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Abstract

In this paper, we describe a statistical framework for thed\ais of anisotropy of
image texture. This framework is based on the modeling oirttage by two kinds
of non-stationary anisotropic Gaussian field with statigrinacrements and spec-
tral density: the extended fractional Brownian field (EFBRY a specific Gaussian
operator scaling field (GOSF), which both correspond to eegdization of the
fractional Brownian field. In this framework, we tackle asti®py analysis using
some directional processes that are either defined as a&tiestof the image on
an oriented line or as a projection of the image along a doectn the context of
EFBF and GOSF, we specify links between the regularity @& #nd projection pro-
cesses and model parameters, and explain how field anigataobe apprehended
from the analysis of process regularity. Adapting geneealiquadratic variations,
we also define some estimators of the regularity of line amjeption processes,
and study their convergence to field model parameters. Bgins are also evalu-
ated on simulated data, and applied for illustration to r@&dmages of the breast
and the bone.

1 Introduction

Texture analysis is an issue of particular topicality aretfical importance inimage
processing [11, 23]. Texture, which can be roughly considess a periodic aspect
of images, has been modeled using various mathematicabagipes ranging from
statistical (e.g. Markov random fields [12]) to geometrig(grouplets [24]). Model
definitions have also varied depending on texture propewtgch are focused on.
Among those properties, texture anisotropy is one of thet inggortant. It is not
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only common in natural images [24] but also critical for thealysis of images
generated in a wide variety of domains, including biomet; [L7] material science
[14], hydro-geology [2], industry [13], or medical imagif@ 10, 20, 27].

In this paper, we tackle texture analysis from a probaliligbint of view con-
sidering the image as a realization of a random field whospepties reflect those
of the texture. From this point of view, we deal with the prrhlof estimating pa-
rameters of some anisotropic random field models definedwbelo

(b)

Fig. 1 Oriented analysis of a texture from (a) line processes anpr(jection processes.

Texture anisotropy can be analyzed in a local way by compgutiiented dif-
ferential estimators at each image point [18, 26, 28]. Alaely, anisotropy can be
apprehended from processes extracted from image [9, 13eRfgrline-process
defined by restricting the image on oriented lines of the iedgmain, oprojection-
processobtained by projecting the image parallel to a given digactisee the illus-
tration on Fig. 1 and definitions in Eqgs. (5) and (7) of SecErdm these processes,
anisotropy can be analyzed by looking at regularity vasiaiof processes when the
extraction direction changes.

Here, our goal is to set up a statistical framework in whicls@tnopy can be
consistently estimated using line and projection processe

For defining this framework, we follow the set up of [9] debangd-dimensional
Gaussian random fields (with stationary increments) focWlte variogranv (see
definition in Eq. (4) of Sect. 2) is of the form

VxeRd,v(x):/ eiX'Z—l‘zf(Z)dZ, )

RrRd

wheref is a positive even measurable function called spectralityeansd satisfying
the condition fa (1A [{[?) f({)d{ < w. In this set up, we focus on two models
defined in dimensiod = 2.

The first model, referred to as extended fractional Browrdiall (EFBF), is
defined with a spectral density
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where arg() is the direction of the frequency andh is a measurable periodic
function defined on the unit spherg?® of R? and ranging infH,M] C (0,1) with
H = essinfgcsh(6) andM = esssupysh(0). The fractional Brownian field, which
is isotropic, is a particular case of EFBF obtained whenfiond is almost every-
where constant.

The second model, which can be seen as a Gaussian operéitty §ietd [2, 5]
(GOSF), is defined with

V{=({1,02) € R?, f(¢) = (le_i_ZZZa)*B, @)

wheref3 = H;, + (1+1/a)/2 anda = H,/H; for some 0< H; < H, < 1. The frac-
tional Brownian field is a particular GOSF obtained wh&n= H,.

