Gaussian

fields with values in Rd . Let l ≥ 2. We call f−→
Xn

the spectral density matrix of
−→
Xn and assume

that f−→
Xn

belongs to the space L
l

l−1 (Tν) and converges in this space to a function f−→
X

. We call

ri, j(k) := 1
(2π)ν

∫

Tν
e−ik·x

�

f−→
X

�

i, j
(x)d x and assume that ri,i(0) = 1 for 1 ≤ i ≤ d. Then, for n

tending to infinity,
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(i)

Var







1

nν/2

n−1
∑

k1,...,kd=0

H
l
(Xn,i(k))






−→ (Σl)i,i ,

(ii)
1

nν/2

n−1
∑

k1,...,kd=0

H
l
(
−→
Xn(k))

d−→N (0,Σl),

with
�

Σl
�

i, j = l!
∑

k∈Zν
ri, j(k)

l . (34)

In the case where
−→
Xn =

−→
X , this result is a particular consequence of Theorem 4 of Arcones [1].

Remark 3.3. One can also have a bound for the speed of convergence (written in terms of the distance
of Wasserstein if d > 1) as in the last subsection, but with different exponents coming from the gener-
alization of Proposition 2.9. In this proposition, the new bound is max(n−ν , n−4α) when l = 1, due to
the fact that the Sobolev spaceH α is contained in L4(Tν) for α= ν/4. When l ≥ 2, the new bound is,
up to a constant,

max(n−2(l+1)α, n−2α− 2ν
l+1 , n−ν).

In Theorem 3.2, whenever ‖ f−→
Xn
− f−→

Xn
‖ l

l−1
≤ Cn−β , the speed of convergence is O(max(n−β , n−2α, n−1/2))

for l = 2. Whenever l > 2, it is bounded, up to a constant, by






max(n−β , n−αl) : α
ν
< 1

l(l−1)

max(n−β , n−α−
ν
l ) : 1

l(l−1) <
α
ν
< 1

2
− 1

l

max(n−β , n−
ν
2 ) : α

ν
> 1

2
− 1

l

.

4 Application to generalized quadratic variations

In this section we consider a continuous time real-valued centered Gaussian field with stationary
increments, defined through a spectral representation

Y (t) =

∫

Rν

�

e−i t·x − 1
�

F(x)1/2dfW ν(x), t ∈Rν , (35)

where fW ν is a complex centered Gaussian random measure on Rν with Lebesgue control measure,

such that fW ν(−A) = fW ν(A) a.s. for any Borel set A of Rν . The function F satisfies the integrability
condition

∫

Rν
min(1, |x |2)d x <∞.

Remark that this condition could be relaxed when only higher order increments are stationary (see
[29]). We refer to the introduction for more notations and comments.
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We assume that only {Y (k/n); k = (k1, . . . , kν) ∈ Zν with 0 ≤ k1, . . . , kν ≤ n − 1} are known for
some large n.

Let us first describe our method in the simplest possible example, that is, the Fractional Brownian
Motion in one dimension. So, for a moment we assume that ν = 1 and F(x) := |x |−2H−1, with
0 < H < 1. We are interested in first increments Xn(k) := Y ((k+ 1)/n)− Y (k/n) and want to have
a CLT for the means

1

n

n−1
∑

k=0

|Xn(k)|2

which are also the quadratic variations of the sequence Y (k/n). We remark that

Cov(Xn(k), Xn(k
′)) =

∫

R

e−i (k−k′)x
n

�

�

�e−i x
n − 1

�

�

�

2
F(x)d x .

We use the homogeneity of F to write this covariance as

Cov(Xn(k), Xn(k
′)) = n−2H

∫

R

e−i(k−k′)x
�

�e−i x − 1
�

�

2
F(x)d x .

Then, by a standard argument (which may be seen as an elementary version of Poisson’s Formula),
the spectral density of this time series is given by a periodization of F , that is,

Cov(Xn(k), Xn(k
′)) = n−2H

∫ +π

−π
e−i(k−k′)·x

�

�e−i x − 1
�

�

2
∑

j∈Z

1

|x + 2π j|2H+1 d x .

