
Analysis of Texture Anisotropy Based on Some
Gaussian Fields with Spectral Density
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Abstract
In this paper, we describe a statistical framework for the analysis of anisotropy of

image texture. This framework is based on the modeling of theimage by two kinds
of non-stationary anisotropic Gaussian field with stationary increments and spec-
tral density: the extended fractional Brownian field (EFBF)and a specific Gaussian
operator scaling field (GOSF), which both correspond to a generalization of the
fractional Brownian field. In this framework, we tackle anisotropy analysis using
some directional processes that are either defined as a restriction of the image on
an oriented line or as a projection of the image along a direction. In the context of
EFBF and GOSF, we specify links between the regularity of line and projection pro-
cesses and model parameters, and explain how field anisotropy can be apprehended
from the analysis of process regularity. Adapting generalized quadratic variations,
we also define some estimators of the regularity of line and projection processes,
and study their convergence to field model parameters. Estimators are also evalu-
ated on simulated data, and applied for illustration to medical images of the breast
and the bone.

1 Introduction

Texture analysis is an issue of particular topicality and practical importance in image
processing [11, 23]. Texture, which can be roughly considered as a periodic aspect
of images, has been modeled using various mathematical approaches ranging from
statistical (e.g. Markov random fields [12]) to geometric (e.g. grouplets [24]). Model
definitions have also varied depending on texture properties which are focused on.
Among those properties, texture anisotropy is one of the most important. It is not
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only common in natural images [24] but also critical for the analysis of images
generated in a wide variety of domains, including biometry [16, 17] material science
[14], hydro-geology [2], industry [13], or medical imaging[3, 10, 20, 27].

In this paper, we tackle texture analysis from a probabilistic point of view con-
sidering the image as a realization of a random field whose properties reflect those
of the texture. From this point of view, we deal with the problem of estimating pa-
rameters of some anisotropic random field models defined below.

(a) (b)

Fig. 1 Oriented analysis of a texture from (a) line processes and (b) projection processes.

Texture anisotropy can be analyzed in a local way by computing oriented dif-
ferential estimators at each image point [18, 26, 28]. Alternately, anisotropy can be
apprehended from processes extracted from image [9, 13, 27], either line-process
defined by restricting the image on oriented lines of the image domain, orprojection-
processobtained by projecting the image parallel to a given direction ; see the illus-
tration on Fig. 1 and definitions in Eqs. (5) and (7) of Sect. 2.From these processes,
anisotropy can be analyzed by looking at regularity variations of processes when the
extraction direction changes.

Here, our goal is to set up a statistical framework in which anisotropy can be
consistently estimated using line and projection processes.

For defining this framework, we follow the set up of [9] describingd-dimensional
Gaussian random fields (with stationary increments) for which the variogramv (see
definition in Eq. (4) of Sect. 2) is of the form

∀x∈ Rd,v(x) =
∫

Rd

∣∣∣eix·ζ −1
∣∣∣
2

f (ζ )dζ , (1)

wheref is a positive even measurable function called spectral density and satisfying
the condition

∫
Rd

(
1∧|ζ |2

)
f (ζ )dζ < ∞. In this set up, we focus on two models

defined in dimensiond = 2.
The first model, referred to as extended fractional Brownianfield (EFBF), is

defined with a spectral density
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∀ζ ∈ R2, f (ζ ) = |ζ |−2h(arg(ζ ))−2, (2)

where arg(ζ ) is the direction of the frequencyζ andh is a measurable periodic
function defined on the unit sphereS 1 of R2 and ranging in[H,M] ⊂ (0,1) with
H = essinfθ∈Sh(θ ) andM = esssupθ∈Sh(θ ). The fractional Brownian field, which
is isotropic, is a particular case of EFBF obtained when function h is almost every-
where constant.

The second model, which can be seen as a Gaussian operator scaling field [2, 5]
(GOSF), is defined with

∀ζ = (ζ1,ζ2) ∈R2, f (ζ ) =
(
ζ 2

1 + ζ 2a
2

)−β
, (3)

whereβ = H1+(1+1/a)/2 anda= H2/H1 for some 0< H1≤ H2 < 1. The frac-
tional Brownian field is a particular GOSF obtained whenH1 = H2.