Since their spectral density depends on spectral diregti@mvious models are
both anisotropic. Their anisotropy is characterized by ehpdrameters, which are
the directional Hurst indek for EFBF and constantd; andH, for GOSF. Hence,
characterizing the anisotropy of these fields reduces imathg their parameters.
In the sequel, we specify links between the regularity o land projection pro-
cesses and model parameters, and explain how field anigataobe apprehended
from the analysis of process regularity. Adapting geneealiquadratic variations,
we also define some estimators of the regularity of line armjeption processes,
and study their convergence to field model parameters.

2 Main Properties
2.1 Random fields

Let(Q,«7,P) be a probability space. A-dimensional random field is a map from
Q xRY%intoR such thak (-,y) := X(y) is a real random variable a@ for ally € R,
Whend = 1, X is rather called a random process. A random field is Gaussényi
finite linear combination of its associated random variglidea Gaussian variable.
A centered Gaussian field is characterized by its covariance functidy.z) —
Cov(X(y),X(z)). Afield X has stationary increments if laws governing fieXds+
2)—X(2) andX(-) — X(0) are the same for atic RY. The law of a centered Gaussian
field X with stationary increments is characterized by its vaaogrdefined by

vy e RY, v(y) = e((X(y) — X(0))?). (4)

Gaussian fields with stationary increments and variogratheform (1) will be
referred to as Gaussian fields with spectral density. TheFE&BI GOSF defined
by Eqg. (2) and (3) in introduction are two examples of thedesieF-rom now on,
we consider random fields for= 2, corresponding to 2-dimensional images.
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2.2 Line and projection processes

We now define line and projection processes which can bea&ttdrom a two
dimensional fieldX.

Definition 0.1. A line process%, ¢ X is the restriction of a fiel on a line identi-
fied by a pointg and a directior® of R?:

Yt R, %, oX(t) = X(tg+16). (5)

We will specifically denote byZpX the process on the line oriented in directi®n
and passing through the origin.

Interestingly, ifX is a Gaussian field with spectral densftythe process#, ¢X is
also Gaussian with spectral density [3]

W ER, fLo(v) = / f(£0" +vO)de. (6)
R
Definition 0.2. A projection process”y X of a field X is a windowed Radon trans-
form of a fieldX in a directiond of R2. Given a window functiom of the Schwartz

class such thaf, p(y)dy =1, itis defined as the projection ¥falong lines oriented
in the directiond through the windovp

vt € R, PoX(t) :/RX(SGLHB)p(s)ds (7)

If X is a Gaussian field with spectral densftythe projection process is also Gaus-
sian with spectral density

W ER, ng(v):léf(59l+v9)|ﬁ(f)|2df, ®)

wheref is the spectral density of.

2.3 Process regularity

For the description of the regularity ofdadimensional random field, we recall the
usual definition of Holder exponents. Fbr> 0, sample paths of satisfy a uniform
Holder condition of orden € (0,1) on [T, T]¢ if there exists a positive random
variableA with P(A < +) =1 such that a.s.

vy.ze [T, T)% X(y) - X(2)| < Aly—2. (9)

This equation gives a lower bound for the Holder regulasitya field. The critical
Holder exponeng of a field (if it exists) is defined as the supremunmoofor which
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the Holder condition (9) holds when it equals the infimunardbr which the Holder
condition (9)does not hold [9]. From an image point of vielg tritical Holder
exponent of a field is related to the roughness of the texthee:ougher the texture
is, the smaller the field regularity is.

For Gaussian fields with spectral density, the Holder ragtyl can be charac-
terized from the local behavior of the variogram around Oronf the asymptotic
behavior of the spectral density at high-frequencies [7, 9]

Proposition 0.1.Let X be a d-dimensional Gaussian field with spectral derfsity
and variogram v.

(@) LetO < a < y < 1. If there exist AB1,B, > 0 and a positive-measure subset E
of the unit sphere”9-1 of RY such that for almost alf € R¢,

(i) |&]>A=|f(&)| <By|&|729 9

(ii) €] > Aand g € E = [ ()] > Ba|€[ 72

then, there exisd > 0 and G,C, > 0 such that for all ye R,

(iii ) ly| < & = Caly|% < v(y) < Caly|?

