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Abstract In this paper, we propose a new and generic
methodology for the analysis of texture anisotropy. The
methodology is based on the stochastic modeling of tex-
tures by anisotropic fractional Brownian fields. It includes
original statistical tests that permit to determine whether a
texture is anisotropic or not. These tests are based on the
estimation of directional parameters of the fields by gen-
eralized quadratic variations. Their construction is founded
on a new theoretical result about the convergence of test
statistics, which is proved in the paper. The methodology
is applied to simulated data and discussed. We show that
on a database composed of 116 full-field digital mammo-
grams, about 60 percent of textures can be considered as
anisotropic with a high level of confidence. These empirical
results strongly suggest that anisotropic fractional Brownian
fields are better-suited than the commonly used fractional
Brownian fields to the modeling of mammogram textures.

Keywords Anisotropy - Anisotropic fractional Brownian
field - Hurst index - Asymptotic test - Generalized quadratic
variations - Texture analysis - Mammography - Density
characterization

1 Introduction

Texture analysis is an important generic research area of
machine vision. This issue is raised in numerous applica-
tions (e.g. biomedical image analysis, analysis of satellite

F. Richard (&) - H. Bierme

University Paris Descartes, Laboratory MAP5, CNRS UMR
8145, 45, rue des Saints-Peres, 75006 Paris, France

e-mail: richard @mi.parisdescartes.fr

H. Bierme
e-mail: bierme @mi.parisdescartes.fr

imagery or content-based retrieval from image databases).
There is a wide variety of texture analysis approaches. Some
of them, such as Markov random field modeling [22] or
fractal analysis [46], are based on the description of image
textures with stochastic models. In such approaches, texture
features are usually derived from the estimation of model pa-
rameters. The stochastic model beyond fractal analysis is the
fractional Brownian field which is a multi-dimensional ex-
tension of the famous fractional Brownian motion implicitly
introduced in [41] and defined in [44]. This field is math-
ematically defined as the unique centered Gaussian field,
null at origin, with stationary increments, isotropic, and self-
similar of order H € (0, 1). Its variogram (see Sect. 2.1 for
the definition) is of the form v(x) = Cylx|*#,Vx € R2,
with | - | as the Euclidean norm. Parameter H, called the
Hurst index, is a fundamental parameter which is an indica-
tor of texture roughness and is directly related to the fractal
dimension of the graph sample paths 3 — H (see (7)).

Fractal analysis has been largely used in medical ap-
plications [7, 15, 19, 20, 43]. In particular, it was used for
the characterization and classification of mammogram den-
sity [19], the study of lesion detectability in mammogram
textures [16, 29], and the assessment of breast cancer risk
[19, 32]. Fractal analysis has also been used for the radi-
ographic characterization of bone architecture and the eval-
uation of osteoporotic fracture risk [7]. However, it is well-
established that the anisotropy of the bone is an important
predictor of fracture risk [15, 36]. Hence fractal analysis
with fractional Brownian fields, which are isotropic by def-
inition, is not completely satisfactory for this medical appli-
cation. Apart from this example, the assumption of texture
isotropy can be a source of limitations for many applica-
tions.

The study of random field anisotropy is a wide field of
research in the Probability Theory. It covers numerous open
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issues related to the definition and the analysis of anisotropy,
the estimation of anisotropic model parameters, and the sim-
ulation of anisotropic fields [4, 8, 10-12, 25, 34, 37, 42, 50].
The work presented here concerns the anisotropic fields de-
fined in [12] by Bonami and Estrade, by considering a large
class of Gaussian fields (with stationary increments), for
which the variogram v is characterized by a positive even
measurable function f satisfying the relation

vreR!, uw = [ 1€ 1R e M)

and the condition fRd(l AZ1P) f(©)de < oo. Within this
class, a field is isotropic whenever the so-called spectral den-
sity f of this field is radial, and anisotropic when f depends
on the direction arg(¢) of ¢. Bonami and Estrade gave sev-
eral examples of anisotropic fields, among which those de-
fined in two dimensions by a spectral density of the form

Ve eR%, f(g) = |¢|2are@)=2 )

where h is a measurable m-periodic function with range
[H,M] C (0,1) where H = essinf_;h and M =
esssup[_ . The definition of these fields extends the one
of fractional Brownian fields, which are obtained when the
function 4 is almost everywhere constant and equal to the
Hurst index H. When 4 is not constant, the function £ de-
pends on the orientation and, consequently, the correspond-
ing field is anisotropic. We will refer to the fields defined by
(2) as Extended Fractional Brownian Fields (EFBF). Some
simulations of EFBF are shown in Fig. 1.

In our previous works [11], we addressed the problem
of estimating the directional Hurst index of an EFBF. We
constructed and studied some orientation-dependant estima-
tors based on generalized quadratic variations. In this paper,
we focus on the problem of statistically testing whether an
EFBF is isotropic or not. We construct some original null-
hypothesis testing strategies that involve our previous esti-
mators.

Although related, the situation we deal with is rather dif-
ferent from that of our previous work in which we showed
the convergence of a single estimator obtained from the pro-
jection of a field in an arbitrary direction. In this study, the
construction of our anisotropy tests involves test statistics

Fig. 1 Field simulations.
Simulation of (isotropic)
fractional Brownian fields using
the Stein method for (a) 2 = 0.3
and (b) 2 = 0.7. Simulation of
anisotropic fractional Brownian
fields using the spectral method
for (¢) hy =0.3 and h, = 0.5
and (d) h; =0.3 and h, =0.7
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which are defined as combinations of estimators in different
directions. Hence, for the asymptotic analysis of the test sta-
tistics, it is necessary to take into account the correlations
between combined estimators.

In this paper, we show a new convergence result which
ensures the convergence of combined and correlated esti-
mators and gives a theoretical background to our anisotropy
test strategy. This theoretical result is completed with a nu-
merical analysis of anisotropic tests. Besides, we apply our
tests to full-field digital mammograms. We give original ev-
idence of the relevance of anisotropic fractional Brownian
fields for the modeling of the textures of these images.