So, if we consider asymptotic properties of normalized increments nH Xn(k), they have the same law
as the ones of a unique time series, whose spectral density is the periodic function

fX (x) :=
�

�e−i x − 1
�

�

2
∑

j∈Z

1

|x + 2π j|2H+1 . (36)

In particular, one observes a Central Limit Theorem for the quadratic variations 1
n

∑n−1
k=0 |X (k)|

2

(once centralized and reduced) if one has the same for the means of H
2
(X ). This can be deduced

from Section 2 as soon as the function fX is in L2(T), which is the case for H < 3/4 (we give the
proof of this fact in the general case).

If F is only asymptotically homogeneous, we will still be able to use the same argument, but with a
variable spectral density.

We now consider the general case ν ≥ 1 and define generalized quadratic variations (recall that
one has to deal with higher increments for H ≥ 3/4 in dimension one). We first define generalized
increments. More precisely, our first step is to consider a stationary field induced by these observa-
tions. This is obtained through a filtering of this sequence. In particular we consider the discrete
time stationary field

Zn,a(k) =
p
∑

m1,...,mν=0

a1(m1) . . . aν(mν)Y
�

k1+m1

n
, . . . ,

kν +mν
n

�

, for k = (k1, . . . , kν) ∈Zν
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and a=
�

a1, . . . ,aν
�

with aj = (a j(0), . . . , a j(p)) ∈Rp+1 a discrete filter of length p+1 and of order

K j (p, K j ∈N with p ≥ K j), which means that
p
∑

m j=0

a j(m j) 6= 0 when K j = 0 and otherwise

p
∑

m j=0

a j(m j)m
r
j = 0 for 0≤ r ≤ K j − 1 and

p
∑

m j=0

a j(m j)m
K j

j 6= 0.

For ν = 1, examples are given

• the increments of Y : Zn,a(k) = Y
�

k+1
n

�

− Y
�

k
n

�

for a= (−1, 1), which is a filter of order 1.

• the second order increments of Y : Zn,a(k) = Y
�

k+2
n

�

− 2Y
�

k+1
n

�

+ Y
�

k
n

�

for a = (1,−2, 1),
which is a filter of order 2.

In dimension ν = 2, following the works of Chan & Wood [8] and Zu & Stein [30] we can also
consider the following types of increments:

• Vertical Zn,a(k) = Y
�

k1

n
, k2+2

n

�

− 2Y
�

k1

n
, k2+1

n

�

+ Y
�

k1

n
, k2

n

�

for a1 = (1) filter of order 0 and
a2 = (1,−2, 1) filter of order 2.

• Horizontal Zn,a(k) = Y
�

k1+2
n

, k2

n

�

− 2Y
�

k1+1
n

, k2

n

�

+ Y
�

k1

n
, k2

n

�

for a1 = (1,−2, 1) filter of
order 2 and a2 = (1) filter of order 0.

• Superficial Zn,a(k) := �n
k1,k2
(Y ) = Y

�

k1+1
n

, k2+1
n

�

− Y
�

k1+1
n

, k2

n

�

− Y
�

k1

n
, k2+1

n

�

+ Y
�

k1

n
, k2

n

�

for a1 = a2 = (−1,1) filter of order 1.

Coming back to the general case, let us associate to the filter aj the real polynomial

Paj
(x j) =

p
∑

m j=0

a j(m j)x
m j

j , for x j ∈R.

Then aj is a filter of order K j ≥ 1 if and only if P(r)aj
(1) = 0, for 0 ≤ r ≤ K j − 1 and P

(K j)
aj
(1) 6= 0. By

Taylor formula, this implies that there exists c j > 0 such that
�

�

�Paj

�

e−i x j
�

�

�

�≤ c j min
�

|x j|K j , 1
�

, x j ∈R. (37)

Moreover using the spectral representation of Y , one has

Zn,a(k)=

∫

Rν
e−i k·x

n

ν
∏

j=1

Paj

�

e−i
x j
n

�

F(x)1/2dgW ν(x).