(b) If Condition (iii) holds for anyor, ywith 0 < o < 8 < y < 1thenp is the critical
Holder exponent of X.

Let us notice that for random processes, we can use a ddiimfithe Holder
regularity which holds fof3 > 1 [7, 9]. Similarly to Proposition 0.1, this extended
Holder regularity is also characterized by a behavior efthriogram around O or
an asymptotic decay of the spectral density [7, 9].

We now state a theorem concerning the regularity of line ggses associated to
Gaussian fields with stationary increments.

Theorem 0.1.(a) Let X be a 2-dimensional Gaussian field with stationagren
ments and assume that the line processes of X haldeHexponents in all direc-
tions. Then, Blder exponents of line processes are the same in all direstiexcept
possibly in one direction where it is higher than in othereditions.

(b) Inthe particular case of EFBF with spectral density deflas in Eq. (2), idlder
exponents of line processes are equal te=Hssinfy h(0) whatever their direc-
tion.

(c) Inthe particular case of GOSF with spectral density dedias in Eq. (3), ldlder
exponents of line processes are equal {drHall direction except in directior0, 1)
where it is equal to bl

Proof. Proofs of parts (a) of Theorem 0.1 can be found in [9, 13]. Téx {b) and

(c) were demonstrated in [3, 9] using Proposition 0.1. Esaiy in the case EFBF,
the spectral density g of a line process (see Eq. (5)) always satisfies conditions
(i) and (i) of Proposition 0.1 fof3 = H = essinfgsh(0), whereas in the case of
GOSF, it checks those conditions fBr= H, in direction(0,1) and for3 = Hj in

all other directions.
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As stated by Theorem 0.1, the anisotropy of a Gaussian figlistationary incre-
ments has a specific display on the regularity of line prazeds some cases (e.g.
EFBF), the anisotropy is simply not observable from linegasses whose regularity
does not vary according to direction. In other cases (e.gSBQ0it is only observ-
able in a single privileged direction where the regularitjiree process is different
from the others. In any cases, there can be at most one dinextiere the regularity
of the line process varies.

Theorem 0.1 also implies that the anisotropy of EFBF and G@&ihot be
analyzed in the same way: whereas the line processes aessigel capture the
anisotropy of EFBF, they can help enhancing a privilegeeaion of GOSF.

Next, we state a theorem about the regularity of the prajagirocesses of EFBF.

Theorem 0.2.Let X be an EFBF with spectral density defined as in Eq. (2). The
Holder regularity of the projected field?y X is equal to [i6) + 1/2 for all directions
6 of R?.

Proof. It was proved in [9] by checking asymptotic conditions on $pectral den-
sity of projection processes.

According to this theorem, the anisotropy of an EFBF is olmae in projec-
tion processes since their regularity is directly relatedhe directional function
h. Hence, projection processes are better suited than loeepses for the charac-
terization of EFBF anisotropy.

3 Parameter estimation

In the previous section, we state several theorems showaigarameters of EFBF
and GOSF are linked to the regularity of either line or priggcprocesses extracted
from the field. Therefore, the problem of estimating the paeters of these fields
eventually reduces to the problem of estimating the regulaf several processes.
Moreover, the line and projection processes of EFBF and G&&aussian with
stationary increments and can be seen as generalizatifrastidnal Brownian mo-
tions (fBm). Hence, the regularity of these processes cagsbimated using tech-
niques developed for the estimation of the regularity pateamof a fBm (Hurst
index).

There are numerous estimators of the Hurst index in theatitiee (see [1] for
a survey). Here, we focus on generalized quadratic vanafié, 15, 19] and show
how they can be adapted to the estimation of EFBF and GOSgaees.