In Sect. 2, we recall elements about the estimation of the
EFBF parameters which are required for the understanding
of the construction of our tests. Section 3 is devoted to the
construction and analysis of our anisotropy tests. In Sect. 4,
we present the application of tests to mammograms.

2 Parameter Estimation
2.1 Definitions

Let (22, A, P) be a probability space. A d-dimensional ran-
dom field X is a map from Q x R? into R such that
X(-,y) := X(y) is a real random variable on 2 for all
y € R4, When d = 1, such a field is called a random process.
A random field is Gaussian if any finite linear combina-
tion of its associated random variables is a Gaussian vari-
able. A centered Gaussian field X is characterized by its
covariance function: (y, z) — Cov(X(y), X(2)). A field X
has stationary increments if the law governing the field
X(-42z) — X(z) is the same as X (-) — X (0) for all z € R¢.
The law of a centered Gaussian field X with stationary in-
crements is characterized by its variogram which is defined
by

VyeR?, w(y) =E(X(y) — X(0))?). 3)

Centered Gaussian fields which have stationary increments
and a variogram of the form (1) for d = 2 are called
Gaussian fields with spectral density. The two-dimensional
fields we focus on are of this kind, with the spectral density
of a form given by (2).
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The random field regularity is usually defined using
Holder exponents. For T > 0, sample paths of X satisfy a
uniform Holder condition of order @ € (0,1) on [T, T]d
if there exists a positive random variable A with P(A <
+00) = 1 such that
Yy.ze[-T. T, IX(0) - X@I<Aly—z* @
This equation gives a lower bound for the Holder regular-
ity of a field. The critical Holder exponent g of a field (if
it exists) is defined as the supremum of « for which the
Hoélder condition (4) holds when it equals the infimum of
o for which the Holder condition (4) does not hold (see
Definition 5 of [12]). Note that the value of g lies between
0 and 1 and equals 1 if X is differentiable.

From an image point of view, the critical Holder exponent
is related to the roughness of the texture: the rougher the
texture, the smaller the field regularity.

As stated in the next theorem [12], the Holder regular-
ity of a Gaussian field with spectral density (GFSD) can ei-
ther be deduced from the local behavior of the variogram
around O (condition (iii)) or from the asymptotic behavior
of the spectral density at high-frequencies (conditions (i)
and (ii)).

Theorem 2.1 Let X be a GFSD and § € (0, 1).

(@) Let 0 <@ <y < 1. If there exist A, By, B, > 0 and a
positive-measure subset E of the unit sphere §d-1 of
R? such that for almost all & R,

() 1€ = A= 1f &) < Bil§| 724

(i) €] > Aand % € E= | f(§)| = Byl "2~
then, there exist 6 > 0 and Cy, C2 > 0 such that for all
yeRY,
(iii) |yl <8= Cilyl?” <v(y) < Calyl**.

(b) If Condition (iii) holds for any o,y with 0 <a < f <
y < 1 then B is the critical Holder exponent of X .

For random processes (d = 1), we can use an extended
definition of the Holder regularity which is meaningful when
B=>11[12]. Let Y = {Y(¢);t € R} be a centered Gaussian
random process with stationary increments and variogram v.
Let t € R. If the sequence (W) admits a limit in
LZ(Q, A,P) as h — 0, Y is said to be mean-square differ-
entiable at point r. We denote Y’ (¢) the corresponding limit,
which is a centered Gaussian variable (see for instance page
27 of [2]). When this holds for any t € R?, the variogram vy
of Y is twice differentiable, the process Y’ is stationary and
its variogram satisfies

vy (1) = — (v} (1) — vy (0))
= }}inbh—zﬂa(m +h) =Y (@)= Y(h) +Y(0)% (5

Recursively, we can further define the n-time mean
square derivative of a process Y as the mean square deriva-
tive of the Y"1 (if it exists). We then define the extended
Holder regularity. Let 8 =n + s, withn e Nand s € (0, 1).
We say that Y admits 8 as critical Holder exponent, if Y is
(a) n-time mean square differentiable and (b) its nth mean
square derivative admits s = 8 —n € (0, 1) as critical Holder
exponent. As stated in the following theorem, the extended
Holder regularity of a process can also be deduced from the
behavior of its variogram around O or the asymptotic decay
of its spectral density.

Theorem 2.2 Let Y = {Y (t); t € R} be a Gaussian random

process with spectral density. Let B =n + s, withn € N and
s€(0,1).

(@) Let0 <a <y < 1.Ifthere exist A, By, B> > 0 such that
for almost all € e R,
() €12 A= B|§|72 27 < fy () < Balg |72
then,
(i) the variogram vy is of class C*" in a neighborhood
of 0;
(iii) there exists § > 0 and C1, Cy > 0 such that for all
teR,

1] <8 = 11t < @ (1) — v (0)] < Ca >,

(b) If Conditions (ii) and (iii) holds for any o, y with 0 <
o <s <y < 1 then B is the critical Holder exponent of
the process Y .

2.2 Regularity of an EFBF

According to (2), a direct application of Theorem 2.1 shows
that the critical Holder exponent of an EFBF (in dimension
d =2) with directional Hurst index / is equal to the minimal
value H of hon [—m, 7):

H = essinf(h). (6)
[=m,m)

The critical Holder exponent H of an EFBF will be called
the minimal Hurst index. In the particular case of a frac-
tional Brownian field, the minimal Hurst index is the usual
Hurst index. Since it gives the Holder regularity of an EFBF,
the minimal Hurst index can be considered as a fundamen-
tal parameter which characterizes the texture of an EFBF.
Note also that the minimal Hurst index of an EFBF is related
to the Hausdorff and Box-counting fractal dimensions of its
graph G(X) = {(y, X(»)); y € [T, T1*} (we refer to [27]
for the dimension definitions). According to Theorem 6.1
of [50], since X satisfies assumption (C1) with N =d and
Hj=Hforl<j<d,weget

dimy G(X) =dimgG(X)=2+1— H=3— H, )
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almost surely, for any 7 > 0. However, since it is direction-
independent, the minimal Hurst index does not capture any
anisotropic feature of an EFBF.