We will note Pa(x) :=
ν
∏

j=1

Paj
(x j). The only assumption that we will use is the fact that Pa has a zero

of order K := K1+ K2+ · · ·Kν at (1, · · · , 1). We say that the filter a has order K . Then we have

Cov(Zn,a(k), Zn,a(k
′)) =

∫

Rν
e−i (k−k′)·x

n

�

�

�Pa

�

e−i x1
n , · · · , e−i xν

n

�
�

�

�

2
F(x)d x

=
1

(2π)ν

∫

[−π,π)ν
e−i(k−k′)·x

�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�

2 ∑

k∈Zν
(2πn)ν F(nx + 2nπk)d x .
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So the spectral density of Zn,a is given by

fn,a(x) =
�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�

2 ∑

k∈Zν
(2πn)ν F(nx + 2nπk), x ∈ [−π,π)ν . (38)

Because of the assumption on a, one can find a positive constant c > 0 such that
�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�≤ c|x |K , x = (x1, . . . , xν) ∈ [−π,π)ν , (39)

Then, the generalized quadratic variations of Y are defined as

Vn,a =
1

(n− p+ 1)ν

n−p
∑

k1,...,kν=0

�

Zn,a(k)
�2

. (40)

Such quantities are very helpful to estimate the H parameter as explained below.

4.1 Central Limit Theorem for quadratic variations

We now consider random fields Y for which Assumption (4) is valid. More precisely, let Ω be
a strictly positive homogeneous function of degree 0 that is continuous on the sphere Sν−1. We
assume that

F(x) =
Ω(x)
|x |2H+ν + R(x), (41)

where the rest R satisfies the estimate

|R(x)| ≤
κ

|x |2H+ν+γ for |x |> A. (42)

We will prove a Central Limit Theorem for the generalized quadratic variations related to H. We
will see that the limit does not depend on the rest. We use the notations given above.

Theorem 4.1. Let us assume that F, the spectral density of Y satisfies (41) and (42) for some H > 0
and γ > 0. Let a be a filter of order K. Moreover, we assume that |x |4K F(x)2 is integrable on compact
sets. If K > H + ν

4
, then for n tending to infinity,

(i) (n− p+ 1)νVar
�

Vn,a

E(Vn,a)

�

−→ σ2
a(H)

(ii)
�

n− p+ 1
�ν/2

�

Vn,a

E(Vn,a)
− 1
�

d−→N (0,σ2
a(H)),

with

σ2
a(H) =

2(2π)ν

Ca(H)2

∫

[−π,π)ν

�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�

4
�

�

�

�

�

∑

k∈Zν

Ω(x + 2πk)
|x + 2πk|2H+ν

�

�

�

�

�

2

d x , (43)

where

Ca(H) =

∫

Rν

�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�

2 Ω(x)
|x |2H+ν d x . (44)
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Proof. This will be a direct consequence of the previous sections. We can write

�

n− p+ 1
�ν/2

 

Vn,a

E
�

Vn,a

� − 1

!

=
1

�

n− p+ 1
�ν/2

n−p
∑

k1,...,kν=0

H2(Xn,a(k)),

with {Xn,a(k), k ∈Zν} a stationary Gaussian time series, given by

Xn,a(k) :=
Zn,a(k)

Æ

Var
�

Zn,a(k)
�

.

The spectral density of Xn,a is easily deduced from the one of Zn,a given in (38), using the fact that

Cn,a := Var
�

Zn,a(k)
�

=

∫

Rν

�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�

2
nν F(nx)d x .

This means that fXn,a
is given by

fXn,a
(x) :=

(2πn)ν

Cn,a
|Pa

�

e−i x1 , · · · , e−i xν
�

|2
∑

k∈Zν
F(nx + 2nπk). (45)

We are in position to apply Theorem 2.10 or Theorem 3.2 depending on the dimension. It is suffi-
cient to prove that fXn,a

is uniformly in L2(T) and converges to fXa
, with

fXa
(x) =

(2πn)ν

Ca(H)
|Pa

�

e−i x1 , · · · , e−i xν
�

|2
∑

k∈Zν

Ω(x + 2πk)
|x + 2πk|2H+ν (46)

and Ca(H) given by (44). The required convergence properties are contained in the following
lemma.