3.1 Generalized quadratic variations

LetY be a Gaussian process with stationary increments and apeetrsityf, and
{y (%) ;0<k <N} be an observed sequenceYofLet us consider the stationary
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sequence formed by second-order incrementwith stepu € N~ {0}

Vpez, ZN,U(Y)(D)Y<D—:;IZU> v (%“) +Y(£). (10)

Generalized quadratic variationsYoof order 2 are then given by
1 N—2u 5
Vnu(Y) = N—2ur1l pr (Znu(Y)(P)". (11)

By stationarity of increments, we ha®Wy u(Y)) = E((Znu(Y)(0))?). Besides,
according to [7], ad tends to+oo,

E(Vnu(Y)) ~ cyN~2Hu?H,

for somecy > 0, whenever the spectral densftysatisfiesf(E)N‘EHMCEFZH*,
with H € (0,2) andc > 0. Thus, we can intuitively define an estimatotbfs

~ 1 Wn,2(Y)
H = 2log(2) log <VN,1(Y)> ' ¢

In [7, 15], the convergence of this estimatorHowith asymptotic normality was
demonstrated far € (O, %) under some appropriate assumptions on either the var-
iogram ofY or on its spectral density.

3.2 Convergence results

For the estimation of parameters of EFBF or GOSF, we applg@gdized quadratic
variations to processes extracted from the field and defimaa®rs by comparing
variations at different scales as in Eq. (12). In this wayseline-based estimators
hk(8) and projection-based estimatd$(6)

L1 Wn,2(ZpX)

Vo, hy(0) = 2109(2) log (VN’:L(ZQX)) )
1 W 2(P9X)

V97 hﬁ(e) - 2log(2) IOg <VN71(326X)) 7 (14)

where.£pX, ZgX, andVn u(Y) are defined by Egs. (5), (7) and (11), respectively.
In what follows, we state several theorems concerning thevergence of these
estimators.

Let us start with the estimation of parameters of an EFBF.

Theorem 0.3.Let X be an EFBF with spectral density defined as in Eq. (2),&nd
be a direction in the unit spher#’?. Assume that h is Lipschitz of orderc (1/2,1]
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on.71. Then, almost surely,

Jm_(F&©)-3) =nie) (15)
and, in law,
Jm VR (F(0)- 5 - h(e) ) =1 (0. (19)

for some positive constant K.

Proof. According to Proposition 2.1 of [7], the spectral densitytlodé projection
processZy X satisfies assumptions of Theorem 4.1 of [4] and thereforédes.3
of [4] gives the result.

This theorem ensures the consistencifpfs an estimator of the directional func-
tion h of an EFBF, together with its asymptotic normality. Theor@/® only con-
cerns the convergence of a projection-based estimatoineltan a single direction.
In [27], we showed another result on the convergence of coatioins of estimators
in different directions.

Theorem 0.4.Let X be an EFBF with spectral density defined as in Eq. (2). Let
6o = (0,1) and6;- = (1,0). Assume that h is Lipschitz of ordere (1/2,1] on.71.
Then, almost surely,

im (RR(8) ~ R (85') ) = h(Bo) — (G ). (17)

N—c0

and in law,

im VN (AR (80) ~ iR (85) — (h(B) ~h(63))) =+ (0.K),  (18)

N—+o0
for some positive constant K.

Proof. This result follows from Theorem 3.1 of [27] under the weaissumption
thath is Lipschitz of orderr € (1/2,1] on.#* and not continuously differentiable.
The proof may be adapted using Theorem 0.3 since it only iakesccount corre-
lations between combined estimators, which remain unatdingder this assump-
tion.

This theorem is useful to construct hypothesis tests obamipy [27]. In these tests,
the hypothesis of field isotropy will be rejected if the sttti

51 = | (6) — AR (65)] (19)

is above a bound (see Sect. 4). This bound can be computedyfde\ael of confi-
dence using simulated data.
We have also defined another anisotropy test which is bas#temiatistic
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& = |max(hfy(60). AR (85')) — min(Ay (6o). Py (65))1. (20)

For this test, the isotropy assumption is rejected} ifs above a bound.
Now, let us turn to the estimation of parameters of a GOSF.