In [12], Bonami and Estrade proposed to use windowed
Radon transforms of a field to get information about its
anisotropy. These transforms are defined for any direction
6 € S! by projecting a field X along lines of R? directed by
6+ e S' with 6+ perpendicular to 6:

V@, eS' xR, R,X(6,1) =f X (6% +10)p(s)ds,
R
(®)

where p is a window function of the Schwartz class such
that [ p(y)dy = 1. For any direction 6 € S, the obtained
process Rg X = {R,X(0,1),t € R} is Gaussian with a spec-
tral density given by

VpeR, Rof(p)= /R FEOT + po)|p(E) |2 de, )

where f is the spectral density of X. When X is an EFBF,
the spectral density of RyX checks condition (i) of Theo-
rem 2.2 for 8 = h(0) + 1/2 [12]. As a consequence, the
Holder regularity of the projected field Ry X is equal to
h(0) + 1/2. Hence, the regularity of a projected field is di-
rectly related to the directional Hurst index of the field in the
direction along which the projection is done.

Another approach for viewing a field X in a given di-
rection consists in restricting X to lines oriented in the di-
rection. The restriction of a field X on a line A identified
by a point 7y of R? and a direction 6 of S! is defined as
XA ={X(to+19);t € R}. If X is a GFSD, any restriction
X a is Gaussian with a spectral density given by

VpeR, fa(p)= /R fEOF + ph)de, (10)

where f is the spectral density of X. When X is a
two dimensional EFBF, the spectral density of X satis-
fies conditions (i) and (ii) of Theorem 2.1 for 8 = H =
essinf[_r )(h) and any line A. Consequently, the critical
Holder exponent of the restriction X o is constant and equal
to the minimal Hurst index, whatever the direction of the
line A. Therefore, the Holder regularity of line-restrictions
of an EFBF does not provide any directional information
about the Hurst index. However, let us mention that line-
restrictions can give some information about the topothesis
function 6 € S' > vx(9) of X (see [6] for instance).

2.3 Generalized Quadratic Variations

As previously mentioned, the Hurst index /(6) of an EFBF
in a given direction € can be deduced from the Hurst index of
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the projected field R, X (9, -) perpendicular to this direction.
As a consequence, the problem of estimating the directional
Hurst index of an EFBF reduces to the problem of estimat-
ing the Hurst indices of projected fields. But, the projected
fields of an EFBF can be considered as generalizations of
fractional Brownian motions (fBm). Hence, for the estima-
tion of the directional Hurst index of an EFBF, it is possible
and relevant to use techniques which have been developed
for the estimation of the Hurst index of a fBm.

Up to now, many estimators of the Hurst index of a fBm
have been proposed (see [21] and [5] and references therein
for a review). The maximum likelihood estimator and the
related Whittle estimator [9] are often used to analyze fBm
with long-range dependence (H € (1/2, 1)). These estima-
tors are consistent and have an asymptotic normality. How-
ever the assumption that H > 1/2 is often restrictive. Other
estimators are defined by filtering discrete observations of
fBm sample paths. This is the case for the wavelet-based
estimators [1] or the generalized quadratic variations stud-
ied in [35, 39]. Such estimators are particularly interesting:
(i) they can deal with a large class of Gaussian fields which
includes all fBm without any restriction on the range of H,
(i) they are also consistent and have an asymptotic normal-
ity. In [11], we constructed a technique for the estimation of
the directional Hurst index based on generalized quadratic
variations.

We now present the principles of the estimation by gen-
eralized quadratic variations on a Gaussian process Y with
stationary increments and a spectral density f. Let

(3 )oseer

be an observed sequence. We consider the stationary se-
quence formed by second-order increments of ¥ with step
u €N\ {0}

+2 +
VpeZ, ZN,u<Y)<p>=Y<pN ”)—2Y(pN“>

p
Y{—=). 11
+ ( N) 1)
The generalized quadratic variations of Y of order 2 are then
given by

N—2u

> @) (12)
=0

VNu(Y)Z
’ N =2 1
u+ =

Note that

E(VN.u(Y)) = E(ZNn . (Y)(0))?)

A (3)-(3) o)



J Math Imaging Vis (2010) 36: 227-240

231

Comparing this equation to (5), we can interpret E(Vy_,(Y))
as a second order discrete derivative of the variogram of Y
around 0. Moreover, according to Proposition 1.1 of [11],

E(Vyu(Y)) ~ cyN2Hy2H
N—+o0

for some cy > 0, whenever the spectral density f satisfies

F@ clg|72H=1, with H € (0, ) and ¢ > 0. Thus,
—+00

we can intuitively define an estimator of H as

- 1 Vna2(Y

Hy = log( L )). (13)
2log(2) Vn1(Y)

In [35] and Proposition 1.3 of [11], the convergence of this
estimator to H with asymptotic normality was shown under
some appropriate assumptions on the variogram of Y or on
its spectral density.

In the context of the EFBF, we use the generalized
quadratic variations of the projected fields. We denote
Vi ,u(0) the variations of the projection ¥ = R, X (0, -) de-
fined by (8) and (12). In Theorem 2.3 of [11], we established
that

hy () =

VN,2(0)> 1 h©).  (14)

og - =
2log(2) (VN,I(G) 2 Notoo

almost surely and with asymptotic normality. This conver-
gence is guaranteed provided that the spectral density of
R, X (0, -) satisfies

Ro f(&) =157 ~2 4 i (£ 2O 25y

for any s € (0, 1), which is the case when £ is continuously
differentiable in a neighborhood of 6.

3 Anisotropy Tests

In this section, we construct some statistical tests which
make it possible to decide whether an observed EFBF is
anisotropic.

3.1 Definitions

Let X be an EFBF with a directional Hurst index 4 and
a minimal Hurst index H = essinf{_; »)h. The field is
isotropic if h = H or at least, it can be considered as
isotropic if H = esssup[_, ).

