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Abstract We study generalized random fields which arise as rescaling limits of spa-
tial configurations of uniformly scattered random balls as the mean radius of the balls
tends to 0 or infinity. Assuming that the radius distribution has a power-law behavior,
we prove that the centered and renormalized random balls field admits a limit with
self-similarity properties. Our main result states that all self-similar, translation- and
rotation-invariant Gaussian fields can be obtained through a unified zooming proce-
dure starting from a random balls model. This approach has to be understood as a
microscopic description of macroscopic properties. Under specific assumptions, we
also get a Poisson-type asymptotic field. In addition to investigating stationarity and
self-similarity properties, we give L2-representations of the asymptotic generalized
random fields viewed as continuous random linear functionals.
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Introduction

In this work we construct essentially all Gaussian, translation- and rotation-invariant,
H -self-similar generalized random fields on R

d in a unified manner as scaling limits
of a random balls model. The self-similarity index H ranges over all of R \ Z and
the random balls model is of germ-grain type. It arises by aggregation of spherical
grains attached to uniformly scattered germs given by a Poisson point process in
d-dimensional space. By a similar scaling procedure, we obtain also non-Gaussian
random fields with interesting properties, in particular a model of the type “fractional
Poisson field.” Its covariance functional coincides with that of the Gaussian H -self-
similar field, so that it fulfills a second-order self-similarity property. Although not
self-similar in law, this Poisson field presents a property of “aggregate similarity”
which takes into account both Poisson structure and self-similarity.

We observe two distinctly separate behaviors depending on whether the self-
similarity index H belongs to an interval of type (m,m+1/2) or of type [m−1/2,m)

for some integer m. In the first case, the scaling limit applies to random balls models
with balls of arbitrarily small radii. In the opposite case, the corresponding germ-
grain models have arbitrarily large spherical grains.

The scaling procedure which acts on the random balls model is based on the as-
sumption that the grains have random radius, independent and identically distributed,
with a distribution having a power-law behavior either in zero or at infinity. The re-
sulting configuration of mass, obtained by counting the number of balls that cover any
given point in space, suitably centered and normalized, exhibits limit distributions un-
der scaling. For the case of the random balls radius distribution being heavy-tailed at
infinity, the corresponding scaling operation amounts to zooming out over larger areas
of space while renormalizing the mass. In the opposite case, when the radius of balls
is given by an intensity with prescribed power-law behavior close to zero, the scaling
which is applied entails zooming in successively smaller regions of space. Infinites-
imally small microballs will emerge and eventually shape the resulting limit fields.
In particular, our results unify and extend in some directions the previous works on
similar topics in Kaj et al. [15] (case H ∈ (−d/2,0)) and Biermé and Estrade [4]
(case H ∈ (0,1/2)). Preliminary and less general versions of some of the results pre-
sented here have appeared in Biermé et al. [5] (case H ∈ (−d/2,0) ∪ (0,1/2)). Let
us emphasize that the main novelty of this paper is the extension to any noninteger
values of H and the complete description of the asymptotic fields.

Dobrushin [9] characterized the stationary self-similar Gaussian generalized ran-
dom fields in their spectral form. In this work we obtain the subclass of such random
fields that are isotropic, since the random balls models under consideration are rota-
tionally symmetric. In order to obtain the whole range of self-similarity behavior, it
is necessary to work not only with stationary random fields but with the wider class
of generalized random fields with stationary increments or stationary nth increments.
In this sense our approach also links to the line of work initiated by Matheron [18].

The paper is organized as follows. After having introduced the modeling frame-
work and the setting of the investigation, we discuss in Sect. 2 some principles for
scaling limit analysis and state two main results, which cover a Gaussian limit regime
and a Poisson limit regime. Section 3 is devoted to the properties of the limiting ran-
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dom fields: stationarity and self- or aggregate-similarity. The main results, in partic-
ular Theorem 4.7, are presented in Sect. 4 with the study of all self-similar isotropic
stationary generalized random fields. In particular we prove that all such Gaussian
fields arise as scaling limits of the random balls model. In Sect. 5 we give a pointwise
representation of the generalized self-similar fields with positive self-similarity index
H > 0 and discuss a few explicit examples.

1 Setting

We present first a unified framework which includes and extends both of the distinct
modeling scenarios studied in [15] and [4], respectively. Let B(x, r) denote the ball
in R

d with center at x and radius r and consider a family of grains Xj + B(0,Rj ) in
R

d generated by a Poisson point process (Xj ,Rj )j in R
d × R

+. Equivalently, we let
N(dx,dr) be a Poisson random measure on R

d ×R
+ and associate with each random

point (x, r) ∈ R
d ×R

+ the random ball B(x, r). We assume that the intensity measure
of N is given by κ dx F(dr), where κ is a positive constant and F is a nonnegative
measure on R

+, σ -finite on (0,+∞). Moreover, we assume throughout the paper
that the ball radius intensity F(dr) is such that

∫
R+

rdF (dr) < +∞. (1)

Note that if F is a probability measure, this assumption implies that the expected
volume of a ball is finite.

For measurable sets A ⊂ R
d × R

+, we let N(A) = ∫
A

N(dx,dr) denote the num-
ber of balls with random location and radius (x, r) contained in A and view the values
of A �→ N(A) as integer-valued random variables on a probability space (�, A,P).
We recall the basic facts (see [17], Chap. 10 for instance) that N(A) is Poisson distrib-
uted with mean

∫
A

κ dx F(dr) (if the integral diverges, then N(A) is countably infi-
nite with probability one) and that if A1, . . . ,An are disjoint, then N(A1), . . . ,N(An)

are independent. We also recall that for measurable functions k : R
d × R

+ → R, the
stochastic integral

∫
k(x, r)N(dx,dr) of k with respect to N exists P-a.s. if and only

if ∫
Rd×R+

min(|k(x, r)|,1)dx F(dr) < ∞. (2)

1.1 Power-law Assumption

For β �= d , we introduce the following asymptotic power-law assumption for the be-
havior of F near 0 or at infinity:

A(β): F(dr) = f (r)dr with f (r) ∼ r−β−1 as r → 0d−β,

where by convention 0α = 0 if α > 0 and 0α = +∞ if α < 0.
The range of parameter values under consideration will be d − 1 < β < 2d . Then,

according to (1), under assumption A(β), it is natural to consider the asymptotic
behavior of F near 0 for d − 1 < β < d and at infinity for d < β < 2d .
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1.2 Random Field

We consider random fields defined on a space of measures, in the same spirit as the
random functionals of [15] or the generalized random fields of [3]. Let M denote the
space of signed measures μ on R

d with finite total variation

‖μ‖ := |μ|(Rd
)
< ∞, (3)

where |μ| is the total variation measure of μ, and ‖ · ‖ is a norm on M (see, e.g.,
[21], p. 161). For any μ ∈ M, μ(B(x, r)) is a measurable function on R

d × R
+ for

which ∫
Rd×R+

|μ(B(x, r))|dx F(dr) ≤ vd |μ|(Rd
)∫

R+
rdF (dr) < +∞, (4)

in view of (1), where vd is the Lebesgue measure of the unit ball in R
d . In particular,

(2) applies with k(x, r) = μ(B(x, r)). We may hence introduce a generalized random
field X defined on M by

X(μ) =
∫

Rd×R+
μ(B(x, r))N(dx,dr), μ ∈ M. (5)

Condition (4) is even sufficient and necessary for X(μ) to have finite expected value,
and in this case

EX(μ) =
∫

Rd×R+
μ(B(x, r))κ dx F(dr) = κvdμ

(
R

d
)∫

R+
rdF (dr).

Let us also note that the random field X is linear on each vectorial subspace of M in
the sense that for all μ1, . . . ,μn ∈ M and a1, . . . , an ∈ R, almost surely,

X(a1μ1 + · · · + anμn) = a1X(μ1) + · · · + anX(μn).

Furthermore the characteristic function of X(μ) is given by (see [17], Lemma 10.2)

E
(
eitX(μ)

)= exp

(∫
Rd×R+

(
eitμ(B(x,r)) − 1

)
κ dx F(dr)

)
, t ∈ R. (6)

Our first proposition adds to this a simple topological structure.

Proposition 1.1 The random field X : (M,‖ · ‖) → (L2(�, A,P),‖ · ‖2) is a con-
tinuous random linear functional, where ‖ · ‖ is given by (3), and ‖ · ‖2 is the usual
norm on L2(�, A,P).

Proof Let μ ∈ M. The random variable X(μ) is in L2(�, A,P), and so X can be
considered as a linear functional X : M → L2(�, A,P). Moreover, for any μ ∈ M,
by Fubini’s theorem,

Var(X(μ)) =
∫

Rd×R+
μ(B(x, r))2 κ dx F(dr)
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≤ κ ‖μ‖
∫

Rd×Rd

|μ(B(x, r))|dx F(dr) (7)

≤ κ vd

(∫
R+

rd F (dr)

)
‖μ‖2 < ∞.

Similarly, |E(X(μ))| ≤ κ vd (
∫ +∞

0 rdF (dr))‖μ‖. Therefore, according to (1), one
can find a positive constant cd > 0 such that

‖X(μ)‖2 =
√

Var(X(μ)) + E(X(μ))2 ≤ cd‖μ‖,
which shows the continuity of X. �

The random linear functional X − E(X) is also a continuous linear functional
from (M,‖ · ‖) to (L2(�, A,P),‖ · ‖2). The corresponding subordinated norm of
X − E(X) is given by

|||X − E(X)||| = sup
‖μ‖≤1

‖X(μ) − E(X(μ))‖2 = sup
‖μ‖≤1

√
Var(X(μ)).