Since their spectral density depends on spectral direction, previous models are
both anisotropic. Their anisotropy is characterized by model parameters, which are
the directional Hurst indexh for EFBF and constantsH1 andH2 for GOSF. Hence,
characterizing the anisotropy of these fields reduces to estimating their parameters.
In the sequel, we specify links between the regularity of line and projection pro-
cesses and model parameters, and explain how field anisotropy can be apprehended
from the analysis of process regularity. Adapting generalized quadratic variations,
we also define some estimators of the regularity of line and projection processes,
and study their convergence to field model parameters.

2 Main Properties

2.1 Random fields

Let (Ω ,A ,P) be a probability space. Ad-dimensional random fieldX is a map from
Ω×Rd intoR such thatX(·,y) :=X(y) is a real random variable onΩ for all y∈Rd.
Whend = 1, X is rather called a random process. A random field is Gaussian if any
finite linear combination of its associated random variables is a Gaussian variable.
A centered Gaussian fieldX is characterized by its covariance function:(y,z) 7→
Cov(X(y),X(z)). A field X has stationary increments if laws governing fieldsX(·+
z)−X(z) andX(·)−X(0) are the same for allz∈Rd. The law of a centered Gaussian
field X with stationary increments is characterized by its variogram, defined by

∀y∈ Rd, v(y) = e((X(y)−X(0))2). (4)

Gaussian fields with stationary increments and variogram ofthe form (1) will be
referred to as Gaussian fields with spectral density. The EFBF and GOSF defined
by Eq. (2) and (3) in introduction are two examples of these fields. From now on,
we consider random fields ford = 2, corresponding to 2-dimensional images.
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2.2 Line and projection processes

We now define line and projection processes which can be extracted from a two
dimensional fieldX.

Definition 0.1. A line processLt0,θ X is the restriction of a fieldX on a line identi-
fied by a pointt0 and a directionθ of R2:

∀ t ∈ R, Lt0,θ X(t) = X(t0+ tθ ). (5)

We will specifically denote byLθ X the process on the line oriented in directionθ
and passing through the origin.

Interestingly, ifX is a Gaussian field with spectral densityf , the processLt0,θ X is
also Gaussian with spectral density [3]

∀ν ∈ R, fL,θ (ν) =
∫

R

f (ξ θ⊥+νθ )dξ . (6)

Definition 0.2. A projection processPθ X of a fieldX is a windowed Radon trans-
form of a fieldX in a directionθ of R2. Given a window functionρ of the Schwartz
class such that

∫
R

ρ(γ)dγ = 1, it is defined as the projection ofX along lines oriented
in the directionθ⊥ through the windowρ

∀t ∈ R,Pθ X(t) =
∫

R

X(sθ⊥+ tθ )ρ(s)ds, (7)

If X is a Gaussian field with spectral densityf , the projection process is also Gaus-
sian with spectral density

∀ν ∈ R, fP,θ (ν) =
∫

R

f (ξ θ⊥+νθ ) |ρ̂(ξ )|2dξ , (8)

where f is the spectral density ofX.

2.3 Process regularity

For the description of the regularity of ad-dimensional random field, we recall the
usual definition of Hölder exponents. ForT > 0, sample paths ofX satisfy a uniform
Hölder condition of orderα ∈ (0,1) on [−T,T]d if there exists a positive random
variableA with P(A<+∞) = 1 such that a.s.

∀y,z∈ [−T,T]d, |X(y)−X(z)| ≤ A|y− z|α . (9)

This equation gives a lower bound for the Hölder regularityof a field. The critical
Hölder exponentβ of a field (if it exists) is defined as the supremum ofα for which
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the Hölder condition (9) holds when it equals the infimum ofα for which the Hölder
condition (9)does not hold [9]. From an image point of view, the critical Hölder
exponent of a field is related to the roughness of the texture:the rougher the texture
is, the smaller the field regularity is.