Lemma 4.2. We have the following.

n2HE
�

Vn,a

�

− Ca(H) =







O
n→+∞

�

n−2(K−H)
�

if K −H < γ/2

O
n→+∞

�

n−γ log n
�

if K −H = γ/2

O
n→+∞

�

n−γ
�

if K −H > γ/2
.

Moreover fXn,a
and fXa

are in L2(T) and

‖ fXn,a
− fXa

‖2 =











O
n→+∞

�

n−(2K−2H−ν/2)
�

if K −H < γ+ ν/4

O
n→+∞

�

n−2γ log n
�

if K −H = γ+ ν/4

O
n→+∞

�

n−2γ
�

if K −H > γ+ ν/4

.

Proof. For the first estimates, we have to bound
∫

Rν
min(|x |2K , 1)n2H+ν |R(nx)|d x =

∫

|x |<A/n

+

∫

A/n<|x |<1

+

∫

|x |>1

.
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For the first term, since we have no assumption on R except for the fact that it is the difference
between F and Ω(x)

|x |2H+ν , we consider each quantity separately. For the integral in F , we change of

variable and use the assumption of integrability on F to conclude that it is a term in n−2(K−H). The
other estimates are straightforward.

Next, let us prove that fXa
is in L2(T). We write that

∫

Tν
( fXa
(x))2d x = c

∫

[−π,π)ν

�

�

�Pa

�

e−i x1 , · · · , e−i xν
�

�

�

�

4
 

∑

k∈Zν

Ω(x + 2πk)
|x + 2πk|2H+ν

!2

d x

≤ c

∫

[−π,π)ν
|x |4K Ω(x)

2

|x |4H+2ν d x + C

< +∞.

We have used the fact that, for |x | ≤ π, the sum
∑

k 6=0

1

|x + 2πk|2H+ν is uniformly bounded since

K > H + ν
4
. Next, in order to bound the norm of fXn,a

− fXa
, we have to consider the quantity

∆n(x) := nν+2H
∑

k∈Zν
R(n(x + 2kπ)).

From Assumptions (41) and (42) and from the fact that Ω is bounded below on the unit sphere, we
deduce that, for |x |> A/n (with some constant C that varies from line to line)

|R(x)| ≤
C

|x |γ
Ω(x)
|x |2H+ν .

It follows that, for |x |> 2C
n

, we have the inequality

∆n(x)≤
C

nγ|x |2H+ν+γ .

Using this inequality, we estimate easily
∫

|x |> 2C
n

( fXn,a
(x)− fXa

(x))2d x .

To conclude, it is sufficient, after a change of variables, to bound

n4H+ν−4K

∫

|x |≤2C

|x |4K F(x)2d x ,

which is direct upon the local integrability assumption on F .

This finishes the proof of the theorem.
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4.2 Remark on the speed of convergence

We keep the notations of the last subsection and interest ourselves to the speed of convergence
towards a Gaussian law. We want to give a bound for the Kolmogorov distance in one variable,
or the distance of Wasserstein in general, between

Vn,a

E(Vn,a)
and a Gaussian random variable of law

N (0,σ2
a(H)). By Lemma 4.2, we have a bound for the speed of convergence of fXn,a

towards fXa
. So

we can use Theorem 2.14 or Remark 3.3 as soon as fXa
belongs to some Sobolev space H α. Or, if

the Fourier coefficients of fXa
behave like a power |k|−a, then we can also use Remark 2.15 to have

a bound for the speed of convergence. This is what we discuss now.

Let us start with dimension one, where Ω is a constant. Then the Fourier coefficients of fXa
, which

we note ra, are also, up to a constant, the values of the Fourier transform of the function

|Pa(e−i x)|2

|x |2H+ν .