For μ = δ0, the Dirac mass at the origin of R
d , we get Var(X(δ0)) =

κ vd(
∫

R+ rdF (dr)) and may conclude in view of (7) that

|||X − E(X)||| =
√(

κ vd

∫
R+

rdF (dr)

)
. (8)

2 Scaling Limit

2.1 Scaled Random Fields

Let us introduce now the notion of “scaling,” by which we indicate an action: a change
of scale acts on the size of the grains. The scaling procedure performed in [15] acts
on grains of volume v changed by shrinking into grains of volume ρ v with small
parameter ρ (“small scaling” behavior). The same is performed in [4] in the context
of a homogenization, but the scaling acts in the opposite way: the radii r of grains are
changed into r/ε (which is a “large scaling” behavior). To cover both mechanisms we
introduce the random field which is obtained by applying the rescaling of measures
μ �→ μρ , where μρ(B) = μ(ρB) for ρ > 0 and measurable subsets B of R

d . Let us
denote by Fρ(dr) the image measure of F(dr) by the change of scale r �→ ρr and
remark that

X
(
μρ
)=

∫
Rd×R+

μ(B(x, r))N
(
dρ−1x,dρ−1r

)
, ∀μ ∈ M,

where the intensity measure of N(dρ−1x,dρ−1r) is κ ρ−ddx Fρ(dr). It is natural
from this viewpoint to have μ representing an observation window and interpret lim-
its ρ → 0 as zoom-out and limits ρ → ∞ as zoom-in of the random configurations of
balls in space.
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Let us multiply the intensity measure by λ/κ (λ > 0) and consider the associated
random field on M given by

∫
Rd×R+

μ(B(x, r))Nλ,ρ(dx,dr),

where Nλ,ρ(dx,dr) is the Poisson random measure with intensity measure
λdx Fρ(dr) and μ ∈ M. Choosing λ = κρ−d , this random field has the same law
as {X(μρ) ; μ ∈ M}. Results are expected concerning the asymptotic behavior of
this scaled random balls model under hypothesis A(β) as ρ → 0 or ρ → +∞. We
choose ρ as the basic model parameter, consider λ = λ(ρ) as a function of ρ, and
define on M the random field

Xρ(μ) =
∫

Rd×R+
μ(B(x, r))Nλ(ρ),ρ(dx,dr). (9)

Then, we are looking for a normalization term n(ρ) such that the centered field con-
verges in distribution,

Xρ(.) − E(Xρ(.))

n(ρ)

fdd→ W(.), (10)

and we are interested in the nature of the limit field W . The convergence (10) holds
whenever

E

(
exp

(
i
Xρ(μ) − E(Xρ(μ))

n(ρ)

))
→ E(exp(iW(μ)))

for all μ in a convenient subspace of M. A scaling analysis of power law tails reveals
that under A(β) we expect

Var(Xρ(μ)) ∼ λ(ρ)ρβVar(X(μ)), ρ → 0β−d ,

which suggests the asymptotic relation n(ρ)2 ∼ λ(ρ)ρβ to obtain the conver-
gence of (10) in (L2(�, A,P),‖·‖2). However, in view of (8), the norm of (Xρ −
E(Xρ))/n(ρ) as a continuous linear functional from (M,‖·‖) to (L2(�, A,P),

‖·‖2) is given by

∣∣∣∣
∣∣∣∣
∣∣∣∣Xρ − E(Xρ)

n(ρ)

∣∣∣∣
∣∣∣∣
∣∣∣∣=
√(

vd

∫
R+

rdF (dr)

)√
λ(ρ)ρd

n(ρ)2
. (11)

In particular, (11) is not bounded for n(ρ)2 = λ(ρ)ρβ as ρ → 0β−d , and the Banach–
Steinhaus theorem states that there exists a dense subset of M on which the rescaled
process (Xρ(μ) − E(Xρ(μ)))/

√
λ(ρ)ρβ cannot converge in (L2(�, A,P),‖ · ‖2).

Therefore, we study in the sequel the convergence (10) on strict subspaces of M.
This will allow us to get in the limit a continuous linear functional taking values
in (L2(�, A,P),‖ · ‖2), despite the fact that the convergence holds only for finite-
dimensional distributions.
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2.2 Gaussian Limit Regime

For β �= d , let us define the space of measures

Mβ =
{
μ ∈ M : ∃α s.t. α < β < d or d < β < α

and
∫

Rd×Rd

|z − z′|d−α|μ|(dz)|μ|(dz′) < +∞
}
,

where |z| denotes the Euclidean norm of z ∈ R
d , and |μ| is the total variation measure

of μ ∈ M. We remark that the integral assumption is a finite Riesz energy assumption
for β > d and that Mβ = {0} when β ≥ 2d . In both cases d − 1 < β < d and d <

β < 2d , if μ ∈ M satisfies
∫

Rd×Rd

|z − z′|d−α|μ|(dz)|μ|(dz′) < +∞

for some α (α < β < d and d < β < α, respectively), then the same holds for any γ

between β and α. In particular, for any μ ∈ Mβ ,
∫

Rd×Rd

|z − z′|d−β |μ|(dz)|μ|(dz′) < +∞.

We also introduce the subspace of finite signed measures of vanishing total mass,

M1 =
{
μ ∈ M :

∫
Rd

μ(dz) = 0

}
,

and consider the subspaces

M̃β =
{

Mβ for d < β < 2d,

Mβ ∩ M1 for d − 1 < β < d.
(12)

Theorem 2.1 Let d − 1 < β < 2d with β �= d . Let F be a nonnegative measure on
R

+ which satisfies A(β). For all positive functions λ such that λ(ρ)ρβ −→
ρ→0β−d

+∞,

the limit

Xρ(μ) − E(Xρ(μ))√
λ(ρ)ρβ

fdd−→
ρ→0β−d

Wβ(μ)

holds for all μ ∈ M̃β , in the sense of finite-dimensional distributions of the random
functionals. Here Wβ is the centered Gaussian random linear functional on M̃β with
covariance functional

Cov(Wβ(μ),Wβ(ν)) = E(Wβ(μ)Wβ(ν)) = cβ

∫
Rd×Rd

|z−z′|d−βμ(dz)ν(dz′) (13)

for a constant cβ only depending on β .
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Remark 2.2 Equation (13) defines a covariance function, called generalized covari-
ance function in [18]. The value of the constant cβ is given by (19) below.

Proof We begin with two lemmas. The first lemma describes the covariance function
and is based on some technical estimates for the intersection volume of two balls.
The second one, inspired by Lemma 1 of [15], stands for Lebesgue’s theorem with
assumptions that are well adapted to the present setting.

Lemma 2.3 Let d − 1 < β < 2d with β �= d . There exists a real constant cβ such
that for all μ ∈ M̃β ,

0 <

∫
Rd×R+

μ(B(x, r))2r−β−1 dr dx = cβ

∫
Rd×Rd

|z − z′|d−βμ(dz)μ(dz′) < +∞.

Proof Let us introduce the function γ defined on [0,∞) by

γ (u) = Lebesgue measure of B(0,1) ∩ B(ue,1) (14)

for any unit vector e ∈ R
d . The function γ is decreasing, supported on [0,2], bounded

by γ (0) = vd , continuous on [0,2], and smooth on (0,2). Define γβ as

γβ(u) =
{

γ (u) − γ (0), d − 1 < β < d,

γ (u), d < β < 2d.

We notice that for d − 1 < β < d , |γβ(u)| ≤ γ (0) and |γβ(u)| ≤ supv>0 |γ ′(v)|u.
Hence, for some constant C > 0, |γβ(u)| ≤ C ud−α for any 0 ≤ d − α ≤ 1, that is,
any α in [d − 1, d]. For d < β < 2d , one can find C > 0 such that |γβ(u)| ≤ C ud−α

for any α ≥ β . In particular, we may take α such that d − 1 < α < β for the case
d − 1 < β < d and α such that β < α < 2d for d < β < 2d , and for both cases, we
have a C > 0 with

∀u > 0, |γβ(u)| ≤ Cud−α. (15)

Step 1. For μ ∈ M̃β , let us prove that
∫

Rd×R+ μ(B(x, r))2r−β−1 dr dx < +∞. We
introduce the function ϕ defined by

ϕ(r) =
∫

Rd

μ(B(x, r))2 dx, r > 0. (16)

Using successively Fubini’s theorem, homogeneity, and (14), we get

ϕ(r) =
∫

Rd×Rd

(∫
Rd

1B(z,r)(x)1B(z′,r)(x)dx

)
μ(dz)μ(dz′)

= rd

∫
Rd×Rd

γ (|z − z′|/r)μ(dz)μ(dz′).

Therefore ϕ(r) ≤ γ (0) |μ|(Rd)2 rd . Moreover, since μ ∈ M̃β ,

ϕ(r) = rd

∫
Rd×Rd

γβ(|z − z′|/r)μ(dz)μ(dz′), (17)
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and we can choose α such that
∫

Rd×Rd |z − z′|d−α|μ|(dz)|μ|(dz′) < +∞ and (15)
holds. Then

ϕ(r) ≤ Crα

∫
Rd×Rd

|z − z′|d−α|μ|(dz)|μ|(dz′).