For Gaussian fields with spectral density, the Hölder regularity can be charac-
terized from the local behavior of the variogram around 0 or from the asymptotic
behavior of the spectral density at high-frequencies [7, 9].

Proposition 0.1.Let X be a d-dimensional Gaussian field with spectral densityf
and variogram v.
(a) Let0< α ≤ γ < 1. If there exist A,B1,B2 > 0 and a positive-measure subset E
of the unit sphereS d−1 ofRd such that for almost allξ ∈Rd,

(i) |ξ | ≥ A⇒ | f (ξ )| ≤ B1|ξ |−2α−d;

(ii) |ξ | ≥ A and ξ
|ξ | ∈ E⇒ | f (ξ )| ≥ B2|ξ |−2γ−d;

then, there existδ > 0 and C1,C2 > 0 such that for all y∈ Rd,

(iii ) |y| ≤ δ ⇒C1|y|2γ ≤ v(y)≤C2|y|2α

(b) If Condition (iii) holds for anyα,γ with 0< α ≤ β ≤ γ < 1 thenβ is the critical
Hölder exponent of X.

Let us notice that for random processes, we can use a definition of the Hölder
regularity which holds forβ ≥ 1 [7, 9]. Similarly to Proposition 0.1, this extended
Hölder regularity is also characterized by a behavior of the variogram around 0 or
an asymptotic decay of the spectral density [7, 9].

We now state a theorem concerning the regularity of line processes associated to
Gaussian fields with stationary increments.

Theorem 0.1.(a) Let X be a 2-dimensional Gaussian field with stationary incre-
ments and assume that the line processes of X have Hölder exponents in all direc-
tions. Then, Ḧolder exponents of line processes are the same in all directions, except
possibly in one direction where it is higher than in other directions.
(b) In the particular case of EFBF with spectral density defined as in Eq. (2), Ḧolder
exponents of line processes are equal to H= essinfθ∈Sh(θ ) whatever their direc-
tion.
(c) In the particular case of GOSF with spectral density defined as in Eq. (3), Ḧolder
exponents of line processes are equal to H1 in all direction except in direction(0,1)
where it is equal to H2.

Proof. Proofs of parts (a) of Theorem 0.1 can be found in [9, 13]. The part (b) and
(c) were demonstrated in [3, 9] using Proposition 0.1. Essentially, in the case EFBF,
the spectral densityfL,θ of a line process (see Eq. (5)) always satisfies conditions
(i) and (ii) of Proposition 0.1 forβ = H = essinfθ∈Sh(θ ), whereas in the case of
GOSF, it checks those conditions forβ = H2 in direction(0,1) and forβ = H1 in
all other directions.
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As stated by Theorem 0.1, the anisotropy of a Gaussian field with stationary incre-
ments has a specific display on the regularity of line processes. In some cases (e.g.
EFBF), the anisotropy is simply not observable from line processes whose regularity
does not vary according to direction. In other cases (e.g. GOSF), it is only observ-
able in a single privileged direction where the regularity of line process is different
from the others. In any cases, there can be at most one direction where the regularity
of the line process varies.

Theorem 0.1 also implies that the anisotropy of EFBF and GOSFcannot be
analyzed in the same way: whereas the line processes are useless to capture the
anisotropy of EFBF, they can help enhancing a privileged direction of GOSF.

Next, we state a theorem about the regularity of the projection processes of EFBF.

Theorem 0.2.Let X be an EFBF with spectral density defined as in Eq. (2). The
Hölder regularity of the projected fieldPθ X is equal to h(θ )+1/2 for all directions
θ ofR2.

Proof. It was proved in [9] by checking asymptotic conditions on thespectral den-
sity of projection processes.

According to this theorem, the anisotropy of an EFBF is observable in projec-
tion processes since their regularity is directly related to the directional function
h. Hence, projection processes are better suited than line processes for the charac-
terization of EFBF anisotropy.