It is classical that these last ones may be written as

ra(k) :=
p
∑

m=−p

bm|k+m|2H ,

where bm are coefficients of the polynomial Q := |P|2. Using the fact that Q vanishes at order 2K
and Taylor’s Formula, one sees that

ra(k) = O(|k|2H−2K), (47)

In higher dimension, we will show that we can conclude with some regularity assumption on Ω.
Specifically, if we assume that Ω is of class C 1 on the unit sphere, then the first partial derivatives of

ha(x) :=
|Pa(e−i x)|2Ω(x)
|x |2H+ν

satisfy the same kind of estimates as the function itself, apart from the loss of 1 in the power of
|x | in one term, and the fact that P or P has been replaced by its derivative in another one. If
again ra(k) :=

∫

Rν
e−ik·xha(x)d x , then k j ra(k) appears as the Fourier coefficients of the jth partial

derivative of ha. Remark first that we have proved in Lemma 4.2 that the sequence ra(k) is in `2(Zν)
by proving that the periodization of ha is in L2(Tν), which is equivalent by Plancherel Theorem. For
the same reason, to prove that k j ra(k) is a sequence in `2(Zν), it is equivalent to prove that the
periodization of the jth derivative of ha is in L2(Tν). Under the assumption that Ω is of class C 1 on
the unit sphere, we do this by the same method, but on the stronger assumption that K−1−H > ν/4.
The necessity of a stronger assumption is linked to the loss of 1 in the power of |x |. Finally, under
these two assumptions, we conclude that

∑

k∈Zν
|k|2|ra(k)|2 <∞ and one can apply Theorem 3.3.

One can weaken or strengthen these assumptions on Ω to obtain the full range of Sobolev spaces.
In all cases we have a speed of convergence towards a Gaussian law in |n|−δ with δ depending on
γ, K , H, and the regularity of Ω.
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4.3 Application to the identification of H

As we said before, a central question is the estimation of H from real data. As an application of
generalized quadratic variations, we obtain Proposition 1.3 of [5] without additional assumption of
regularity on the spectral density. Actually, let us fix the dimension ν = 1 and, following [17], let us
consider the filtered process of Y with a dilated filter. More precisely, let U ≥ 2 an integer. For an
integer u ∈ {1, . . . , U}, the dilation au of a is defined by, for 0≤ m≤ pu,

au
m =

¨

am′ if m′ = mu
0 otherwise.

Since
pu
∑

m=0
mr au

m = ur
p
∑

m=0
mr am, the filter au has the same order than a but length pu. Then,

¦

Xn,au(k) ; k ∈Zν , u ∈ {1, . . . , U}
© f dd
=







Zn,au(k)
Æ

Var
�

Zn,au(k)
�

; k ∈Zν , u ∈ {1, . . . , U}







,

so that
�

Vn,au

E(Vn,au) ,
Vn,av

E(Vn,av )

�

−→
n→+∞

(1,1) almost surely with asymptotic normality for K > H + 1
4
,

according to Theorems 3.2 and 4.1, for any u, v ∈ {1, . . . , U}. According to Proposition 1.1 of [5]
(see also Lemma 4.2 above), Assumption (4) implies that

n2HE
�

Vn,au

�

= u2H Ca(H) +







O
n→+∞

�

n−2(K−H)
�

if K −H < γ/2

O
n→+∞

�

n−γ log n
�

if K −H = γ/2

O
n→+∞

�

n−γ
�

if K −H > γ/2
,

so that for u, v ∈ {1, . . . , U},

ÔHn,a(u, v) :=
1

2 log(u/v)
log

�

Vn,au

Vn,av

�

−→
n→+∞

H a.s.

with asymptotic normality when K > H + 1/4 and γ > 1/2. We refer to [5] for details. The main
difference here is the fact that we only need an assumption on the behavior of the rest, not on its
derivatives, due to the use of Theorem 3.2.