So, ideally, one could try to test

the null-hypothesis Hy : # = H (isotropy) against
the alternative hypothesis Hj :

301 # 6, h(61) # h(6>) (anisotropy).

However, such a test requires the estimation of the Hurst
index A in all directions. In practice, this implies the dis-
cretization of the Radon transform in an arbitrary direction.
But, when the direction is neither horizontal nor vertical,
such a discretization requires some interpolations of the ob-
served field. Hence, the estimation of the Hurst index can
be biased. In order to avoid interpolations and have a reli-
able implementation of the test, we restrict the test defini-
tion to the vertical and horizontal directions. Let 6; = (0, 1)
and 9, = (1, 0) be the vertical and horizontal directions of
the plane, respectively. Let A1 = h(61) and hy = h(6,) de-
note the Hurst indices in those directions. We test the null
hypothesis

Hy : h1 = hy (weak isotropy I) against
H; : i1 # hy (anisotropy).

Let us emphasize that the null hypothesis does not im-
ply isotropy of the field. However all isotropic fields sat-
isfy this condition. We call the situation described by Hy
weak isotropy of the first type. Assuming 4 is continuous
in a neighborhood of 6; and 6,, hypothesis H; implies that
H =essinf[_z r)h # esssup|_, , h and therefore the field
is anisotropic. A statistic of this test is naturally defined as

d=|hy — hy|, (15)

where ﬁl = fz(@l) and fzz = fz(@z) are estimators of 41 and
hy defined in (14). We expect the value d to be high when the
field is anisotropic. Hence, the rejection interval associated
to the test is of the form

Ry ={d > c1}, (16)

where ¢ is a positive constant.

This first test evaluates the anisotropy between vertical
and horizontal directions. Hence it cannot detect anisotropic
fields which have the same vertical and horizontal direc-
tional Hurst indices. In order to attenuate this drawback, we
set a second anisotropy test which takes into account the
other directions using an estimate of the minimal directional
Hurst index H. We test

Hy : H = h| = hy (weak isotropy 1)
H; : H # hy or H # h; (anisotropy).

against

In that case, a test statistic is given by
8 = |max(h, hy) — HI, an

where H is an estimator of the minimal Hurst index. The
rejection interval of the second test is of the form

Ry=1{5> e}, (18)
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where c; is a positive constant. Let us again emphasize that
the null hypothesis does not imply the isotropy of the field,
while all isotropic fields satisfy this condition. We call the
situation described by Hy weak isotropy of the second type.

3.2 Convergence Study

Now, we present a convergence result about the test statistic
associated to the first test.

Theorem 3.1 Let X be an EFBF with directional Hurst
index h continuously differentiable in a neighborhood of
01 = (0, 1) and 6, = (1, 0). Then, almost surely

hi—hy —> hy—hy,
N——+o00

where le = ﬁ(@l) and lAzz = fl(@l) are estimators of h1 =
h(61) and hy = h(0,) defined in (14). Moreover, there exists
a positive constant yz(h1 , ho) that only depends on (hy, hy)
such that,

Ny = hy = (hy — ha)) Nﬁwjv(o, Y2y, h)).

This theorem ensures that under the null hypothesis Hy
of the first test, we have

VNd -5 N, y2 )
N—+o0

while under the assumption Hj, almost surely, we have

VNd — + .

N—+00
It also implies that when N is large, the rejection bound
c1 at a level of confidence o of the first test is equal to
y2(h1, h)ta /N, where 1 is the (1 — a/2)-quantile of the
centered and normalized Gaussian distribution. It gives a
theoretical support to the construction of the first test.

This new theorem is proved in Appendix. The first state-
ment directly follows from (14). Note that ﬁl and fzz are cor-
related since they are based on windowed Radon transforms
of the same field X. Surprisingly, these correlations become
negligible as the windowed Radon transform is performed.
Hence the two estimators / 1 and 122 behave almost indepen-
dently. This allows us to establish the asymptotic normality
of their difference formulated in the second statement of the
theorem.

3.3 Implementation
In practice, we observe images on a rectangular grid of size
M+1x M+1, where M = 2" for m € N. In what follows,

we assume that images are realizations of two-dimensional
EFBF observed on the subset {(%, ﬁ), 0<k,I < M}
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of [0, 1]2. The gray-level value x(k,/) of the image at
pixel (k,I) corresponds to the value of the field at location
Gz 37)-

Given an image, the question is to know whether it is the
realization of an anisotropic random field or not.

For the implementation of the anisotropy tests, we first
discretize the different estimators involved in the definition
of the test statistics.

We compute discrete row- and column-wise averages (y;
and y,) of x:

s b = 3 )

i M
ya(k) = 1 gx(k,l).

These averages represent discrete versions of the windowed
Radon transforms, as defined by (8) in horizontal and ver-
tical directions with a function p equal to 1 on [0, 1] and O
outside (—1/M,1+1/M).

For e = 1,2, we then consider subsamples
(¥e(2"k))o<k<2-vm of y., obtained with a sampling factor
v e N satisfying 2"*'u < M. Next, we compute discrete
quadratic variations v, , of these subsamples for dilation
parameters u = 1,2

M

o, = M1+ D (e (sP) =255 (P + yes (p+20))’,

p=0
(20

with s =2" and M = M /2" — 2u.

Finally, according to (14), we define the discrete pro-
jection-based estimator A, of Hurst indices A, in directions
e=1,2

A 1 vY 1
h) = ———1log eZ) _
2log(2) v 2
In [11], we investigated the effect of the discretization on

the estimation. We showed that for e = 1, 2, the estimator fz‘ef
converges to h,, provided that

ey

he—H+1/2
he+1/2

This condition is purely theoretical and cannot be used in
practice. Hence, we also studied experimentally estimators
on synthetic images for varying sampling factors v. When v
is low, estimators underestimate real values. As v increases,
estimators tend to be unbiased but their variances become
larger. For m = 9, we found a trade-off between bias and
variance with a sampling factor v =2.
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For the estimation of the minimal Hurst index H, we use
a line-based estimator. We define discrete line-restrictions
z/g of x in the row and column direction e = 1, 2.