3 Parameter estimation

In the previous section, we state several theorems showing that parameters of EFBF
and GOSF are linked to the regularity of either line or projection processes extracted
from the field. Therefore, the problem of estimating the parameters of these fields
eventually reduces to the problem of estimating the regularity of several processes.
Moreover, the line and projection processes of EFBF and GOSFare Gaussian with
stationary increments and can be seen as generalizations offractional Brownian mo-
tions (fBm). Hence, the regularity of these processes can beestimated using tech-
niques developed for the estimation of the regularity parameter of a fBm (Hurst
index).

There are numerous estimators of the Hurst index in the literature (see [1] for
a survey). Here, we focus on generalized quadratic variations [7, 15, 19] and show
how they can be adapted to the estimation of EFBF and GOSF parameters.

3.1 Generalized quadratic variations

Let Y be a Gaussian process with stationary increments and spectral densityf , and{
Y
(

k
N

)
;0≤ k≤ N

}
be an observed sequence ofY. Let us consider the stationary
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sequence formed by second-order increments ofY with stepu∈Nr {0}

∀ p∈ Z, ZN,u(Y)(p) =Y

(
p+2u

N

)
−2Y

(
p+u

N

)
+Y

( p
N

)
. (10)

Generalized quadratic variations ofY of order 2 are then given by

VN,u(Y) =
1

N−2u+1

N−2u

∑
p=0

(ZN,u(Y)(p))
2 . (11)

By stationarity of increments, we haveE(VN,u(Y)) = E((ZN,u(Y)(0))2). Besides,
according to [7], asN tends to+∞,

E(VN,u(Y))∼ cHN−2Hu2H ,

for somecH > 0, whenever the spectral densityf satisfiesf (ξ )∼|ξ |→+∞c|ξ |−2H−1,
with H ∈ (0,2) andc> 0. Thus, we can intuitively define an estimator ofH as

ĤN =
1

2log(2)
log

(
VN,2(Y)
VN,1(Y)

)
. (12)

In [7, 15], the convergence of this estimator toH with asymptotic normality was
demonstrated forH ∈

(
0, 7

4

)
under some appropriate assumptions on either the var-

iogram ofY or on its spectral density.

3.2 Convergence results

For the estimation of parameters of EFBF or GOSF, we apply generalized quadratic
variations to processes extracted from the field and define estimators by comparing
variations at different scales as in Eq. (12). In this way, weset line-based estimators
hL

N(θ ) and projection-based estimatorshP
N(θ )

∀θ , hL
N(θ ) =

1
2log(2)

log

(
VN,2(Lθ X)

VN,1(Lθ X)

)
(13)

∀θ , hP
N(θ ) =

1
2log(2)

log

(
VN,2(Pθ X)

VN,1(Pθ X)

)
, (14)

whereLθ X, Pθ X, andVN,u(Y) are defined by Eqs. (5), (7) and (11), respectively.
In what follows, we state several theorems concerning the convergence of these
estimators.

Let us start with the estimation of parameters of an EFBF.

Theorem 0.3.Let X be an EFBF with spectral density defined as in Eq. (2), andθ
be a direction in the unit sphereS 1. Assume that h is Lipschitz of orderα ∈ (1/2,1]
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onS 1. Then, almost surely,

lim
N→+∞

(
ĥP

N(θ )−
1
2

)
= h(θ ), (15)

and, in law,

lim
N→+∞

√
N

(
ĥP

N(θ )−
1
2
−h(θ )

)
= N (0,K), (16)

for some positive constant K.

Proof. According to Proposition 2.1 of [7], the spectral density ofthe projection
processPθ X satisfies assumptions of Theorem 4.1 of [4] and therefore Section 4.3
of [4] gives the result.

This theorem ensures the consistency ofĥP
N as an estimator of the directional func-

tion h of an EFBF, together with its asymptotic normality. Theorem0.3 only con-
cerns the convergence of a projection-based estimator obtained in a single direction.
In [27], we showed another result on the convergence of combinations of estimators
in different directions.