4.4 Functional Central Limit Theorem for Quadratic variations of a stationary Gaus-
sian random process

Up to now, we have only considered finite distributions. In this last subsection we want to prove
that one can have convergence for continuous time processes as well. We will restrict our study
to the case ν = 1. So let us consider the random process Y given by (3) in dimension one. Then
Assumption (4) on the spectral density F of Y can be written as

F(x) =
c

|x |2H+1 + O
|x |→+∞

�

1

|x |2H+1+γ

�

. (48)
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We keep the notations of the previous section and consider for a discrete filter a of length p+1 and
order K ≥ 1 the filtered process of discrete observations of Y defined for n≥ p by

Zn,a(k) =
p
∑

m=0

amY
�

k+m

n

�

, for k ∈Z.

Following Donsker’s Theorem we consider a functional version of the Central Limit Theorem ob-
tained in Theorem 4.1. For this purpose let us introduce the continuous time random process defined
for t ∈ [ p

n
, 1] by

Sn,a(t) =
1

p

n− p+ 1

[nt]−p
∑

k=0

�

Zn,a(k)2

Cn,a
− 1

�

,

and Sn,a(t) = 0 for 0≤ t < p
n
, where Cn,a = E

�

Zn,a(k)2
�

. Then Sn,a(1) =
p

n− p+ 1
�

Vn,a

E(Vn,a)
− 1
�

.

Moreover, Sn,a is a.s. a càdlàg process on [0, 1] and we denote as usual D([0,1]) the set of such

processes. We also introduce the càdlàg random process defined on [0, 1] by Yn(t) = Y
�

[nt]
n

�

. Let

us recall that according to (48) and Proposition 1 of [7] we can assume that Y is a.s. continuous on
[0,1]. It follows that Yn converges in law to Y in the space D([0,1]) equipped with the Skorohod
topology. Then, Theorem 6 of [4] has the following counterpart in our setting.

Theorem 4.3. We keep notations introduced in the previous section. Let us assume that F, the spectral
density of Y satisfies (48) for some H > 0 and γ > 0. Let a be a filter of order K. Moreover, we assume
that |x |4K F(x)2 is integrable on compact sets. If K > H + 1

4
, then for n tending to infinity, we obtain

the weak convergence (in the space D([0, 1])2 equipped with the Skorohod topology)
�

Yn(t), Sn,a(t)
�

−→
�

Y (t),σa(H)B(t)
�

,

where B is a standard Brownian motion on [0, 1] that is defined on the same probability space than Y ,
independent of Y and

σ2
a(H) =

4π

Ca(H)2

∫ +π

−π

�

�

�Pa

�

e−i x
�

�

�

�

4
�

�

�

�

�

∑

k∈Z

c

|x + 2πk|2H+1

�

�

�

�

�

2

d x , (49)

where

Ca(H) =

∫

R

�

�

�Pa

�

e−i x
�

�

�

�

2 c

|x |2H+1 d x . (50)

Proof. Let us first consider the convergence of Sn,a(t). For fixed t, this is a small modification of the
data of the previous section, and we immediately have

Sn,a(t)
d−→

n→+∞
N
�

0,σ2
a(H)t

� d
= σa(H)B(t).

Next, we want to deal with a finite vector (Sn,a(t1), · · · , Sn,a(td)). We are not exactly in the same
setting as in Theorem 3.2 since for the computation of each coordinate we use the same discrete
time series, but modify the mean that we are taking depending on the coordinate. But it is easy
to see that the same strategy is available, that is, it is sufficient to have the convergence of the
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covariance matrix according to Proposition 2 of [28]. Therefore, we are linked to prove, for any
fixed 0< t < s, that