Theorem 0.5.Let X be a GOSF with spectral density defined as in Eq. (3). Let
6 = (61, 6,) be a direction in the unit spherg’™.
(a) If 61 = 0 (privileged direction), then almost surely

Jim hk (8) = Ha. (21)
otherwise, almost surely, .
Jim hi(8) = Hy. (22)
(b) The convergence in law
lim VN (A5 (8) —H) = .+ (0,K), (23)

N—+o0

occurs wher9; = 0 with H = Hy, when6, = 0 with H = Hy, and whenf; # 0,
6, # 2and a= Hy/Hy > 2 with H = Hj.
(c) When a< 2 and 6; # 0, we only have

E((A5(8) ~ Hi)?) = On-s s (N72012/3)) (24)
Proof. See [3].

This theorem ensures the consistencylpfas an estimator of the directional con-
stantsH; andH, of an GOSF. In this case, the asymptotic normality of estimsat
is guaranteed in all directions provided that the tds¢H, is large enoughi,e. the
anisotropy is marked enough.

4 Numerical study

The numerical study of estimators is usually done on a setrihstic realizations of
the random field with known parameter values. Thereforegtires a good (ideally
exact) method for the simulation of field realizations. Bbt exact simulation of
EFBF or GOSF is an open issue we are still working on. Heneentimerical
evaluation of estimators are not completely feasible.

To our knowledge, simulations methods for Gaussian fields gpectral den-
sity come down to Fourier methods which generates apprdginealizations with
properties that may differs from the theoretical ones [FHef® is however an exact
method which was proposed by Stein [29] for the simulatiofisaftropic) fractional
Brownian fields. But it can be hardly extended to the simafatf anisotropic fields
such as EFBF or GOSF.
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(3.a) @3.b)

Fig. 2 Exact simulations of fractional Brownian field of increagiiurst indexH (Stein’s
method): (1.a)H = 0.3, (1.b)H = 0.5, (1.c)H = 0.7. Approximate simulations of extended
fractional Brownian field (Turning-Band method): (2@;,H,) = (0.2,0.5) , (2.b) (H1,Hyz) =
(0.5,0.7), (2.c)(H1,Hy) = (0.2,0.7). Ad hocsimulations of Gaussian operator scaling fields: (3.a)
(H1,H2) = (0.7,0.8), (3.b) (H1,Hz) = (0.5,0.8), (3.c) (H1,Hz2) = (0.3,0.8).

Some simulation examples shown on Fig. 2 illustrate somealiteatures of
different fields under studies. Realizations of fractioBedwnian fields were ob-
tained using the Stein’s method. EFBF were simulated ustogiéng-band method
adapted from [22], which is still under investigation [6}. these simulations, the
spectral density was specified with

V0 = (61,6) € 71, h(8) = |61|H1+ (1— |64])Hy, (25)

for some selected paifsi;, H,) in (0,1)2. The third series of fields are not precisely
GOSF. There are just simulations of fields having a variogo&the formv(x) =
c1|xa|Mt + ca|x2|™2 and showing a privileged direction.

Our early numerical studies were based on Fourier simulgitid EFBF [7, 27].
Here we give some preliminary results based on a turningtisanulations. We
simulated sets of EFBF of siz&12x 512) with spectral density of the form (25),
applied line- and projection-based estimators in two dio@s (horizontal and verti-
cal) to simulations, and then computed biases and standaiatins of estimators.
Results are reported in Table 1.
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Mo @) | M) | M) | MGy

0.2/0.2[|0.003+0.0030.003+0.003(-0.08+0.13-0.05+0.11
0.5]0.5[|0.003:0.0030.003+0.003(-0.01£0.15-0.04+0.14|
0.7]0.7[|0.003+£0.0030.003+0.003(-0.02+0.13-0.04+0.13
0.2/0.5[|0.053:0.0030.083+0.003(-0.02+0.16-0.08+0.13
0.2/0.7[|0.060£0.0050.088+0.003(-0.06+0.17-0.29+-0.15
0.5]0.7(|0.044+0.0040.096+0.003(-0.03+0.13-0.04+0.12

Table 1 Evaluation of line- and projection-based estimators os e€tl00 extended fractional
Brownian fields simulations (Turning-Band method) witHeliént Hurst indices (biasstd).