Theorem 0.4.Let X be an EFBF with spectral density defined as in Eq. (2). Let
θ0 = (0,1) andθ⊥0 = (1,0). Assume that h is Lipschitz of orderα ∈ (1/2,1] onS 1.
Then, almost surely,

lim
N→+∞

(
ĥP

N(θ0)− ĥP
N(θ

⊥
0 )
)
= h(θ0)−h(θ⊥0 ), (17)

and in law,

lim
N→+∞

√
N
(

ĥP
N(θ0)− ĥP

N(θ⊥0 )− (h(θ0)−h(θ⊥0 ))
)
= N (0,K), (18)

for some positive constant K.

Proof. This result follows from Theorem 3.1 of [27] under the weakerassumption
thath is Lipschitz of orderα ∈ (1/2,1] onS 1 and not continuously differentiable.
The proof may be adapted using Theorem 0.3 since it only takesinto account corre-
lations between combined estimators, which remain unchanged under this assump-
tion.

This theorem is useful to construct hypothesis tests of anisotropy [27]. In these tests,
the hypothesis of field isotropy will be rejected if the statistic

δ1 = |ĥP
N(θ0)− ĥP

N(θ
⊥
0 )| (19)

is above a bound (see Sect. 4). This bound can be computed for any level of confi-
dence using simulated data.

We have also defined another anisotropy test which is based onthe statistic
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δ2 = |max(ĥP
N(θ0), ĥ

P
N(θ

⊥
0 ))−min(ĥL

N(θ0), ĥ
L
N(θ

⊥
0 ))|. (20)

For this test, the isotropy assumption is rejected ifδ2 is above a bound.
Now, let us turn to the estimation of parameters of a GOSF.

Theorem 0.5.Let X be a GOSF with spectral density defined as in Eq. (3). Let
θ = (θ1,θ2) be a direction in the unit sphereS 1.
(a) If θ1 = 0 (privileged direction), then almost surely

lim
N→+∞

ĥL
N(θ ) = H2. (21)

otherwise, almost surely,
lim

N→+∞
ĥL

N(θ ) = H1. (22)

(b) The convergence in law

lim
N→+∞

√
N
(
ĥL

N(θ )−H
)
= N (0,K), (23)

occurs whenθ1 = 0 with H = H2, whenθ2 = 0 with H = H1, and whenθ1 6= 0,
θ2 6= 2 and a= H2/H1 > 2 with H = H1.
(c) When a≤ 2 andθ1 6= 0, we only have

E

((
ĥL

N(θ )−H1
)2
)
= ON→+∞

(
N−2(1−1/a)

)
. (24)

Proof. See [3].

This theorem ensures the consistency ofĥL
N as an estimator of the directional con-

stantsH1 andH2 of an GOSF. In this case, the asymptotic normality of estimators
is guaranteed in all directions provided that the rateH2/H1 is large enough,i.e. the
anisotropy is marked enough.

4 Numerical study

The numerical study of estimators is usually done on a set of synthetic realizations of
the random field with known parameter values. Therefore, it requires a good (ideally
exact) method for the simulation of field realizations. But,the exact simulation of
EFBF or GOSF is an open issue we are still working on. Hence, the numerical
evaluation of estimators are not completely feasible.

To our knowledge, simulations methods for Gaussian fields with spectral den-
sity come down to Fourier methods which generates approximate realizations with
properties that may differs from the theoretical ones [7]. There is however an exact
method which was proposed by Stein [29] for the simulation of(isotropic) fractional
Brownian fields. But it can be hardly extended to the simulation of anisotropic fields
such as EFBF or GOSF.
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(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

(3.a) (3.b) (3.c)

Fig. 2 Exact simulations of fractional Brownian field of increasing Hurst indexH (Stein’s
method): (1.a)H = 0.3, (1.b) H = 0.5, (1.c) H = 0.7. Approximate simulations of extended
fractional Brownian field (Turning-Band method): (2.a)(H1,H2) = (0.2,0.5) , (2.b) (H1,H2) =
(0.5,0.7), (2.c)(H1,H2) = (0.2,0.7). Ad hocsimulations of Gaussian operator scaling fields: (3.a)
(H1,H2) = (0.7,0.8), (3.b)(H1,H2) = (0.5,0.8), (3.c)(H1,H2) = (0.3,0.8).