Cov
�

Sn,a(t), Sn,a(s)
�

−→
n→+∞

σ2
a(H)t,

or, which is equivalent, to prove the convergence to 0 of Cov
�

Sn,a(t), Sn,a(s)− Sn,a(t)
�

. As previ-
ously we introduce the function

fa(x) =
1

Ca(H)2
|Pa

�

e−i x
�

|2
∑

k∈Z

2πc

|x + 2πk|2H+1

and denote by ra the Fourier coefficients of fa. We consider the centered stationary discrete Gaussian
time series Xa which admits fa for spectral density, and therefore ra as covariance sequence. Then,
let us define the random process

eSn,a(t) =
1

p

n− p+ 1

[nt]−p
∑

k=0

H2(Xa(k)),

for t ∈ [ p
n
, 1] and eSn,a(t) = 0 otherwise. It is easily seen, as in the proof of Theorem 2.10, that limits

are the same for eSn,a or Sn,a. So, let us compute

Cov
�

eSn,a(t), eSn,a(s)− eSn,a(t)
�

=
2

n− p+ 1

[nt]−p
∑

k=0

[ns]−p
∑

l=[nt]−p+1

r2
a (l − k)

≤
2

n− p+ 1

[ns]
∑

j=1

jr2
a ( j) +

[ns]
∑

j=min([nt]−p,[ns]−[nt]−1)

r2
a ( j).

The second term tends to zero as a rest of a convergent series, since t < s. For the first term, recall
that, by (47),

�

�ra(k)
�

�≤ C(1+ |k|)−2(K−H),

so that for α ∈ (0, min(2 (K −H − 1/4) , 1/2))

2

n− p+ 1

[ns]
∑

j=1

jr2
a ( j)≤ Cn−2αs1−2α,

which tends to zero as n tends to infinity. This ends the proof of the convergence in finite dimen-
sional distributions of eSn,a and thus Sn,a to σa(H)B.
Let us prove the tightness. We clearly have for 0< t ≤ s

E
�

�

Sn,a(t)− Sn,a(s)
�2
�

≤ C‖ fXn,a
‖22

�

[ns]− [nt]
n

�

≤ C ′
�

[ns]− [nt]
n

�

.
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Finally for t ≤ s ≤ r, by Hölder inequality and using the equivalence of Lp(Ω,P) norms in the
second chaos,

E
�

�

Sn,a(t)− Sn,a(s)
�2 �

Sn,a(r)− Sn,a(s)
�2
�

≤ E
�

�

Sn,a(t)− Sn,a(s)
�4
�1/2

E
�

�

Sn,a(r)− Sn,a(s)
�4
�1/2

≤ CE
�

�

Sn,a(t)− Sn,a(s)
�2
�

E
�

�

Sn,a(r)− Sn,a(s)
�2
�

≤ C
�

[ns]− [nt]
n

��

[nr]− [ns]
n

�

.

This quantity is bounded by (r − t)2. Indeed, it is clearly the case when r − t ≥ 1/n. When
r− t < 1/n, either [ns] = [nt] or [nt] = [nr], so that it vanishes. The tightness of Sn,a follows from
Theorem 13.5 of [6].
Now, let us consider the sequence of vectorial processes

�

Yn, Sn,a

�

, which belong to D([0, 1])2.

Each coordinate is tight, thus
�

Yn, Sn,a

�

is also tight. It remains to study the finite dimensional
convergence. Any linear combination of the coordinates of the above vector belongs to the order
one and order two Chaos respectively. Moreover they have both a Gaussian limit. Thus Theorem
1 (item (iv)) of [28] allows to conclude of the vector itself and that the two Gaussian limits are
independent. Summarizing we have

�

Yn, Sn,a

� d→ (Y,σa(H)B),

where the convergence is in distribution in the space D2([0,1]) and the two processes coordinates
are Gaussian and independent. This also implies that the convergence is stable in law.

Such a result is a fundamental tool when one deals with a non linear function of a Gaussian field,
see [9] for instance. In applications to porous media for instance, it is natural to consider that the
observed field is U(t) = g(Y (t)), t ∈ R, where g is a non-linear function g with extra assumptions
of smoothness and integrability. In this context we are interested in the asymptotic behavior of the
quadratic variations of U instead of Y . A Central Limit Theorem can still be obtained, using a Taylor
expansion of g and similar methods to the ones that have been developed in the proof of Theorem
7 in [4]. In this case the limit variable is no more Gaussian. It is given by the stochastic integral

σa(H)
∫ 1

0

�

g ′(Y (t)
�2 dB(t). We intend to develop this, in connection with applications, in another

work.
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