Applied to these simulations, both line-based estimatpm@&imate the regu-
larity H = min(Hy, H»), whereas projection-based estimators give an approomati
of Hi or Hy, depending of their direction. Standard deviations of-lr@sed estima-
tors are very small (below 16) compared to those of projection-based estimators
(above 101). This is due to a sub-sampling procedure we apply to priojesso as
to reduce the bias of projection-based estimators [7].€Bia$line-based estimators
are also very small, especially when simulated fields atedp@ (Hy = Hz). How-
ever, as the field anisotropy increasidstends to be overestimated. This might be
due either to a simulation artifact or a property of the eaton Biases of projection-
based estimators are reasonably small; most of them arevdelol. When the
anisotropy is largeH; = 0.2 andH, = 0.7), the highest directional regularity is
however underestimated.

First test Second test
h(60)[h(65) (2] p [ P
0.2 | 0.2 [[0.01£0.16 94 || 0.08+0.06 93
0.5 | 0.5 |[0.01=0.14 98 || 0.07+0.05 97
0.7] 0.7 0.40.13 99| 0.07+0.05 99
0.2 0.5 0.4-0.10 53 [-0.08+0.0¢ 39
0.2 | 0.7 |[-0.1+0.10 36|-0.28+0.06 32
0.5 | 0.7 |[-0.1:0.06100]|-0.12+0.04/10

Table 2 Evaluation anisotropy tests on sets of 100 extended fraaltiBrownian fields simula-
tions (Turning-Band method) with different Hurst indicdsast-std ; p =percent of realizations
considered isotropic).

In Table 2, we present an evaluation of isotropy tests defividtl statisticsd,
and¢, given by Egs. (19) and (20). Observing biases and variarfc@sandd, on
isotropic simulations, we set rejection bounds for isoyrtgsts so as to get a level
of confidence of 95%. We applied isotropy tests to all simorfet and compute
the percentage of images considered isotropic in each afionlsets (valu@). On
isotropic simulations, we observe that tests effectivelydt the isotropic cases with
a high level of confidence. On anisotropic cases, resultw shat tests can detect
anisotropy only if the anisotropy is markedh(@) — h(8;)| > 0.2). In simulation
cases when anisotropy is the largesty) = 0.2 andh(6; )| = 0.7), the risk of
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second species.¢. the probability of considering that an anisotropic redl@ais
isotropic) is still high for both tests (around 35%). TheKkaxt sensitivity of tests
to anisotropy is mainly due to the large variance of progaethased estimators. We
are currently working on the improvement of estimator psieci.

5 Applications

We present two applications of the statistical frameworkcdi®ed above. In these
applications, images are either breast radiographs (marants) or bone radio-
graphs, both being used by physicians in clinical routink [27]; see Fig. 3 for
illustration.

Fig. 3 Regions extracted from (a) a radiography of the calcaneuhe¢abone) and (b) a mam-
mogram (breast radiography).

In [3, 27], we could show on some database that both imagearisetropic.
Assuming mammograms to be realizations of EFBF and apphymgptropy tests
on them, we obtained that 41 percent of mammograms could bsidared as
anisotropic with a level of confidence of 95% [27]. This amispy can be seen
both, on Fig. 4 (b), where horizontal and vertical projectitased estimates are
plotted for each mammograms, and on Fig. 4 (c), where themanxiof horizontal
and vertical projection-based estimates is plotted agdiesninimum of horizontal
and vertical line-based estimates.

The anisotropy of bone radiographs can be observed on Figh&re couples
of line-based estimates in different directions (horiabntertical, or diagonals) are
plotted for each images. It can be seen that in the vertica¢tiond;-, the regularity
tends to be higher than in the three other directions; thexton corresponds to the
axis of longitudinal trabeculae of the bone. Hence, acogrth Theorem 0.1, GOSF
would be better suited than EFBF for the modeling of boneog@iphs.