VO<k, <M, ZX0)=x(k, 1) and z5(k)=x(k,1).

(22)

We then compute the discrete quadratic variations w; , of
these restrictions

M—2u

1 . . .
D @) =2z (p+uw) + 2 (p+2w))°,
=0

J
We.u = M —2u
p

(23)

foru =1,2 and 0 < j < M. Next, we compute estimates
hg. of Hurst indices in row and column directions ¢ = 1,2
as

M M
hoo = ) log(;we’z / ,»X_E:w“)' (24)

We finally consider the estimate of the minimal Hurst index
given by

ho = min(ho, hoa). (25)

Using the discrete estimators presented above, we can
define empirical statistics of the anisotropy tests: dv =
|sz — fz§| for the first test and §” = | max(h", }Az;) — ho| for
the second test. We are then able to give an empirical form
to rejection intervals associated to the tests. For the first test,

P=1d" > c}), (26)
and for the second test,
Ry =1{8" > c3}. (27)

The different parameters of the rejections intervals,
namely v, c‘f, and ¢} remain to be set. Since Theorem 3.1
does not provide an explicit value of the variance y 2 (he, he),
it cannot be used to fix the rejection bound c}. This theorem
can neither be used either for setting an optimal sampling
factor v. Hence, as described in the next section, the test
parameters are set experimentally using synthetic data.

3.4 Numerical Study

We generated a dataset of synthetic EFBF of size 512 x 512.
This dataset has two parts. The first part contains 7 subsets
of 1000 isotropic fields obtained using the exact simulation
technique of Stein with 7 different Hurst index values [47].
The second part contains 6 subsets of 1000 fields simulated

Table 1 Bias and variance of the test statistics c?o, d? and $? obtained
on Stein’s simulations of (isotropic) fractional Brownian fields. The
value p is the percentage of simulations classified as isotropic using
the anisotropy test corresponding to the statistics

h d+to 4 d*+o V4 $2+o P

0.1 —0.02+0.1 89 00+£0.17 91 0.094+0.07 91
0.2 00+£008 95 0.01+0.16 94 0.08+0.06 93
03 —0.01£0.09 93 00+£0.16 94 0.08+0.06 96
0.4 0.0+£0.08 96 00+£0.16 94 0.08+0.06 93

0.5 0.0£0.08 97
0.6 0.0+0.07 98
0.7 0.0+0.06 99

0.01+£0.14 98
0.01£0.14 97
00+0.13 99

0.07£0.05 97
0.08+0.05 97
0.07+0.05 99

T 0.0£0.08 95 00£0.15 95 0.08£0.06 95

using the spectral method [11] with various pairs of parame-
ter values (K1, hy). We applied projection-based estimators
flg (21) with different sampling factors v for the estimation
of Hurst indices of each simulated field in two directions
(e = 1: row direction, ¢ = 2: column direction).

We evaluated the accuracy and precision of the estima-
tion of the Hurst index difference d by estimators dv =
|f1‘1’ — fzg |, for v =0, 2, and of § by the estimator 52, Results
are reported in Table 1. Concerning the estimation of d, the
accuracy depends on the Hurst index that is estimated. How-
ever, the precision is quite stable: it is around 0.08 when
v =0 and 0.15 when v =2. We used these precision values
as estimates of the standard deviation of the test statistic d".
This allowed us to set values of rejection bounds associated
to the first test: c(l) =1.96 % 0.08 >~ 0.16 when v = 0, and
c% =1.96 % 0.15>~0.3 when v = 2. In the same way, we set
the bound associated to the second test: c% =0.2.

After setting the parameters, we applied anisotropy tests
to Stein’s simulations. We reported the percentages of cases
detected as isotropic are reported in Table 1. On isotropic
simulations, the tests yield few errors, whatever the value
of the minimal Hurst index, but results are slightly better
when the Hurst index is high. The results of the first test
for v =0 and v = 2, and those of the second test are not
significantly different: the level of confidence of the tests is
about 95 percent.

We also applied the tests to the anisotropic fields simu-
lated with the spectral method. Results are shown in Table 2.
The first test for v = 0 is more powerful than for v = 2.
When v = 2, the test does not detect the anisotropy when
Hurst index differences |h; — hy| are below 0.2 (between
74 and 84% of detection errors). However, the efficiency of
the test is improved as differences increase. Similarly, when
v = 0, the test is not efficient when Hurst index differences
are below 0.2 (between 32 and 43% of errors). However, it
becomes more reliable when differences are above 0.3 (0%
of errors). As mentioned previously, the statistic d° used in
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Table 2 Results of the
anisotropy tests obtained on
spectral simulations of

First test (v =0)
03 05 07 09

First test (v =2)
03 05 07 09

Second test (v =2)
03 05 07 09

anisotropic fractional Brownian
fields. The value p is the 0.3 98 41 43 0
percentage of simulations

e o . 0.5 97 0 0

classified into isotropic cases
using the anisotropy test 0.7 100 32
0.9 100

03 93 74 21 6 03 56 93 36 17
0.5 95 84 22 0.5 89 86 17
0.7 9 719 0.7 96 78
0.9 99 0.9 100

the test with v = 0 is more biased than the one with v = 2.
However, the test yields better results with v = 0 than with
v = 2 because statistic d° is more accurate than d2.

Concerning the second test, the results obtained with
v =2 were better than with v = 0, due to the bias of the
estimator d. Therefore, we only present results for v =2,
when the bias of d” is low. These results are comparable to
those of the first test for v = 2.

The results obtained on anisotropic fields have to be in-
terpreted carefully. Errors might not only be due to statis-
tical tests. They can also be due to the simulation method
itself, which in contrast to the Stein’s method, is approxi-
mate. Hence, we cannot use these results to accurately eval-
uate risks of second type of tests (i.e. the risk of deciding
that a field is isotropic although it is wrong).