Finally, one can find C > 0 such that

ϕ(r) ≤ C min
(
rd , rα

)
(18)

and ∫ +∞

0
ϕ(r)r−β−1 dr =

∫
Rd×R+

μ(B(x, r))2r−β−1 dr dx < +∞.

Step 2. We prove the equality stated in the lemma, which is

∫ +∞

0
ϕ(r)r−β−1 dr = cβ

∫
Rd×Rd

|z − z′|d−βμ(dz)μ(dz′),

using the previous notation. To this end we wish to replace ϕ by (17) in the left-hand
side integral. Using estimates (15) on |γβ |, one can show that the integral

Iβ(u) :=
∫

R+
γβ(u/r)rd−β−1 dr

is well defined for all u ∈ R+. Furthermore, Iβ is homogeneous of order d − β so
that

∀u > 0, Iβ(u) = Iβ(1)ud−β.

This proves that

∫ +∞

0
ϕ(r)r−β−1 dr = Iβ(1)

∫
Rd×Rd

|z − z′|d−βμ(dz)μ(dz′),

which completes the proof of the lemma with

cβ = Iβ(1) =
∫

R+
γβ(1/r)rd−β−1 dr. (19)

�

Now let us state a second lemma, which is the main tool to establish our scaling
limit results.

Lemma 2.4 Let F be a nonnegative measure on R
+ satisfying A(β) for β �= d .

(i) Assume that g is a continuous function on R
+ such that for some 0 < p < β < q ,

there exists C > 0 such that

|g(r)| ≤ C min
(
rq, rp

)
.
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Then ∫
R+

g(r)Fρ(dr) ∼ ρβ

∫
R+

g(r)r−β−1 dr as ρ → 0β−d .

(ii) Let gρ be a family of continuous functions on R
+. Assume that

lim
ρ→0β−d

ρβgρ(r) = 0 and ρβ |gρ(r)| ≤ C min
(
rp, rq

)

for some 0 < p < β < q and C > 0. Then

lim
ρ→0β−d

∫
R+

gρ(r)Fρ(dr) = 0.

Proof (i) Let us assume, for instance, that β < d (the proof of the case β > d is
similar and can be found in [15]). Let ε > 0. Since F satisfies A(β), there exists
δ > 0 such that

r < δ ⇒ ∣∣f (r) − r−β−1
∣∣≤ εr−β−1. (20)

Let us remark that the assumptions on g ensure that

∫ +∞

0
|g(r)|r−β−1 dr < +∞.

On the one hand, since
∫ δρ

0 g(r)Fρ(dr) = ∫ δρ

0 g(r)f ( r
ρ
) dr

ρ
, we get by (20)

∣∣∣∣
∫ δρ

0
g(r)Fρ(dr) − ρβ

∫ δρ

0
g(r)r−β−1 dr

∣∣∣∣≤ ερβ

∫
R+

|g(r)|r−β−1 dr.

On the other hand, for δρ > 1, since |g(r)| ≤ Crp ,
∣∣∣∣
∫ ∞

δρ

g(r)Fρ(dr) − ρβ

∫ ∞

δρ

g(r)r−β−1dr

∣∣∣∣≤ CC1(δ)ρ
p + C

β − p
δp−βρp,

where C1(δ) = ∫ +∞
δ

rpF (dr) ≤ δp−d
∫

R+ rdF (dr) < ∞. Since p < β , we obtain (i).
(ii) We follow the same lines as for (i) and can assume similarly that β < d . Since

F satisfies A(β), there exists δ > 0 such that

r < δ ⇒ |f (r)| ≤ 2 r−β−1. (21)

The assumptions on gρ ensure that for all ρ > 0,

∫ +∞

0
ρβ |gρ(r)|r−β−1 dr < +∞ with lim

ρ→+∞

∫ ∞

0
ρβ |gρ(r)|r−β−1 dr = 0,

by Lebesgue’s theorem. Since
∫ δρ

0 gρ(r)Fρ(dr) = ∫ δρ

0 gρ(r)f ( r
ρ
) dr

ρ
, we get by (21)

∣∣∣∣
∫ δρ

0
gρ(r)Fρ(dr)

∣∣∣∣≤ 2
∫ ∞

0
ρβ |gρ(r)|r−β−1 dr.
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Therefore,

lim
ρ→+∞

∫ δρ

0
gρ(r)Fρ(dr) = 0. (22)

Moreover, for δρ > 1, since C1(δ) = ∫ +∞
δ

rpF (dr) < +∞ and |gρ(r)| ≤ Cρ−βrp ,
∣∣∣∣
∫ ∞

δρ

gρ(r)Fρ(dr)

∣∣∣∣≤ Cρ−β

∫ ∞

δρ

rpFρ(dr) ≤ CC1(δ)ρ
−(β−p). (23)

We conclude the proof using (22) and (23), since p < β . �

We start now with the proof of Theorem 2.1. Let us denote

n(ρ) :=
√

λ(ρ)ρβ

and define the function ϕρ on R
+ by

ϕρ(r) =
∫

Rd

Ψ

(
μ(B(x, r))

n(ρ)

)
dx,

where

Ψ (v) = eiv − 1 − iv. (24)

According to (6), the characteristic function of the normalized field (Xρ(.) −
E(Xρ(.)))/n(ρ) is given by

E

(
exp

(
i
Xρ(μ) − E(Xρ(μ))

n(ρ)

))
= exp

(∫
R+

λ(ρ)ϕρ(r)Fρ(dr)

)
.

By assumption, n(ρ) tends to +∞ as ρ → 0β−d so that Ψ (
μ(B(x,r))

n(ρ)
) behaves like

− 1
2 (

μ(B(x,r))
n(ρ)

)2. Therefore, we write

∫
R+

λ(ρ)ϕρ(r)Fρ(dr) = −1

2

∫
R+

ϕ(r)λ(ρ)n(ρ)−2Fρ(dr) +
∫

R+
�ρ(r)Fρ(dr),

(25)
where the function ϕ is introduced in (16), and

�ρ(r) = λ(ρ)ϕρ(r) + 1

2
λ(ρ)n(ρ)−2ϕ(r) (26)

= λ(ρ)

∫
Rd

(
Ψ

(
μ(B(x, r))

n(ρ)

)
+ 1

2

(
μ(B(x, r)

n(ρ)

)2)
dx.

Since μ ∈ M̃β , the function ϕ is continuous on R
+ and satisfies (18). Thus,

by Lemma 2.4(i), the first term of the right-hand side of (25) converges to
− 1

2

∫
R+ ϕ(r)r−β−1 dr . Moreover, by Lemma 2.3, we obtain

lim
ρ→0β−d

∫
R+

ϕ(r)λ(ρ)n(ρ)−2Fρ(dr) = cβ

∫
Rd×Rd

|z − z′|d−βμ(dz)μ(dz′).
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For the second term, let us verify that �ρ given by (26) satisfies the assumptions
of Lemma 2.4(ii). First, let us remark that the function �ρ is continuous on R

+ since

μ ∈ M. Because |Ψ (v) − (− v2

2 )| ≤ |v|3
6 and

∫
Rd

|μ(B(x, r))|3 dx ≤ ‖μ‖2
∫

Rd

|μ(B(x, r))|dx ≤ vd ‖μ‖3rd ,

we also check that

∣∣λ(ρ)−1n(ρ)2�ρ(r)
∣∣≤ 1

6
vd ‖μ‖3 n(ρ)−1rd .

Finally, since |Ψ (v)| ≤ |v|2
2 , by (18) there exists C > 0 such that

∣∣λ(ρ)−1n(ρ)2�ρ(r)
∣∣≤ Crα

for some α with (α −β)(β − d) > 0. Therefore,
∫

R+ �ρ(r)Fρ(dr) tends to 0 accord-
ing to Lemma 2.4(ii), and so

lim
ρ→0β−d

E

(
exp

(
i
Xρ(μ) − E(Xρ(μ))

n(ρ)

))

= exp

(
−1

2
cβ

∫
Rd×Rd

|z − z′|d−βμ(dz)μ(dz′)
)

.

Hence (Xρ(μ)−E(Xρ(μ)))/n(ρ) converges in distribution to the centered Gaussian
random variable W(μ) whose variance is equal to

E
(
W(μ)2)= cβ

∫
Rd×Rd

|z − z′|d−βμ(dz)μ(dz′).

By linearity, the covariance of W satisfies (13). �

With similar arguments, we can state a further scaling result leading to a non-
Gaussian limit.

2.3 Poisson Limit Regime

In this section we keep the notation introduced in Sect. 2.2 for the Gaussian limit
regime.

Theorem 2.5 Let d − 1 < β < 2d with β �= d . Let F be a nonnegative measure
on R

+ satisfying A(β). For all positive functions λ such that λ(ρ)ρβ −→
ρ→0β−d

ad−β

for some a > 0, we have, in the sense of finite-dimensional distributions of random
functionals, the scaling limit

Xρ(μ) − E(Xρ(μ))
fdd→ Jβ(μa)
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for all μ ∈ M̃β . Here Jβ is the centered random linear functional on M̃β defined as

Jβ(μ) =
∫

Rd×R+
μ(B(x, r))Ñβ(dx,dr),

where Ñβ is a compensated Poisson random measure with intensity dx r−β−1dr , and
μa is defined by μa(A) = μ(a−1A).