The anisotropy of mammograms is different from the one ofeb@uiographs.
According to Figs. 4 (a) and (b), it seems not to be detectelthes. Contrarily to
bone radiographs, mammograms would be better describe&Biz.E
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- S (l;) i e (::) s

Fig. 4 Line- and projection-based estimates obtained on 116i&ltl-digital mammograms (pri-
vate database, courtesy of P. Bakic and A. Maidment from .UsfivPennsylvania): compar-
isons of (a)hk (6p) (abscissa) and(6;), (b) hY(6) andhy (6;), and mir{h (6y),hk(6;)) and
max(hR (6o), R (61)). [directionsfy = (1,0) (horizontal),8; = (0, 1) (vertical)].

) .

L ]

@

0 o1 0z 3 04 05 o8 07 o8 o 01 0z 03 04 05 08 7 08
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Y 3
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Fig. 5 Line-based estimates obtained on 211 calcaneum radicgr@attabase of Inserm unit
U658 [21]): comparisons of (d)(6o) (abscissa) ant (6;) (ordinate), (b)hk (6) andhi (65,
(c) hiy(61) and hiy(6;"), (d) hiy(6) and hiy(6y ), (e) hiy(8y) and hiy(61), and (f) hiy(6,") and
hk, (81-). [directionsB, = (1,0) (horizontal),8;- = (0,1) (vertical), 3:6; = (1,1)/+/2 (diagonal),
4: 6 = (—1,1)/v/2 (diagonal)].

Previous experiments are preliminary steps of a multigls@ry project which
concern the evaluation of (a) breast cancer risk and (b) fracture risk due to os-
teoporosis [8, 25, 27]. In the context of this project, tmeland projection estimates
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are used as descriptors of image aspect. By combining susdmiprs to known
clinical risk factors, we aim at improving the evaluationbaith risks.

Acknowledgements

This work is part of the research program MATAIM, supportecie Agence Na-
tionale pour la Recherche (ANR-09-BLAN-0029-01) and thstitat National du
Cancer (INCA, 2009-1-SHS SP-01-UP5-1).

References

1. J. M. Bardet, G. Lang, G. Oppenheim, et al. Semi-paramesiimation of the long-range
dependence parameter: a surveyT leory and applications of long-range dependemeges
557-577. Birkhauser Boston, 2003.

2. D.Benson, M. M. Meerschaert, B. Baumer, and H. P. Scheflguifer operator-scaling and
the effect on solute mixing and dispersiofvater Resour. Res42:1-18, 2006.

3. H. Biermg, C.L. Benhamou, and F. Richard. Parametricnesion for gaussian operator
scaling random fields and anisotropy analysis of bone radpgtextures. In K. Pohl, editor,
Proc. of the International Conference on Medical Image Cotimgy and Computer Assisted
Intervention (MICCAI'09), Workshop on Probabilistic Mdddor Medical Imaging pages
13-24, London, UK, september 2009.

4. H. Biermé, A. Bonami, and J. R. Ledn. Central limit theois and quadratic variations in
terms of spectral densityreprint, 2010.

5. H. Biermé, M. M. Meerschaert, and H. P. Scheffler. Operataling stable random fields.
Stoch. Proc. App).117(3):312—-332, 2007.

6. H. Biermé, L. Moisan, and F. Richard. A turning-band noethfor the simulation of
anisotropic fractional brownian field& preparation 2010.

7. H.Biermé and F. Richard. Estimation of anisotropic gasfields through radon transform.
ESAIM:P& S 12(1):30-50, 2008.

8. H. Biermé, F. Richard, M. Rachidi, and C.L. Benhamou. s@friopic texture modeling and
applications to medical image analysis. ESAIM Proceedings: Mathematical Methods for
Imaging and Inverse Problempages 100-122, 2009.