4 Application to Mammograms
4.1 Material and Methods

Our database has a total of 58 cases, each case being com-
posed of full-field digital mammograms of the left and right
breasts of a woman. Images were acquired in medio-lateral
oblique position using a Senographe 2000D (General Elec-
tric Medical Systems, Milwaukee, WI), with a spatial res-
olution of 0.1 mm? per pixel (image size: 1914 x 2294
pixels). Images are courtesy of the Department of Radiol-
ogy of the University of Pennsylvania. In each image of the
database, we extracted manually a region of interest of size
512 x 512 within the densest region of the breast. As il-
lustrated in Fig. 2, we then computed the discrete row- and
column-wise projections of each region of interest (19) and
the estimates of the directional Hurst indices in both direc-
tions (21, for v =0, 2). We also estimated the minimal Hurst
index using the line-based estimators given in (25). Note that
in mammograms, vertical (row) and horizontal (column) di-
rections (labeled 1 and 2) correspond to directions perpen-
dicular and parallel to the chest wall, respectively.

4.2 Mammogram Regularity

The estimates of the minimal Hurst index we obtained using
line-based estimators on the extracted regions of interest are
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Fig. 2 A region of interest extracted from a mammogram and its ver-
tical and horizontal projections (case id. 83, feb05, rm)

in the interval [0.18; 0.42], with an average of 0.31 and a
standard deviation of 0.05. In Fig. 3(a) and (b), we see that
the line-based estimates of the minimal Hurst in both direc-
tions have equivalent empirical distributions and are approx-
imately equal on each image. This observation is consistent
with the theoretical result that shows that line-based restric-
tions of EFBF have same Hurst indices in all directions (see
Sect. 3.3).

4.3 Mammogram Anisotropy

In Fig. 3(c), we observe that horizontal and vertical Hurst
index estimates have similar distributions. Standard devia-
tions of horizontal and vertical Hurst indices are about 0.15
and their averages are 0.45 and 0.55, respectively. On av-
erage, the mammograms seems slightly smoother in the di-
rection parallel to the chest wall than in the perpendicular
one. Besides, ranges of minimal and directional Hurst in-
dices are not the same. This is partly due to differences in
the precision of index estimators. However, since the range
difference is above the precision, this also indicates a texture
anisotropy.
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Fig. 3 (Color online) (a) Histograms of the minimal Hurst indices of
mammograms, estimated using horizontal and vertical line-based esti-
mators (ﬁm and ftoz). (b) Horizontal and vertical line-based estimates
of the minimal Hurst index on all mammograms. (c¢) Histograms of

The mammogram anisotropy is further confirmed by re-
sults shown in Figs. 4(a), (b) and (c). In these figures,
we plotted the histograms of estimators which are used in
the different anisotropy tests, and represented the rejection
bounds of these tests by red dashed lines. In Fig. 4(a), there
are about 14% of the mammograms for which the difference
estimate d2 is above the rejection bound. In other words,
the first anisotropy test defined for v = 2 detects very few
anisotropic textures in the database. This is due to the lack
of precision of the estimator d¥ when the sampling fac-

Directional Hurst index H1

(d

the horizontal and vertical Hurst indices of mammograms estimated
using horizontal and vertical projection-based estimators (ﬁ% and ﬁ%).
(d) Horizontal and vertical projection-based estimates of the minimal
Hurst index on all mammograms

tor v =2. In Fig. 4(b), we see that the first anisotropy test
for v = 0 detects more anisotropic textures than for v = 2:
there are about 43% of detected anisotropic cases. Recall
however that anisotropic cases that have different vertical
and horizontal Hurst indices cannot be detected by the first
test. Such cases are better detected by the second test. In-
deed, on Fig. 4(c), we observe that the second test (defined
for v = 2) detects about 60% of anisotropic cases. All of
these results have to be interpreted carefully. They do not
support the conclusion that in our database, there are 60%
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Fig. 4 Histograms of estimators (a) a2 = |fz% — fz%l, (b) d’ = |fz? — ﬁg\, and (¢) 82 = |max(ﬁ2, ﬁ%) — min(ﬁm , fzoz)l. The dashed lines represent

the rejection bounds of anisotropy tests corresponding to each estimator

of anisotropic cases and 40% of isotropic cases. They only
mean that there is at least 60% of cases which, according
to the EFBF model, can be considered as anisotropic with a
confidence level of 95%.

In Fig. 5, we show some examples of extracted regions of
interest, with their corresponding estimator values and test
decisions. Notice that in some cases (e.g. image (a)), the de-
cision of the first test (with v = 0) is “anisotropy” whereas
the one of the second test is “weak isotropy of the second
type”. This is due to the lack of precision of the estimator
82 of the second test. Let us also mention that in some cases
(e.g. image (1)), the decision of the first test with v =2 is
“anisotropy” whereas it is “weak isotropy of the first type”
with v = 0. Such decision difference may be an effect of the
lack of accuracy of the estimator d° of the first test.

5 Discussion and Conclusion

The radiographic appearance of a breast mainly depends on
the distribution and relative amount of adipose and fibrog-
landular tissues it contains. Whereas the adipose tissues are
radiologically translucent and tend to produce dark images,
the fibroglandular tissues attenuate X-ray and increase the
image brightness. The density of a mammogram refers to
the bright image aspect caused by the presence of fibroglan-
dular tissues in the breast. At the end of the 60’s, Wolfe put
forth the idea that the breast cancer risk could be assessed
from the observation of mammogram appearance and pat-
terns [48, 49]. This pioneer work gave rise to an important
medical debate. Later on, some investigators started focus-
ing on the relationship between breast density and breast
cancer risk [13, 14]. They provided the first evidence that
increased breast density is associated to an increased cancer
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risk. This evidence was further confirmed by many subse-
quent epidemiological studies (see [31, 32] for an exhaustive
review). These studies have shown the medical importance
of mammogram density.