Some simulation examples shown on Fig. 2 illustrate some visual features of
different fields under studies. Realizations of fractionalBrownian fields were ob-
tained using the Stein’s method. EFBF were simulated using aturning-band method
adapted from [22], which is still under investigation [6]. In these simulations, the
spectral density was specified with

∀θ = (θ1,θ2) ∈S
1,h(θ ) = |θ1|H1+(1−|θ1|)H2, (25)

for some selected pairs(H1,H2) in (0,1)2. The third series of fields are not precisely
GOSF. There are just simulations of fields having a variogramof the formv(x) =
c1|x1|H1 + c2|x2|H2 and showing a privileged direction.

Our early numerical studies were based on Fourier simulations of EFBF [7, 27].
Here we give some preliminary results based on a turning-band simulations. We
simulated sets of EFBF of size(512×512) with spectral density of the form (25),
applied line- and projection-based estimators in two directions (horizontal and verti-
cal) to simulations, and then computed biases and standard deviations of estimators.
Results are reported in Table 1.
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H1 H2 ĥN
L (θ0) ĥN

L (θ⊥0 ) ĥN
P(θ0) ĥN

P(θ⊥0 )
0.2 0.2 0.003±0.0030.003±0.003 -0.08±0.13 -0.05±0.11
0.5 0.5 0.003±0.0030.003±0.003 -0.01±0.15 -0.04±0.14
0.7 0.7 0.003±0.0030.003±0.003 -0.02±0.13 -0.04±0.13
0.2 0.5 0.053±0.0030.083±0.003 -0.02±0.16 -0.08±0.13
0.2 0.7 0.060±0.0050.088±0.003 -0.06±0.17 -0.29±0.15
0.5 0.7 0.044±0.0040.096±0.003 -0.03±0.13 -0.04±0.12

Table 1 Evaluation of line- and projection-based estimators on sets of 100 extended fractional
Brownian fields simulations (Turning-Band method) with different Hurst indices (bias±std).

Applied to these simulations, both line-based estimators approximate the regu-
larity H =min(H1,H2), whereas projection-based estimators give an approximation
of H1 or H2, depending of their direction. Standard deviations of line-based estima-
tors are very small (below 10−2) compared to those of projection-based estimators
(above 10−1). This is due to a sub-sampling procedure we apply to projections so as
to reduce the bias of projection-based estimators [7]. Biases of line-based estimators
are also very small, especially when simulated fields are isotropic (H1 = H2). How-
ever, as the field anisotropy increases,H tends to be overestimated. This might be
due either to a simulation artifact or a property of the estimator. Biases of projection-
based estimators are reasonably small; most of them are below 10−1. When the
anisotropy is large (H1 = 0.2 andH2 = 0.7), the highest directional regularity is
however underestimated.

First test Second test
h(θ0) h(θ⊥0 ) δ1 p δ2 p
0.2 0.2 0.01±0.16 94 0.08±0.06 93
0.5 0.5 0.01±0.14 98 0.07±0.05 97
0.7 0.7 0.±0.13 99 0.07±0.05 99
0.2 0.5 0.±0.10 53 -0.08±0.06 39
0.2 0.7 -0.1±0.10 36 -0.28±0.06 32
0.5 0.7 -0.1±0.06 100 -0.12±0.04 100

Table 2 Evaluation anisotropy tests on sets of 100 extended fractional Brownian fields simula-
tions (Turning-Band method) with different Hurst indices (bias±std ; p =percent of realizations
considered isotropic).