Proof Let us recall that a compensated Poisson measure Ñ of intensity n is such
that Ñ + n is a Poisson measure of intensity n. Therefore, the stochastic integral∫

k(x, r) Ñ(dx,dr) of a measurable function k : R
d × R

+ → R with respect to a
compensated Poisson measure Ñ of intensity n exists P-a.s. if and only if

∫
Rd×R+

min
(|k(x, r)|, k(x, r)2)n(dx,dr) < ∞ (27)

(see [17], Theorem 10.15 for instance).
By Lemma 2.3, using once again the function ϕ introduced in (16), for all μ ∈

M̃β , we have

∫
Rd

∫
R+

μ(B(x, r))2r−β−1 dr dx =
∫

R+
ϕ(r)r−β−1 dr < +∞.

Hence, in view of (27) with n(dx,dr) = dx r−β−1dr and k(x, r) = μ(B(x, r)), the
random field Jβ is well defined on M̃β , with characteristic function

E(exp(iJβ(μ))) = exp

(∫
R+×Rd

Ψ (μ(B(x, r)))dx r−β−1dr

)
, (28)

where Ψ is given by (24).
On the other hand, the characteristic function for the centered Poisson random

balls model equals

E(exp(i(Xρ(μ) − E(Xρ(μ)))) = exp

(∫
R+×Rd

Ψ (μ(B(x, r)))dx λ(ρ)Fρ(dr)

)
.

Define for r > 0,

ϕ̃(r) =
∫

Rd

Ψ (μ(B(x, r)))dx.

For μ ∈ M̃β , using |Ψ (v)| ≤ |v|2/2 and (18), we get that there exists C > 0 such that

|ϕ̃(r)| ≤ C min
(
rd , rα

)

for some α with (α − β)(β − d) > 0. Thus, by Lemma 2.4(i),

∫
R+

λ(ρ)ϕ̃(r)Fρ(dr) ∼
ρ→0β−d

ad−β

∫ ∞

0
ϕ̃(r)r−β−1 dr,
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and hence,

lim
ρ→0β−d

E(exp(i(Xρ(μ) − E(Xρ(μ)))) = exp

(
ad−β

∫
R+

ϕ̃(r) r−β−1 dr

)
.

Finally, it is sufficient to remark that

ad−β

∫
R+

ϕ̃(r)r−β−1 dr = ad

∫
R+

ϕ̃(a−1r)r−β−1 dr

with

ad ϕ̃
(
a−1r

)= ad

∫
Rd

Ψ
(
μ
(
B
(
x, a−1r

)))
dx =

∫
Rd

Ψ (μa(B(x, r)))dx,

to obtain

lim
ρ→0β−d

E(exp(i(Xρ(μ) − E(Xρ(μ))))) = E(exp(iJβ(μa))). �

Lemma 2.3 and (13) yield the following remark.

Remark 2.6 The covariance function of Jβ is given for all μ,ν ∈ M̃β by

Cov(Jβ(μ), Jβ(ν)) =
∫

Rd×R+
μ(B(x, r))ν(B(x, r))dx r−β−1dr

= cβ

∫
Rd×Rd

|z − z′|d−βμ(dz)ν(dz′),

and so Jβ and Wβ have the same covariance function on M̃β .

3 Properties of the Limiting Random Generalized Fields

In this section we discuss some of the main properties of the fields we obtain as scal-
ing limits. The limits inherit from the random balls model a stationarity property and
acquire, due to the nature of the performed scaling, certain self-similarity properties.

3.1 Stationarity

Following the same ideas as in [9] or [18], we define a notion of stationarity which
characterizes the translation invariance of a random linear functional over a subset
of signed measures. We say as usual that a subspace S ⊂ M is closed for trans-
lations if, for any μ ∈ S and any s ∈ R

d , we have τsμ ∈ S , where τsμ is defined
by τsμ(A) = μ(A − s), for any Borel set A. To provide a more general framework
for stationary random fields, we introduce the following subspaces of measures with
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vanishing moments. For any n ∈ N � {0}, denote by Mn the subspace of measures
μ ∈ M such that

∫
Rd |z|n−1|μ|(dz) < +∞ which satisfy
∫

Rd

zjμ(dz) =
∫

Rd

z
j1
1 · · · zjd

d μ(dz) = 0 (29)

for all j = (j1, . . . , jd) ∈ N
d with 0 ≤ j1 + · · · + jd < n (see [18], where similar

spaces of measures are introduced). Here, the class M1 was already used for the
setting of Theorem 2.1. For convenience, we also put M0 = M. A simple but tedious
computation shows that when μ ∈ Mn satisfies

∫
Rd |z|2n−2|μ|(dz) < +∞ for n ≥ 1,

then ∫
Rd×Rd

|z − z′|2kμ(dz)μ(dz′) = 0, 0 ≤ k < n.

In particular, the subspaces Mn defined by (29) are closed under translations for any
n ∈ N.

Definition 3.1 Let n ∈ N. Let X be a random field defined on a subspace S ⊂ Mn

closed for translations. The field X is translation invariant if

∀μ ∈ S, ∀s ∈ R
d , X(τsμ)

fdd= X(μ). (30)

More precisely, one says that X is stationary when n = 0 and has stationary nth
increments when n > 0.

It follows that if X has stationary nth increments on a subspace S ⊂ Mn, then its
restriction on S ∩ Mn+1 ⊂ Mn+1 has stationary (n + 1)th increments. This termi-
nology comes from [9], where S = S(Rd) is the Schwartz space. In this setting the
generalized field X has stationary nth increments if all its partial derivatives of order
n are stationary.

By the translation invariance of the Lebesgue measure, for any ρ > 0, the random
field Xρ defined by (9) is stationary on M. The fields Wβ and Jβ obtained as limit
fields on M̃β in Theorem 2.1 and Theorem 2.5 are not defined on the full space M.
But M̃β is closed for translations. Therefore, when considering the limiting random
fields on M̃β , one has the following property.

Proposition 3.2 Let d − 1 < β < 2d with β �= d . Then Wβ and Jβ are translation
invariant on M̃β .

In other words, from (12), Wβ and Jβ defined on M̃β are both stationary if d <

β < 2d , and they have stationary first increments if d − 1 < β < d .

3.2 Self-similarity

Let a > 0 and denote by μa the dilated measure defined by μa(A) = μ(a−1A) for
any Borel set A. A subspace S ⊂ M is said to be closed for dilations if, for any
μ ∈ S and any a > 0, we have μa ∈ S . The following definition extends the standard
definition of self-similarity for pointwise defined random fields.
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Definition 3.3 Let H ∈ R. A random field X, defined on a subspace S of M which
is closed for dilations, is said to be self-similar with index H if

∀μ ∈ S, ∀a > 0, X(μa)
fdd= aH X(μ).

Once noticed that M̃β is closed for dilations and observing the consequence of
dilation on the covariance of Wβ , the following property is straightforward.

Proposition 3.4 The field Wβ , defined on M̃β , is self-similar with index H = d−β
2

that runs over (−d/2,1/2) \ {0}.

In contrast to the Gaussian field Wβ , the Poisson limit field Jβ is not self-similar.
A similarity property which applies in great generality to long-range dependent
processes is discussed in [14]. The following is a version for spatial random fields.

Definition 3.5 A random field X with EX = 0, defined on a subspace S of M which
is closed for dilations, is said to be aggregate-similar if there exists a sequence of
positive real numbers (am)m≥1 such that

∀μ ∈ S, ∀m ≥ 1, X(μam)
fdd=

m∑
i=1

Xi(μ),

where (Xi)i≥1 are i.i.d. copies of X.

Thus, a random field is aggregate-similar if the path μam �→ X(μam), as we trace
along the sequence of dilations given by am, passes all aggregates

∑m
i=1 Xi of X, in

the distributional sense. We may write, equivalently,

∀μ ∈ S, ∀m ≥ 1, X(μ)
fdd=

m∑
i=1

Xi(μ
a−1
m

),

which immediately shows that an aggregate-similar random field is infinitely divisi-
ble.

Any self-similar zero-mean Gaussian random field is aggregate-similar. Indeed,
if XH is Gaussian with EXH = 0 and self-similar with index H , then letting am =
m1/2H , we have

XH (μam)
fdd= m1/2XH (μ)

fdd=
m∑

i=1

Xi
H (μ), m ≥ 1. (31)

In particular, Wβ is aggregate-similar on M̃β with respect to the sequence am =
m1/(d−β). For d − 1 < β < d , we have a−1

m → 0, and hence μam represents a zoom-
in of Wβ as m → ∞. This is in contrast to the case d < β < 2d , for which a−1

m → ∞.
Consequently, the succession of aggregates

∑m
i=1 Wi

β(μ) of Wβ(μ) appears as the
sequence of measures μam performs a zoom-out, in the limit m → ∞.



1126 J Theor Probab (2010) 23: 1110–1141

Turning next to the non-Gaussian field Jβ , by (28),

log E(exp(iJβ(μa))) = ad−β log E(exp(iJβ(μ))).

Thus, Jβ is aggregate-similar with respect to am given by a
d−β
m = m. This property

provides an interpretation of the dilation parameter a in Theorem 2.5. If we assume
in the theorem that λ(ρ)ρβ → a

d−β
m = m as ρβ−d → 0 for arbitrary m ≥ 1, then

Xρ(μ) − E(Xρ(μ))
fdd→ Jβ(μam)

fdd=
m∑

i=1

J i
β(μ).

The guiding asymptotic quantity λρβ may be interpreted as the expected number of
very large (β > d) or very small (β < d) balls which cover a point asymptotically.
Thus, the more of such extreme grains are allowed asymptotically, the larger number
of i.i.d. copies of the basic field Jβ appears in the limit.