In many epidemiological studies, the evaluation of the
density is done qualitatively by radiologists and is thus
subject to inter-observer variability. Hence, early in the
90s, some investigators attempted to define quantitative and
automated measurements of the density using mathemati-
cal tools; see the numerous references in the proceedings
of the International Workshops on Digital Mammography
[3, 26, 28, 38, 45, 51]. In particular, some of these investiga-
tors used the fractal dimension as an indicator of mammo-
gram density [17-19]. More recently, some authors studied
more deeply the stochastic nature of mammogram density
by using stochastic models such as 1/f noise models related
to fractional Brownian fields [16, 30, 33, 40]. As in the work
presented here, these authors went into much efforts to mea-
sure model parameters on mammograms and to empirically
validate models.

Measurements of Hurst-related parameters on full-field
digital mammograms and film mammograms have been re-
ported independently in several papers [16, 17, 19, 30, 33,
40]. Caldwell et al. [19] and Byng et al. [17, 18] used
the Box counting technique to estimate the fractal dimen-
sion on the whole image. They reported estimations ob-
tained on 70 film mammograms. Values are between 2.2
and 2.5 (with an estimated precision of 0.02), which cor-
responds to a minimal Hurst index between 0.46 and 0.77.
Kestener et al. computed the Hurst index on small regions
of size 512 x 512 of film mammograms taken from the
DDSM database [40]. The values of the Hurst index are in
[0.20; 0.35] and [0.55; 0.75] for regions of interest with pre-
dominant adipose and dense tissues, respectively. In [33],
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Image Case id. fzmjn ﬁ% ﬁ% 2 M4 R Z R

(a) 95,jun03,Im 0.32 033 025 007 I 019 A 0.01 I
(b) 76, 0ct03,Im 0.36 0.38 043 005 I 0.05 1 0.07 I
(o) 74, decO4,Im 0.39 050 032 0.18 I 001 I 0.11 I
(d) 86, mar05,lm 0.33 0.35 0.44 0.05 I 028 A 0.11 I
(e) 83, feb05,Im 0.37 0.52 0.45 0.08 I 0.17 A 0.15 I
) 85, mar05,lm 0.26 0.48 0.45 003 I 0.15 A 022 1
(2) 73,decO4,Im 0.35 0.72 055 0.17 I 022 A 037 A
(h) 83, feb05,rm 0.32 0.73 0.47 026 A 0.01 I 041 A
@) 85, mar05,rm 0.26 0.39 0.75 036 A 0.14 I 049 A

Fig. 5 Some regions of interest extracted from mammograms with
their estimated indices. Columns IR give the decisions of the
anisotropy tests based on the estimators d, 4% and §% (A =
anisotropic, I = isotropic)

authors used a spectral method for the estimation of the
regularity coefficient 8 of the 1/f noise model. On 104
regions extracted from 26 full-field digital mammograms,
B € [1.32; 1.44], which corresponds to H € [0.33; 0.42].
In another study, the same authors reported values B =
[1.42,1.51], i.e. H =[0.42;0.51] on extracted regions of
60 film mammograms [30]. These values are in accordance
with those obtained independently in [16]. The values we
obtained using the line-based estimators are close to those
obtained by Heine et al. [33] on full-field digital mammo-
grams: they are slightly lower probably due to (a) the esti-
mation technique difference and (b) to the selection of the

regions of interest which in our study can be of low den-
sity.

Similarly to [16, 30, 33], our experiments confirm the rel-
evance of fractional Brownian models for the characteri-
zation of mammogram density. However, they also reveal
that the isotropy assumption which is behind the mammo-
gram modeling of [16, 30, 33] is not valid in many cases:
around 60 percent of the mammogram textures we stud-
ied could be considered as anisotropic with a high level
of confidence. Hence, we conclude that the EFBF model is
more realistic and relevant than a simple fractional Brown-
ian field model for the description of mammogram tex-
tures.

From a medical point of view, this conclusion suggests
the anisotropy should be taken into account for the analy-
sis of mammogram density and the evaluation of breast
cancer risk. However, the establishment of a relationship
between anisotropy and breast cancer risk is beyond the
scope of this paper. The present research can be seen
as an encouraging starting point for future medical in-
vestigations. Up to now, we have shown that the EFBF
model enables to extract some significant density features
which are not captured by the usual fractional Brown-
ian field model. We have also constructed a mathemati-
cal methodology for analyzing those features. In collabora-
tion with radiologists, we plan to further evaluate the med-
ical relevance of density anisotropy for the assessment of
breast cancer risk and for the analysis of lesion detectabil-
ity.

The interest of this paper is not restricted to results con-
cerning the mammogram application. The methodology we
proposed for characterizing and testing the anisotropy of
fractional Brownian textures is generic. We believe that this
methodology could be useful in many medical applications,
such as the analysis of osteoporosis from bone radiographs.
The methodology includes some original statistical tests of
anisotropy, based on estimates of directional Hurst indices.
We showed a new theoretical result about the estimator con-
vergence, which gives a mathematical foundation to the con-
struction of those tests. The statistical tests were also vali-
dated on simulated data.
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Appendix: Proof of Theorem 3.1

Proof The key point of the proof relies on the introduc-
tion of auxiliary estimators. Let 6; = (0, 1) and 6, = (1, 0).
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Let N,u > 1 and let us denote Zy ,(01), respectively
Zn,u(02), the second-order increments of R,X(61,t) =
Jr X(s,0)p(s)ds, respectively R,X(62,1) = [p X(t,5) x
p(s)ds, as defined by (11). We consider estimators de-
fined from generalized quadratic variations Vy ,(01) and
VNn.u(02) of Zy ,(61) and Zy ,,(62), according to (12), by

Tnu(61) = VN u(01)/E(Vn 4 (01)) and
Ty u(02) = Vi 4 (62) /E(VN,u(62)).