9. A. Bonami and A. Estrade. Anisotropic analysis of somesseaun modelsJ. Fourier Anal.
Appl,, 9:215-236, 2003.

10. B. Brunet-Imbault, G. Lemineur, C. Chappard, et al. A r@msotropy index on trabecular
bone radiographic images using the fast Fourier transf@&mC Med. Imaging5(4), 2005.

11. M.J. Chantler and L.J. Van Gool. Editorial: Special &ssm texture analysis and synthesis.
Int. J. Comput. Vis.62(1-2):5-5, April 2005.

12. G. Cross and A. Jain. Markov random field texture mod#&E Trans PAMJ 5(1):25-39,
1983.

13. S. Davies and P. Hall. Fractal analysis of surface roeghiby using spatial datd. R. Stat.
Soc. Ser. B61:3-37, 1999.

14. C. Germain, J. P. Da Costa, O. Lavialle, and P. Baylou.tistidle estimation of vector field
anisotropy application to texture characterizatiSignal Process83(7):1487-1503, 2003.

15. J. Istas and G. Lang. Quadratic variations and estimatfcthe local Holder index of a
Gaussian proces#nn. Inst. Henri Poincaré, Prob. StaB3(4):407-436, 1997.



Texture Analysis of Image Anisotropy 71

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. Jain, L. Hong, and R. Bolle. On-line fingerprint verdion. IEEE Transactions on Pattern
Analysis and Machine Intelligenc#9:302—-314, 1997.

X.D. Jiang. On orientation and anisotropy estimatiandiline fingerprint authentication.
IEEE Trans. Sig. Pro¢53(10):4038—-4049, 2005.

M. Kass and A. Witkin. Analyzing oriented pattert@omputer Vision, Graphics, and Image
Processing37(362—-385), 1987.

J. T. Kent and A. T. A. Wood. Estimating the fractal diniensof a locally self-similar
Gaussian process by using incremegdtsRoy. Statist. Soc. Ser, 89(3):679-699, 1997.

G. Lemineur, R. Harba, R. Jennane, et al. Fractal an@ptmeasurement of bone texture
radiographs. IrFirst International Symposium on Control, Communicatiansl Signal Pro-
cessingpages 275-278, 2004.

E. Lespessailles, C. Gadois, |. Kousignian, J.P. NeRebardellone, S. Kolta, C. Roux, J.P.
Do-Huu, and C.L. Benhamou. Clinical interest of bone textmalysis in osteoporosis: a case
control multicenter studyOsteoporos. Inf.19:1019-1028, 2008.

G. Matheron. The intrinsic random functions and thepliptions. Adv. in Applied Probab.
5(3):439-468, 1973.

M. Nielsen, L.K. Hansen, P. Johansen, and J. SporringesGeditorial: Special issue on
statistics of shapes and texturdsMath. Imaging Vis.17(2):87-87, September 2002.

G. Peyré. Texture synthesis with grouplet$EEE Trans. Pattern Anal. Mach. Intell.
32(4):733-746, 2010.

M. Rachidi, F. Richard, H. Biermé, E. LespessaillesCBappard, and C.L. Benhamou. Con-
ception of a composite osteoporosis fracture index inalgidione texture analysis and bone
mineral density. IrProc. of the 18th International Bone Densitometry WorksHIpW’08,
Foggia, Italy, june 2008.

A. Rao and R. Jain. Computerized flow field analysis: Qeexture fields.|EEE Trans.
Pattern Anal. Mach. Intel).14:693-709, 1992.

F. J.P. Richard and H. Biermé. Statistical tests ofatropy for fractional brownian textures.
application to full-field digital mammography. Math. Imaging Vis.36(3):227-240, 2010.

C. Shu and R. Jain. Vector field analysis for orientedepast IEEE Trans. Pattern Anal.
Mach. Intell, 16:946—950, 1994.

M. L. Stein. Fast and exact simulation of fractional Bnian surfaces.J. Comput. Graph.
Statist, 11(3):587-599, 2002.