We may continue this line of reasoning by providing a limit result for Jβ(μam) as
m → ∞. In view of Theorems 2.5 and 2.1, this result is not at all surprising.

Proposition 3.6 As ad−β → ∞, for all μ in M̃β ,

1

a(d−β)/2
Jβ(μa)

fdd→ Wβ(μ).

Proof Consider the subsequence am = m1/(d−β). It follows immediately from
aggregate-similarity and the central limit theorem that

1

a
(d−β)/2
m

Jβ(μam)
fdd= 1√

m

m∑
i=1

J i
β(μ)

fdd→ Wβ(μ), m → ∞,

since Jβ(μ) and Wβ(μ) have the same variance. A standard argument completes the
proof of convergence in distribution along an arbitrary sequence. �

4 Self-similar Random Fields of Arbitrary Order

We consider in this section an extension of our methods in order to obtain random
fields with the self-similarity property for any index H ∈ R \ Z. To state our main
results, Theorems 4.7 and 4.8, a preliminary study of self-similar random fields of
arbitrary order is required.

4.1 Dobrushin’s Characterization of Self-similar Random Fields

Dobrushin [9] gives a complete description of Gaussian translation-invariant self-
similar generalized random fields on R

d . For this purpose, he considers continuous
random linear functionals of S(Rd)′, where S(Rd)′ is the topological dual of the
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Schwartz space S(Rd) of all infinitely differentiable rapidly decreasing real func-
tions on R

d (see, e.g., [10, 11]). As usual, S(Rd) is equipped with the topology that
corresponds to the following notion of convergence: ϕn → ϕ if and only if for all
N ∈ N and j ∈ N

d ,

sup
z∈Rd

(1 + |z|)N ∣∣Dj(ϕn − ϕ)(z)
∣∣→ 0,

where Djϕ(z) = ∂j1 ···∂jd

∂z
j1
1 ···∂z

jd
d

ϕ(z) denotes the partial derivative of order j =
(j1, . . . , jd). Then, a linear functional X : S(Rd) → L2(�, A,P) is continuous if
and only if ϕn → 0 in S(Rd) implies that

E
(
X(ϕn)

2)→ 0.

To each function ϕ ∈ S(Rd) ⊂ L1(Rd), one can uniquely associate a signed mea-
sure ϕ̃ ∈ M defined by ϕ̃ (dz) = ϕ(z)dz. For notational simplicity, we identify any
function ϕ ∈ L1(Rd) with its image ϕ̃ in M, so that L1(Rd) ⊂ M. Therefore any
random linear functional on M, when restricted to S(Rd), can be viewed as a linear
functional on S(Rd).

Proposition 4.1 Let ρ > 0. The random field Xρ induces a continuous random linear
functional on S(Rd).

Proof By (11), the random field Xρ is a continuous random linear functional on
(M,‖·‖). Then, to prove the continuity of Xρ on S(Rd), it is sufficient, using
Lebesgue’s theorem, to notice that the previous identification implies that if μn =
ϕ̃n → 0 in S(Rd), then ‖μn‖ = ∫

Rd |ϕn(z)|dz → 0. �

Now, put

Sn

(
R

d
)= S

(
R

d
)∩ Mn, n ≥ 0.

In particular, S0(R
d) = S(Rd). We obtain the continuity properties of Wβ and Jβ

by observing that S(Rd) ∩ M̃β = S(Rd) when d < β < 2d , while S(Rd) ∩ M̃β =
S(Rd) ∩ M1 = S1(R

d) for d − 1 < β < d .

Proposition 4.2 Let d − 1 < β < 2d with β �= d . The random fields Wβ and Jβ

induce continuous random linear functionals on Sn(R
d) for any n ≥ 1 if d −1 < β <

d and any n ≥ 0 if d < β < 2d .

Proof Note that by (13) and Remark 2.6, for any μ ∈ M̃β ,

E
(
Wβ(μ)2)= E

(
Jβ(μ)2)≤ |cβ |

∫
Rd×Rd

|z − z′|d−β |μ|(dz)|μ|(dz′). (32)

A straightforward use of Lebesgue’s theorem concludes the proof. �
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Then, restricted to Sn(R
d), the Gaussian field Wβ is a translation-invariant self-

similar generalized field. We refer to [19] for a synthesis using orthonormal basis of
L2(Rd) in the case d < β < 2d and to [6] for other examples of self-similar gen-
eralized fields obtained by random wavelet expansions in the general case. In [9]
Dobrushin focuses on the spectral representation of such Gaussian fields. Since the
law of a centered Gaussian field is characterized by its covariance function, let us
introduce a second-order self-similarity property. For H ∈ R, we say that a random
linear functional X on Sn(R

d) is a second-order self-similar field of order H if, for
all a > 0 and ϕ,ψ ∈ Sn(R

d),

Cov(X(ϕa),X(ψa)) = a2H Cov(X(ϕ),X(ψ)), where ϕa(x) = a−dϕ
(
a−1x

)
.

(33)
We denote by ϕ̂(ξ) = ∫

Rd e−iz·ξ ϕ(z)dz the Fourier transform of ϕ ∈ S(Rd) and re-
call that ϕ̂ is infinitely differentiable rapidly decreasing on R

d with complex values.
Moreover, for n ≥ 1, the spaces Sn(R

d) are obtained as

Sn

(
R

d
)= {ϕ ∈ S

(
R

d
);Dj ϕ̂(0) = 0, |j | < n

}
. (34)

Then Theorem 3.2 of [9] can be reformulated as follows.

Theorem 4.3 Let n ≥ 0, and let X be a continuous random linear functional on
Sn(R

d). Then X is translation-invariant and second-order self-similar field of order
H ∈ R if and only if for all ϕ,ψ ∈ Sn(R

d),

Cov(X(ϕ),X(ψ)) =
∫

Sd−1

∫
R+

ϕ̂(rθ)ψ̂(rθ)r−2H−1 dr dσ(θ)

+
∑

|j |=|k|=n

Aj,kαj (ϕ)αk(ψ), (35)

where σ is a finite positive measure on the unit sphere Sd−1, αj (ϕ) = ∫
Rd ϕ(x)xj dx =

i|j |Dj ϕ̂(0) for j = (j1, . . . , jd) ∈ N
d with |j | = j1 + · · · + jd = n, and A =

(Aj,k)|j |=|k|=n is a symmetric positive definite real matrix. Moreover, if H < n, then
A = 0; if H = n, then σ = 0; and if H > n, then A = 0 and σ = 0.

We make the further comment that generalized random fields defined on Sn(R
d)

for some n > 0 roughly correspond to suitable derivatives of random fields defined on
S(Rd). More precisely, since the Schwartz class is closed under differentiation, if X

is a continuous random linear functional on S(Rd), one can define for any j ∈ N
d the

partial derivative of X of order j as the continuous random linear functional defined
by

∀ϕ ∈ S
(
R

d
)
, DjX(ϕ) = (−1)|j |X(Djϕ).

Moreover, [9] states the following property (see Lemma 1.2.1 on p. 23 of [3] for a
proof).

Proposition 4.4 For any n ∈ N, Sn(R
d) = Span{Djϕ : ϕ ∈ S(Rd), j ∈ N

d , |j | = n}.
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Therefore, the knowledge of a generalized random field X on Sn(R
d) is equivalent

to the knowledge of all its partial derivatives DjX of order j with |j | = n. Further-
more, X has stationary nth increments if and only if its partial derivatives DjX of
order j with |j | = n are stationary.

Note that Wβ and Jβ share the same covariance function by Remark 2.6, so that
they are both second-order self-similar fields of order d−β

2 . Moreover, due to the
isotropy of balls and the rotation invariance of Lebesgue measure, it is straightforward
to conclude that Wβ and Jβ are isotropic random fields. We obtain the following
result, which is of Plancherel’s type and gives the covariance function of Wβ and Jβ

in spectral form.

Proposition 4.5 Fix d − 1 < β < 2d with β �= d . There exists kβ > 0 such that, for
any ϕ,ψ ∈ S(Rd) if d < β < 2d and for any ϕ,ψ ∈ S1(R

d) if d − 1 < β < d , we
have

Cov(Wβ(ϕ),Wβ(ψ)) = Cov(Jβ(ϕ), Jβ(ψ))

= cβ

∫
Rd×Rd

|z − z′|d−βϕ(z)ψ(z′)dzdz′

= kβ

∫
Rd

ϕ̂(ξ)ψ̂(ξ) |ξ |β−2d dξ.

Proof By combining Propositions 3.2, 3.4, and 4.2 it follows that Wβ is a continuous
random linear functional on S(Rd) if d < β < 2d and on S1(R

d) if d − 1 < β < d ,
which is translation-invariant and second-order self-similar of order H = d−β

2 . By
Theorem 4.3 its covariance function is given by (35). The measure σ is invariant
under rotation by isotropy of Wβ and hence, up to a constant, equals to the Lebesgue
measure on the sphere. �

4.2 Arbitrary-order Self-similar Random Fields as Scaling Limits

To exploit Dobrushin’s characterization theorem (Theorem 4.3) further, we next con-
sider a general class of Gaussian random fields which are self-similar with arbitrary
index H ∈ R \ Z. For such an index H , let us introduce the parameter

βH = d − 2

(
H −

[
H + 1

2

])
∈ (d − 1, d + 1] \ {d} (36)

and write

�H�+ =
{

[H ] + 1, H > 0,

0, H < 0,

where [H ] is the integer part of H . Let BH be a continuous random field defined on
S�H�+ , which is centered, Gaussian and isotropic, and whose covariance functional
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is given by

Cov(BH (ϕ),BH (ψ)) = kβH

∫
Rd

ϕ̂(ξ)ψ̂(ξ) |ξ |−2H−d dξ, ϕ,ψ ∈ S�H�+
(
R

d
)
,

(37)
where the constant kβH

corresponds to the constant kβ introduced in Proposition 4.5
with β = βH as in (36).