Without loss of generality we can also assume that h; =
h(61) < ho = h(02). Usual computations on generalized
quadratic variations lead to

Tn u(6e) N—> las. with

—> 400

VN(Tn.u(0e) — 1) Vo2 N O 0w ),

for e, u € {1, 2}, where for v € {1, 2}

2
o (he) = C(h + %)/(uv)zhe“E(he + %) e

with Cy o (H) =4) ,c7([p e~IPE (1 — e 11E)2 (] — ¢iVE)2 x
1€172H71d8)? = Cyu(H) and E(H) = [ |7 — D> x
|E|72H~14dg, which are finite positive constants for H €
(0,7/4) (see Theorem 2.3 of [11] for instance). It is straight-
forward that the vector (7w ,(6.))1<c.u<2 converges to
(1)1<e,u<2 almost surely as N — 4-o00. Let us prove the as-
ymptotic normality. Let us remark that for any (a. ;) 1<e.u<2
positive number one can write

> aeu(Tyu®e) — 1)

1<e,u<2

_ 1 T g, BV
E(Vn.10D) | 5= “"E(Vn.u(6e)

=e,u=

X (VN u(0e) — E(VN,u(0,))).
From Proposition 1.1 of [11] we get

E(Vn,1(61))

= b, N2 (1 0 (N7,
BV U+ 2 )

E(h1+%)u_2he—1

: > (. Let us write
E(he+7)

with bey = de.y

D beu N2 Wy 4 (0e) — (VN (Be))

1<e,u<2
J n(N)
2
=) (g y — 1),
k=1
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where n(N) =4N — 8, (&x,N)1<k<n(N) 1S a sequence of in-
dependent standard Gaussian variables and (Ax, n)1<k<n(N)
are the eigenvalues of the covariance matrix of

b, N—20n1—he)
{ e ZNnu@)(p)i 1 <e,u <2,

N-—-2u+1
Ofpr—Zu}.

Let s% = Var(X o yepbeu N 271 (Vy y(0) —

E(VN.u(6¢)))). Following a Lindeberg condition [23] we
obtain

syt D beaN IO (Vi () — E(Viyu(6e))
— NO.1), (29)

as soon as maxi<k<p(N)|Ak,N| = 0 (sn). On the one
- N—+o00

hand, an upper bound for max<g<u(n)| Ak, x| 1S given by

€] max  max N~ Chi=hg=he+1)

1<e,u<20<p<N-2u

1<e’,u’<2
N-—2u’
x Y | CoV(ZN.u(B)(P)s Zi.w (Be) (),
p'=0

for some positive constant c;. According to Proposition 1.2
of [11], one can find ¢; > 0 such that for any 1 <u,u’ <2,

N-2u'

D 1COV(ZNuB) (D), Zy . (0e) (P)]

p'=0
<N~ og(N),

for any 0 < p < N — 2u. There remains to consider the co-
variance terms between Zy ,(01) and Zy ,/(62). Using the
spectral representation of the random field X we get

Cov(Znu(01)(P), Zn w (02) (")
:/ ei%e_ip;Vi(l—ei”%)z(l—e_iul%)z
R2
x f(E)pEDPpE)dE,

where p(&,) = fR /%% p(s)ds is the Fourier transform of the
window function, which belongs to the Schwartz class since
p does. Therefore

| CoV(ZN u(01)(P), Znuw 02)(p'))] < c3N 74,

with

3 = (uu')? /R i E2E2 F(£)P(END(EDAE < +o0.
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As aresult, forany | <u,u’ <2ande #¢/,

N-=2u’

D 1COV(ZNuB)(P)s Zy a0 (P < e3N 2,
p'=0

such that this part will not interfere with the previous as-
ymptotics. Therefore,

max |[Monl= O (N“2~log(N)).
1<k<n(N) N—+o0

On the other hand, since (a,,,)1<¢,u<2 are positive numbers,
using the fact that

CoV(ZNu(0)(P)?, Zn 1w (Be) (PP
=2CoV(ZN,u(Be) (D), Zer w Be)(p))* = 0,

5% > b2 NTHMThINar(Vy , (6)) = eaN =413,

from Proposition 1.2 of [11], for some c4 > 0. Then (29)
holds. Let us remark that E(V;% =/ N/al (h{, hy)al

+ Na0+oo(N71)) with a = (a1,1 a1,2 a2,1 az2) and
o1,1(hy) o12(h1) 0 0
02,1(h1) 022(h1) 0 0
C'(hy,hy) = ’ ’
(k1. h2) 0 0 o1,1(h2) o12(h2)
0 0 02,1(hy) 022(h2)
Hence we get an asymptotic normality for

Z]Se’ugzae,u(TN,u(ee) — 1), for any set (ae,u)lfe,u§2 of
positive numbers. Using tightness criterion and unique-
ness of the limit law we can claim that /N (Tn u(6e) —
1)152,1452 — N(Ov F(hls h2))

N—+400

By Taylor Formula for the function

X1, X2
g(x1,1,x1,2,x2,1, X2,2) =log(—=) — log(—>
X1,1 X2,1

(see Theorem 3.3.11 in [24] for instance) we get that

Ty 2(61) Tn2(62)
log(77@y) — loglzyimy) N too 0

almost surely

. Ty 2(61) Tn.2(62) d
with «/ﬁ(log(&f(ei)) — log(ij(ei))) Nt N(0,

aol'(h1, ho)al) forag=Vg(1,1,1,1) = (=111 —1).
From (14), with & = h(61) and hy = h(6>), we have

210g(2)(h1 — h2)
_ ]0g<E(VN,2(91)) ) n log( Tn.2(61) )
E(Vn,1(61)) Tn,1(61)

B <log<E(VN,2(92))> +log<TN,2(92)))
E(Vn,1(62)) Tn162)))’

with for e € {1, 2}, by Proposition 1.1 of [11],

E(VN,Z(ee)) _ 22he+1
E(Vy,1(6e))

(1+ Nl’m(l/‘/ﬁ))'

Then,

hn

such that, for y2(h1 Lhy) =

I

A ! Ty 2(61)
—hy=h1—h 1 u
2=M 2+2log<2>(°g<TN,1(el))

_ 10g<TN’2(92) )) + N_)o+oo(1/\/ﬁ),

Ty,1(62)

aol (h1,ha)ag
410g(2)2 ’

—/:12 —> hy—hpas., with
N—+o00

Ny = hy — (hy — ha)) N};m/v(o, y2(h,h2). O
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