In Table 2, we present an evaluation of isotropy tests definedwith statisticsδ1

andδ2 given by Eqs. (19) and (20). Observing biases and variances of δ1 andδ2 on
isotropic simulations, we set rejection bounds for isotropy tests so as to get a level
of confidence of 95%. We applied isotropy tests to all simulations and compute
the percentage of images considered isotropic in each simulation sets (valuep). On
isotropic simulations, we observe that tests effectively detect the isotropic cases with
a high level of confidence. On anisotropic cases, results show that tests can detect
anisotropy only if the anisotropy is marked (|h(θ0)−h(θ⊥0 )| > 0.2). In simulation
cases when anisotropy is the largest (h(θ0) = 0.2 andh(θ⊥0 )| = 0.7), the risk of
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second species (i.e. the probability of considering that an anisotropic realization is
isotropic) is still high for both tests (around 35%). The lack of sensitivity of tests
to anisotropy is mainly due to the large variance of projection-based estimators. We
are currently working on the improvement of estimator precision.

5 Applications

We present two applications of the statistical framework described above. In these
applications, images are either breast radiographs (mammograms) or bone radio-
graphs, both being used by physicians in clinical routine [21, 27]; see Fig. 3 for
illustration.

Fig. 3 Regions extracted from (a) a radiography of the calcaneum (aheel bone) and (b) a mam-
mogram (breast radiography).

In [3, 27], we could show on some database that both images areanisotropic.
Assuming mammograms to be realizations of EFBF and applyinganisotropy tests
on them, we obtained that 41 percent of mammograms could be considered as
anisotropic with a level of confidence of 95% [27]. This anisotropy can be seen
both, on Fig. 4 (b), where horizontal and vertical projection-based estimates are
plotted for each mammograms, and on Fig. 4 (c), where the maximum of horizontal
and vertical projection-based estimates is plotted against the minimum of horizontal
and vertical line-based estimates.

The anisotropy of bone radiographs can be observed on Fig. 5,where couples
of line-based estimates in different directions (horizontal, vertical, or diagonals) are
plotted for each images. It can be seen that in the vertical directionθ⊥0 , the regularity
tends to be higher than in the three other directions; this direction corresponds to the
axis of longitudinal trabeculae of the bone. Hence, according to Theorem 0.1, GOSF
would be better suited than EFBF for the modeling of bone radiographs.

The anisotropy of mammograms is different from the one of bone radiographs.
According to Figs. 4 (a) and (b), it seems not to be detected onlines. Contrarily to
bone radiographs, mammograms would be better described by EFBF.
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(a) (b) (c)

Fig. 4 Line- and projection-based estimates obtained on 116 full-field digital mammograms (pri-
vate database, courtesy of P. Bakic and A. Maidment from Univ. of Pennsylvania): compar-
isons of (a)hL

N(θ0) (abscissa) andhL
N(θ1), (b) hP

N(θ0) andhP
N(θ1), and min(hL

N(θ0),hL
N(θ1)) and

max(hP
N(θ0),hP

N(θ1)). [directions:θ0 = (1,0) (horizontal),θ⊥0 = (0,1) (vertical)].

(a) (b) (c)

(d) (e) (f)

Fig. 5 Line-based estimates obtained on 211 calcaneum radiographs (database of Inserm unit
U658 [21]): comparisons of (a)hL

N(θ0) (abscissa) andhL
N(θ1) (ordinate), (b)hL

N(θ0) andhL
N(θ⊥1 ),

(c) hL
N(θ1) and hL

N(θ⊥1 ), (d) hL
N(θ0) and hL

N(θ⊥0 ), (e) hL
N(θ⊥0 ) and hL

N(θ1), and (f) hL
N(θ⊥0 ) and

hL
N(θ⊥1 ). [directions:θ0 = (1,0) (horizontal),θ⊥0 = (0,1) (vertical), 3:θ1 = (1,1)/

√
2 (diagonal),

4: θ⊥1 = (−1,1)/
√

2 (diagonal)].

Previous experiments are preliminary steps of a multidisciplinary project which
concern the evaluation of (a) breast cancer risk and (b) bonefracture risk due to os-
teoporosis [8, 25, 27]. In the context of this project, the line and projection estimates
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are used as descriptors of image aspect. By combining such descriptors to known
clinical risk factors, we aim at improving the evaluation ofboth risks.
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