In what follows we will see that for H such that [H + 1
2 ] < H or equivalently

such that βH < d , the field BH may be explicitly constructed as the scaling limit
of a random germ-grain model where the radius of grains accumulates at zero. In
the opposite case where [H + 1

2 ] > H or equivalently βH > d , the field BH may be
explicitly constructed as the scaling limit of a random germ-grain model where grains
have a heavy-tailed radius distribution at infinity. This is the purpose of Theorem 4.7
below.

In the case d = 1 and 0 < H < 1 with H �= 1
2 , then either βH < 1 or βH > 1,

corresponding to 0 < H < 1
2 or 1

2 < H < 1, and the Gaussian field BH is obtained
either as a zoom-in or as a zoom-out procedure. These two different microscopic
descriptions lead to two different macroscopic dependence behaviors. It has to be
compared with the usual fractional Brownian motion, which is negatively correlated
for 0 < H < 1

2 and positively correlated for 1
2 < H < 1. In [7, 8] similar ideas are

developed using the vocabulary of antipersistent and persistent fractional Brownian
motion.

In order to link the Dobrushin fields BH and the limit fields Wβ we obtained in
the previous section, we will use fractional integration and differentiation. In [19] a
similar procedure is used to synthesize Gaussian self-similar random fields with H ∈
(−d/2,0). To introduce the method, we consider for ϕ ∈ S(Rd) the usual Laplacian
operator

�ϕ =
d∑

j=1

∂2ϕ

∂z2
j

and recall that for any ξ ∈ R
d ,

�̂ϕ(ξ) = −|ξ |2ϕ̂(ξ).

Next, for any m ∈ Z, we may define formally the operator (−�)− m
2 by the relation

̂(−�)−m/2ϕ(ξ) = |ξ |−mϕ̂(ξ), ξ ∈ R
d .

In order to give a precise meaning to this operator, let us denote by F the Fourier
transform on S(Rd) and recall that F is injective on S(Rd). We introduce the inter-
section space

S∞
(
R

d
)=⋂

n≥0

Sn

(
R

d
)
.

Thus, S∞(Rd) �= ∅ since this space contains any function ϕ ∈ S(Rd) such that ϕ̂ van-
ishes in a neighborhood of 0. Then, let us consider F (S∞(Rd)) = {ϕ̂; ϕ ∈ S∞(Rd)},
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equipped with the usual topology of the Schwartz space of complex-valued func-
tions. Therefore, F is a linear homeomorphism from S∞(Rd) to F (S∞(Rd)). We
can define on F (S∞(Rd)) the operator Tm by

Tmψ(ξ) = |ξ |−mψ(ξ), ξ ∈ R
d, ψ ∈ F

(
S∞
(
R

d
))

.

Proposition 4.6 For any m ∈ Z, the operator Tm is a linear homeomorphism on
F (S∞(Rd)). Moreover, (−�)−m/2 := F −1 ◦ Tm ◦ F is a linear homeomorphism on
S∞(Rd).

Proof Let m ∈ Z. For any n ≥ 1,

Sn

(
R

d
)= {ϕ ∈ S

(
R

d
);Dj ϕ̂(0) = 0, |j | < n

}
.

Therefore, if ψ ∈ F (S∞(Rd)), Tmψ is a smooth function, rapidly decreasing, with
partial derivatives of any order vanishing at 0. Moreover, ψ(ξ) = ψ(−ξ) such that
Tmψ(ξ) = Tmψ(−ξ), for any ξ ∈ R

d . Hence Tmψ ∈ F (S∞(Rd)). It is then clear that
Tm is a linear homeomorphism on F (S∞(Rd)). The proof is completed by using the
fact that F is a linear homeomorphism from S∞(Rd) onto F (S∞(Rd)). �

Theorem 4.7 Let H ∈ R with H /∈ 1
2Z for d = 1 and H /∈ Z for d ≥ 2. Set m =

[H + 1
2 ] and βH = d − 2(H − m). Then

BH (ϕ)
fdd= WβH

(
(−�)−m/2ϕ

)
, ϕ ∈ S∞

(
R

d
)
.

Moreover, let F be a σ -finite nonnegative measure on R
+ satisfying A(βH ). For all

positive functions λ such that λ(ρ)ρβH −→
ρ→0m−H

+∞, the limit

Xρ((−�)− m
2 ϕ) − E(Xρ((−�)− m

2 ϕ))√
λ(ρ)ρβH

fdd−→
ρ→0m−H

BH (ϕ)

holds for all ϕ ∈ S∞(Rd), in the sense of finite-dimensional distributions of the ran-
dom functionals.
For the case H > −d/2, the covariance functional of BH has the representation

Cov(BH (ϕ),BH (ψ)) = C(H)

∫
Rd×Rd

|z − z′|2H ϕ(z)ψ(z′)dzdz′,

ϕ,ψ ∈ S∞
(
R

d
)
,

with a constant C(H) prescribed by (40) below.

Proof According to Proposition 4.5, since βH ∈ (d − 1, d + 1) ⊂ (d − 1,2d) for
d = 1 and βH ∈ (d −1, d +1] ⊂ (d −1,2d) for d ≥ 2 with βH �= d , the random field
WβH

is well defined on S∞(Rd). Moreover, for any ϕ,ψ ∈ S∞(Rd), we have

Cov
(
WβH

(
(−�)−m/2ϕ

)
,WβH

(
(−�)−m/2ψ

))
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= cβH

∫
Rd×Rd

|z − z′|d−βH (−�)−m/2ϕ(z)(−�)−m/2ψ(z′)dzdz′ (38)

= kβH

∫
Rd

̂(−�)−m/2ϕ(ξ) ̂(−�)−m/2ψ(ξ) |ξ |βH −2d dξ. (39)

By (39) and (37), we get

Cov
(
WβH

(
(−�)−m/2ϕ

)
,WβH

(
(−�)−m/2ψ

)) = kβH

∫
Rd

ϕ̂(ξ)ψ̂(ξ) |ξ |βH −2d−2m dξ

= Cov(BH (ϕ),BH (ψ)).

Since the two random fields WβH
and BH are Gaussian, it is enough to conclude that

BH (ϕ)
fdd= WβH

(
(−�)−m/2ϕ

)
.

Then, Theorem 2.1 provides the finite-dimensional-distribution limit.
Next, let us consider the covariance functional for H > −d/2. By rewriting (38),

Cov(BH (ϕ),BH (ψ)) = cβH

∫
Rd

|z|d−βH
(
(−�)−m/2ϕ ∗ (−�)−m/2ψ

)
(z)dz

with

(−�)−m/2ϕ ∗ (−�)−m/2ψ(z) =
∫

Rd

(−�)−m/2ϕ(z − z′)(−�)−m/2ψ(z′)dz′.

Using Fourier transforms,

(−�)−m/2ϕ ∗ (−�)−m/2ψ(z) = (−�)−m(ϕ ∗ ψ(z)),

so that

Cov(BH (ϕ),BH (ψ)) = cβH

∫
Rd

|z|d−βH (−�)−m(ϕ ∗ ψ)(z)dz.

Here, since �|z|2H = 2H(2(H − 1) + d)|z|2H−2 for z �= 0, one can find a constant
cH,m such that |z|d−βH = |z|2H−2m = cH,m�m|z|2H for any m ≥ 0 and z �= 0. Then,
since H > −d/2, integrating by parts, we obtain
∫

Rd

|z|d−βH (−�)−m(ϕ ∗ ψ(z))dz = cH,m

∫
Rd

|z|2H �m
(
(−�)−m(ϕ ∗ ψ(z))

)
dz.

Thus,

Cov(BH (ϕ),BH (ψ)) = C(H)

∫
Rd×Rd

|z − z′|2H ϕ(z)ψ(z′)dzdz′

with

C(H) = (−1)m cH,m cβH
. (40)

�
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Under the same parameter assumptions, as in the previous theorem, we may define
analogously a continuous generalized random field PH on S∞(Rd) by

PH (ϕ) = JβH

(
(−�)−m/2ϕ

)
, ϕ ∈ S∞

(
R

d
)
. (41)

The effect of a dilation by a > 0 is given by

JβH

((
(−�)−m/2ϕ

)
a

)= JβH

(
am(−�)−m/2(ϕa)

)= amPH (ϕa).

This allows us to extend Theorem 2.5 to the case of a general index H . By Proposi-
tion 4.5, the covariance functional of PH coincides with that of BH , so that PH can
be extended to a continuous linear functional on S�H�+(Rd).

Theorem 4.8 Take a real number H , H �∈ 1
2Z for d = 1, H �∈ Z for d ≥ 2. As above,

let m = [H + 1
2 ] and βH = d − 2(H − m). Let F be a nonnegative measure on

R
+ which satisfies A(βH ). For all positive functions λ such that λ(ρ)ρβH −→

ρ→0m−H

a2(H−m) for some a > 0, we have in the sense of finite-dimensional distributions of
random functionals the scaling limit

Xρ

(
(−�)−

m
2 ϕ
)− E

(
Xρ

(
(−�)−

m
2 ϕ
)) fdd−→

ρ→0m−H
amPH (ϕa)

for all ϕ ∈ S∞(Rd).

5 Pointwise Representation of the Random Fields BH and PH

In this section we discuss the case of a positive self-similarity index and assume
henceforth H > 0. For H /∈ N, note that �H�+ = �H�, where �H� = [H ] + 1, and
recall that the Gaussian field BH is defined on S�H�(Rd). By Proposition 4.4,

S�H�
(
R

d
)= Span

{
Djϕ : ϕ ∈ S

(
R

d
)
, j ∈ N

d , |j | = �H�}.
A natural question that arises in this context is whether it is possible to find a contin-
uous random linear functional Y on S(Rd) such that

∀ϕ ∈ S
(
R

d
)
, DjY (ϕ) = (−1)|j |BH

(
Djϕ

)
, j ∈ N

d with |j | = �H�.

The same question applies to the Poisson field PH defined by (41). We will use the
representation of generalized random fields as defined by Matheron [18], to provide
an answer (see also the links between “generalized random fields” and “punctual
random fields” in [3]). This will allow us to extend BH and PH as continuous random
linear functionals on the whole space S(Rd).
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5.1 Representation of Generalized Random Fields

Let X be a continuous random linear functional on a subset S of S(Rd). We say
that a continuous function X̃ : R

d → L2(�, A,P) is a representation of X if, for any
ϕ ∈ S ,

X(ϕ)
L2(�,A,P)=

∫
Rd

X̃(t)ϕ(t)dt.

In order to obtain representations B̃H (t) of BH and P̃H (t) of PH , for any t ∈ R
d , we

will consider an approximation in S�H�(Rd) of the Dirac mass δt at t .
Following the ideas of [18], let θ ∈ S(Rd) be a positive even function such that

its Fourier transform θ̂ satisfies θ̂ (0) = ∫
Rd θ(z)dz = 1. Let n ∈ N with n �= 0 and

set θn(z) = ndθ(nz). For t ∈ R
d , let τt θn = θn(z − t). Write l! = l1! · · · ld ! for l =

(l1, . . . , ld) ∈ N
d . Then, consider the functions defined by

Θn
t = τt θn −

∑
|l|<�H�

(−1)|l|

l! t lDlθn, t ∈ R
d .

On the one hand, since θ ∈ S(Rd), which is closed under dilations and differentia-
tions, Θn

t ∈ S(Rd). On the other hand, let us remark that, for ξ ∈ R
d ,

Θ̂n
t (ξ) = θ̂n(ξ)

(
e−it ·ξ −

∑
|l|<�H�

1

l! t
l(−iξ)l

)
= θ̂

(
ξ

n

)(
e−it ·ξ −

�H�−1∑
k=0

(−it · ξ)k

k!

)
,

(42)
using the fact

∑
|l|=k

1

l! t
l(−iξ)l = (−it · ξ)k

k! , k ∈ N,

which is a generalization of the binomial theorem. But for any k ∈ N and j ∈ N
d , we

get

Dj

(
(−it · ξ)k

k!
)/

ξ=0
=
{

(−i)|j |tj if |j | = k,

0 else.

Then by Leibnitz formula we obtain that DjΘ̂n
t (0) = 0 for any j ∈ N

d such that |j | <
�H�. According to (34), Θn

t belongs to S�H�(Rd). Therefore we can consider the
sequences of random functions defined by (BH (Θn· ))n≥1 and (PH (Θn· ))n≥1, where
BH (Θn· ) : t �→ BH (Θn

t ) for all n ≥ 1 and similarly for PH (Θn· ).

Theorem 5.1 Let H > 0 with H /∈ 1
2N for d = 1 and H /∈ N for d ≥ 2. The finite-

dimensional distributions of (BH (Θn· ))n≥1 converge in L2(�, A,P) to a representa-
tion B̃H of BH on S�H�(Rd) with the covariance function

�H (t, s) = kβH

∫
Rd

(
e−it ·ξ −

∑
0≤k<�H�

(−it · ξ)k

k!
)
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×
(

e−is·ξ −
∑

0≤k<�H�

(−is · ξ)k

k!
)

|ξ |−d−2H dξ

= C(H)

(
|t − s|2H −

∑
|l|<�H�

(−1)|l|

l!
(
slDl |t |2H + t lDl |s|2H

))
, (43)

where the constants kβH
and C(H) have been introduced in Proposition 4.5 and

Theorem 4.7, respectively.
Similarly, the finite-dimensional distributions of (PH (Θn· ))n≥1 converge in

L2(�, A,P) to a representation P̃H of PH on S�H�(Rd) with the same covariance
function as B̃H .

Proof Let n ∈ N � {0} and t ∈ R
d . By the choice of θ we have Θn

t ∈ S�H�(Rd). Let
n,m ∈ N � {0} and define the covariance

�n,m(t, s) := Cov
(
BH

(
Θn

t

)
,BH

(
Θm

s

))= Cov
(
PH

(
Θn

t

)
,PH

(
Θm

s

))
, t, s ∈ R

d .

By (37) this covariance can be written as

�n,m(t, s) = kβH

∫
Rd

Θ̂n
t (ξ)Θ̂m

s (ξ) |ξ |−2H−d dξ.

Then, according to (42), Lebesgue’s theorem implies that the limit in
�n,m(t, s) −→

n,m→+∞ �H (t, s) is given by

�H (t, s) := kβH

∫
Rd

(
e−it ·ξ −

∑
k<�H�

(−it · ξ)k

k!
)

×
(

e−is·ξ −
∑

k<�H�

(−is · ξ)k

k!
)

|ξ |−2H−d dξ.

Therefore, the finite-dimensional distributions of (BH (Θn· ))n≥1 converge in L2(�,

A,P) to a centered random field B̃H . The finite-dimensional distributions of
(PH (Θn· ))n≥1 converge similarly to a limit P̃H . Both limit fields have the covari-
ance function �H .

Let us prove that B̃H is a representation of BH on S�H�(Rd). The covariance
function �H of B̃H is continuous with respect to each variable, and so B̃H : R

d →
L2(�, A,P) is continuous. Then, the random linear functional X : ϕ ∈ S(Rd) �→∫

Rd B̃H (t)ϕ(t)(dt) is well defined since

Var(X(ϕ)) =
∫

Rd

∫
Rd

Cov
(
B̃H (t), B̃H (s)

)
ϕ(t)ϕ(s)dt ds < +∞,

using the fact that Var(B̃H )(t) ≤ C|t |2H . Finally, for any ϕ ∈ S�H�(Rd), we have
Var(X(ϕ)) = Var(BH (ϕ)) by (37), since

∫
Rd t lϕ(t)(dt) = 0 for |l| < �H�, which
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proves that B̃H is a representation of BH on S�H�(Rd). The same arguments hold
to prove that P̃H is a representation of PH on S�H�(Rd).

It remains to establish (43). By Theorem 4.7, for all n,m ∈ N \ {0},

�n,m(t, s) = C(H)

∫
Rd×Rd

|z − z′|2H Θn
t (z)Θm

s (z′)dzdz′.

For any z′ ∈ R
d , the function fz′(z) = |z − z′|2H admits continuous derivatives of

order l on R
d for any |l| < �H�. Therefore, for any z′ ∈ R

d ,

∫
Rd

|z − z′|2H Θn
t (z)dz = fz′ ∗ θn(t) −

∑
|l|<�H�

(−1)|l|

l! t lDlfz′ ∗ θn(0)

−→
n→+∞ |t − z′|2H −

∑
|l|<�H�

(−1)|l|

l! t lDl |z′|2H .

By Lebesgue’s theorem, as n → +∞,

lim
n→+∞�n,m(t, s) = C(H)

∫
Rd

(
|t − z′|2H −

∑
|l|<�H�

(−1)|l|

l! t lDl |z′|2H

)
Θm

s (z′)dz′.

As previously, we obtain

∫
Rd

|t − z′|2H Θm
s (z′)dz′ −→

m→+∞ |t − s|2H −
∑

|l|<�H�

(−1)|l|

l! slDl |t |2H ,

while ∫
Rd

Dl |z′|2H Θm
s (z′)dz′ −→

m→+∞ Dl |s|2H .

Therefore �H (t, s) = limn,m→+∞ �n,m(t, s) is also equal to (43). �

Remark 5.2 In the case H < 0, one cannot find any representation of either BH or
PH on S(Rd). This is due to the fact that the variance of a random field which is
second-order self-similar of order H < 0 is not bounded around 0.

Since BH is Gaussian, B̃H is also Gaussian as a limit in L2(�, A,P) of a Gaussian
functional. The spectral representation of B̃H is given by

B̃H (t)
fdd= √

kβH

∫
Rd

(
e−it ·ξ −

∑
k<�H�

(−it · ξ)k

k!
)

|ξ |−H−d/2W(dξ), (44)

where W is the complex Brownian measure. This field is called elliptic Gaussian
self-similar random field in [2].
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Specializing to the case d = 1, the covariance function �H in (43) equals

C(H)

(
|t − s|2H −

∑
l<�H�

(−1)l
(

2H

l

)((
s

t

)l

|t |2H +
(

t

s

)l

|s|2H

))
,

where
(2H

l

) = (2H) · · · (2H − (l − 1))/ l!. Therefore, B̃H is up to a multiplicative
constant an �H�th-order fractional Brownian motion as defined in [20].

5.2 Properties of the Pointwise Representation

One can define the �H�th increments of B̃H with lag h ∈ R
d , which correspond to

the discrete differentiation of order �H�, by

�
�H�
h B̃H (t) =

�H�∑
p=0

(�H�
p

)
(−1)�H�−p B̃H (t + ph).

Then

�
�H�
h B̃H (t) = lim

n→+∞BH

(�H�∑
p=0

(�H�
p

)
(−1)�H�−p τt+phθn

)
,

and the stationarity of BH implies that B̃H has stationary �H�th increments in the
wide sense: for all t, s, h,h′ ∈ R

d , the covariances Cov(�
�H�
h B̃H (s),�

�H�
h′ B̃H (s+ t))

do not depend on s (see [24] or [12] for instance).

Proposition 5.3 Let H > 0 with H /∈ N. Then the Gaussian random field B̃H has
stationary �H�th increments. Moreover, this field admits continuous partial deriva-
tives of order l ∈ N

d in mean square for any |l| < �H� such that DlB̃H has stationary
(�H� − |l|) increments, is self-similar of order H − |l|, and satisfies DlB̃H (0) = 0
almost surely.

Proof Recall that �H denotes the covariance function of B̃H . Since �H� ≥ 1, it is
straightforward to see that �H admits symmetric partial derivatives of order l ∈ N

d

for any |l| < �H�, with ∂2l�H

∂sl∂t l
(s, t) given by

kH

∫
Rd

(
e−it ·ξ −

∑
k<�H�−|l|

(it · ξ)k

k!
)(

e−is·ξ −
∑

k<�H�−|l|

(is · ξ)k

k!
)

ξ2l |ξ |−d−2H dξ.

By Theorem 2.2.2 of [1], this means that B̃H admits a continuous partial derivative
of order l in mean square, DlB̃H , which is a Gaussian random field with covari-

ance given by Cov(DlB̃H (t),DlB̃H (s)) = ∂2l�H

∂sl∂t l
(s, t). A straightforward change of

variables yields, for all a > 0,

Cov
(
DlB̃H (at),DlB̃H (as)

)= a2(H−|l|)Cov
(
DlB̃H (t),DlB̃H (s)

)
.
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Since DlB̃H is Gaussian, this implies that DlB̃H is self-similar of order H − |l|, that
is,

{
DlB̃H (at), t ∈ R

d
} fdd= aH−|l|{DlB̃H (t), t ∈ R

d
}

for all a > 0.

Moreover, for all t, s, h,h′ ∈ R
d ,

Cov
(
�

�H�−|l|
h DlB̃H (s),�

�H�−|l|
h′ DlB̃H (s + t)

)

= kβH

∫
Rd

e−it ·ξ (e−ih·ξ − 1)�H�−|l|(eih′·ξ − 1)�H�−|l|ξ2l |ξ |−2H−d dξ,

and DlB̃H has stationary (�H� − |l|)th increments. Finally, Var(DlB̃H (0)) = 0 im-
plies that DlB̃H (0) = 0 almost surely. �

Remark 5.4

(a) One can prove that B̃H is the only Gaussian random field with stationary �H�th
increments, which is self-similar of order H and isotropic.

(b) The representation P̃H of PH obtained in Theorem 5.1 is not Gaussian but shares
the same covariance function as B̃H . Therefore it satisfies the same second-order
properties: stationary �H�th increments, self-similarity of order H , and isotropy.

5.3 Fractional Brownian Field and Fractional Poisson Field

For 0 < H < 1, the random field B̃H corresponds to the well-known fractional
Brownian field with Hurst parameter equal to H , and (44) is known as the harmo-
nizable representation of the fractional Brownian field (see [13] for a review).

We consider the special case 0 < H < 1/2 for which d − 1 < βH = d − 2H < d .
For this range of parameters, �H� = 1, and

M̃βH
= MβH ∩ M1, M1 =

{
μ ∈ M :

∫
Rd

μ(dz) = 0

}
.

It follows that all pointwise increment measures δx − δ0, x ∈ R
d , belong to M̃βH

and are hence admissible for evaluating the limit fields WβH
and JβH

. Using the

representations B̃H and P̃H in Theorem 5.1, it is verified that B̃H (x)
fdd= WβH

(δx −δ0)

and P̃H (x)
fdd= JβH

(δx − δ0).
To analyze the properties of P̃H , we observe, using (28),

log E(exp(i P̃H (x))) =
∫

R+×Rd

Ψ (δx(B(y, r)) − δ0(B(y, r)))dy r−βH −1 dr, (45)

where Ψ is given by (24). Here,

δx(B(y, r)) − δ0(B(y, r)) =

⎧⎪⎨
⎪⎩

1, |x − y| < r < |y|,
−1, |y| < r < |x − y|,
0, otherwise
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and hence we may recast (45) into

log E(exp(i θP̃H (x))) = Ψ (θ)

∫
R+×Rd

1{|x−y|<r<|y|} dy r−βH −1 d r

+ Ψ (−θ))

∫
R+×Rd

1{|y|<r<|x−y|} dy r−βH −1 dr

= (−cβH
)|x|2H (Ψ (θ) + Ψ (−θ)).

This is the logarithmic characteristic functional of the difference of two independent
random variables, both having a Poisson distribution with intensity (−cβH

) |x|2H .
Hence, P̃H (x), x ∈ R

d , defines a mean zero integer-valued symmetrized Poisson-
distributed random field such that for any x, x′ ∈ R

d ,

Cov(P̃H (x), P̃H (x′)) = (−cβH
)
(|x|2H + |x′|2H − |x − x′|2H

)
.

By analogy with fractional Brownian field, this makes it natural to view P̃H as a
fractional Poisson field.

By adding random weights to the model we obtain a relation between P̃H and so-
called Chentsov random fields, in particular Takenaka fields, see [23], [22], Chap. 8.
By (45),

P̃H (x)
fdd=
∫

Rd×R+
(1B(x,r)(y) − 1B(0,r)(y))ÑβH

(dy,dr),

where ÑβH
is a compensated Poisson random measure with intensity r−βH −1 dr dy.

Fix a parameter 1 < α < 2 and consider the Poisson measure ÑβH
(dy,dr,dw) with

intensity measure |w|−(1+α)r−βH −1 dr dy. The random field

Y(x) =
∫

Rd×R+×R

(1B(x,r)(y) − 1B(0,r)(y))wÑβH
(dy,dr,dw)

is a variation of P̃H where random weights w are applied symmetrically with inten-
sity |w|−(1+α) to the original Poisson points (y, r). Consequently,

Y(x)
fdd=
∫

Rd×R+
(1B(x,r)(y) − 1B(0,r)(y))Mα(dy,dr),

where Mα is a symmetric α-stable random measure with associated measure pro-
portional to r−βH −1 dr dy [22, Theorem 3.12.2]. By properties of stochastic integrals
with respect to symmetric α-stable measures we have, for some positive constant C,

log E(exp(i, θY (x))) = −C

∫
R+×R+

|θ |α |1B(x,r)(y) − 1B(0,r)(y)|α dy r−βH −1dr

= −C|θ |α
∫

R+×R+
1B(x,r)�B(0,r)(y)dy r−βH −1 dr,

where � denotes the symmetric set difference. Hence,

Y(x)
fdd=
∫

Rd×R+
1B(x,r)�B(0,r)(y)Mα(dy,dr),
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which defines a symmetric α-stable random field which is self-similar with index
H ′ = (d − βH )/α ∈ (0,1/α), known as an (α,H ′)-Takenaka field, see [22], Defini-
tion 8.4.1 (the parameter β of the reference corresponds to d −βH in our notation). It
is noticed in [22] that, moreover, B̃H is a (2,H)-Takenaka field. Randomly weighted
random balls models also arise in applications such as teletraffic modeling. For the
one-dimensional case with parameter values d = 1 < βH < α < 2 and Mα as above,
the process

Z(t) =
∫

R×R+
|(0, t) ∩ (y, y + r)|Mα(dy,dr), t ≥ 0,

has been called a Telecom process. It arises as a scaling limit of a random intervals
model with one-sided weights, see Kaj and Taqqu [16].

The fractional Poisson field P̃H shares with B̃H and with (α,H)-Takenaka fields
[22, Theorem 8.6.3] the well-known interesting invariance property under restriction
to lower-dimensional hyperplanes. For example, any cut along a line through a planar
fractional field in R

2 generates a one-dimensional fractional process of the same kind.
To see this, let Hk be a k-dimensional hyperplane in R

d . We consider R
d = Hk ⊕H⊥

k

and write x̄k for the restriction to Hk of x = x̄k + (x − x̄k) ∈ R
d . To emphasize the

dimensional dependence, we write here B̃H,d(x) and P̃H,d(x), respectively, if the
fractional fields are defined on R

d .

Proposition 5.5 Given H ∈ (0,1/2), let β ′
H = βH − d + k ∈ (k − 1, k). Then the

measure δx̄k
− δ0 belongs to M̃β ′

H
, and we have

B̃H,d(x̄k)
fdd= B̃H ′,k(x̄k)

and

P̃H,d(x̄k)
fdd= P̃H ′,k(x̄k)

for H ′ = k−β ′
H

2 = d−βH

2 = H .

Proof It is enough to consider hyperplanes of the form x = (x1, . . . , xk,0, . . . ,0).
Then, clearly, |x̄k|d−βH = |x̄k|k−β ′

H , which carries over to showing that the covari-
ances of the pair of relevant random fields coincide. �
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