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Hermine Bierméa, Mark M. Meerschaertb,∗, Hans-Peter Schefflerc

a MAP5 Université René Descartes, 45 rue des Saints Pres, 75270 Paris cedex 06, France
b Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824-1027, USA

c Fachbereich Mathematik, Universität Siegen, 57068 Siegen, Germany

Received 23 February 2006; accepted 25 July 2006
Available online 17 August 2006

Abstract

A scalar valued random field {X (x)}x∈Rd is called operator-scaling if for some d × d matrix E with
positive real parts of the eigenvalues and some H > 0 we have

{X (cE x)}x∈Rd
f.d.
= {cH X (x)}x∈Rd for all c > 0,

where
f.d.
= denotes equality of all finite-dimensional marginal distributions. We present a moving average

and a harmonizable representation of stable operator scaling random fields by utilizing so called E-
homogeneous functions ϕ, satisfying ϕ(cE x) = cϕ(x). These fields also have stationary increments and
are stochastically continuous. In the Gaussian case, critical Hölder-exponents and the Hausdorff-dimension
of the sample paths are also obtained.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A scalar valued random field {X (x)}x∈Rd is called operator-scaling if for some d × d matrix
E with positive real parts of the eigenvalues and some H > 0 we have

{X (cE x)}x∈Rd
f.d.
= {cH X (x)}x∈Rd for all c > 0, (1.1)
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where
f.d.
= denotes equality of all finite-dimensional marginal distributions. As usual cE

=

exp(E log c)where exp(A) =
∑

∞

k=0
Ak

k!
is the matrix exponential. Note that if E = I , the identity

matrix, then (1.1) is just the well-known self-similarity property {X (cx)}x∈Rd
f.d.
= {cH X (x)}x∈Rd

where one usually calls H the Hurst index. See [10] for an overview of self-similar processes in
the one-dimensional case d = 1. Self-similar processes are used in various fields of applications
such as internet traffic modelling [20], ground water modelling and mathematical finance, just
to mention a few. Various examples can be found for instance in the books [15] and [1]. A very
important class of such fields or processes are the fractional stable fields and especially the Lévy
fractional Brownian field.

These fields have different definitions which are usually not equivalent. More precisely, for
0 < α ≤ 2 let Zα(dy) be an independently scattered symmetric α-stable (SαS) random measure
on Rd with Lebesgue control measure λd (see [18] p. 121). For 0 < H < 1 one defines the
moving average representation by

X H (x) =

∫
Rd
(‖x − y‖

H−d/α
− ‖y‖

H−d/α) Zα(dy). (1.2)

For Wα(dξ) a complex isotropic SαS random measure with Lebesgue control measure the
harmonizable representation is given by

X̃ H (x) = Re
∫
Rd
(ei〈x,ξ〉

− 1)‖ξ‖−H−d/α Wα(dξ). (1.3)

See [18] for a comprehensive introduction to random integrals with respect to stable

measures. It follows from basic properties that {X H (cx)}x∈Rd
f.d.
= {cH X H (x)}x∈Rd as well as

{X̃ H (cx)}x∈Rd
f.d.
= {cH X̃ H (x)}x∈Rd . Moreover, both processes have stationary increments, that

is for any h ∈ Rd we have {X H (x + h) − X H (h)}x∈Rd
f.d.
= {X H (x)}x∈Rd and similarly for

{X̃ H (x)}x∈Rd . Furthermore both fields are isotropic, that is {X H (Ax)}x∈Rd
f.d.
= {X H (x)}x∈Rd

for any orthogonal matrix A. It is worth mentioning that if α < 2 the fields {X H (x)}x∈Rd and
{X̃ H (x)}x∈Rd defined in (1.2) and (1.3), respectively, are usually different. See [18], Theorem
7.7.4 for the one-dimensional case. However, in the Gaussian case α = 2, by computing the
covariance function of the fields, it follows that {X H (x)}x∈Rd and {X̃ H (x)}x∈Rd have the same
law up to a multiplicative constant and known as the Lévy fractional Brownian field.

Certain applications (see, e.g., [7,8,17] and references therein) require that the random
field is anisotropic and satisfies a scaling relation. This scaling relation should have different
Hurst indices in different directions and these directions should not necessarily be orthogonal.
In the Gaussian case a prominent example of an anisotropic random field is the fractional
Brownian sheet {BH (x)}x∈Rd defined as follows: Let 0 < H j < 1 for j = 1, . . . , d and set
H = (H1, . . . , Hd). Define

BH (x) =

∫
Rd

d∏
j=1

[|x j − u j |
H j −1/2

− |u j |
H j −1/2

] Z2(du).

See [5,13,21] and the literature cited there for more information on these fields. Then, if we

set E = diag(H−1
1 , . . . , H−1

d ), it follows by a simple computation that {BH (cE x)}x∈Rd
f.d.
=
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{cd BH (x)}x∈Rd so {BH (x)}x∈Rd is operator scaling in the sense of (1.1). However, {BH (x)}x∈Rd

does not have stationary increments.
The purpose of this paper is to define two different classes of operator scaling stable random

fields (OSSRF) and analyze their basic properties. We present a moving average representation as
well as a harmonizable representation. Our constructions are based on a class of E-homogeneous
functions ϕ : Rd

→ [0,∞) where ϕ is positive on Rd
\{0} and ϕ(cE x) = cϕ(x) for all

x ∈ Rd and c > 0. Such functions were studied in detail in [16], Chapter 5. It will turn out
that the harmonizable representation allows more flexibility in the class of possible functions
ϕ in contrast to the moving average representation which is more restrictive. However, in both
cases the OSSRFs satisfy (1.1), have stationary increments and are continuous in probability. In
the Gaussian case α = 2 we show that there exist modifications of these fields which are almost
surely Hölder-continuous of certain indices and we compute the Hausdorff-dimension of their
graph.

This paper is organized as follows. In Section 2 we introduce the class of E-homogeneous
functions, derive some basic properties and provide important examples. In Section 3 we
define and analyze a moving average representation of OSSRFs. Section 4 is devoted to the
harmonizable representation and its properties. Finally, in Section 5 we focus on the Gaussian
case α = 2, and we analyze the sample path properties of both the moving average and the
harmonizable representation of OSSRFs.

2. E-homogeneous functions

Let E be a real d × d matrix with positive real parts of the eigenvalues 0 < a1 < · · · < ap
for p ≤ d . Let us define Γ = Rd

\{0}. It follows from Lemma 6.1.5 of [16] that there exists
a norm ‖ · ‖0 on Rd such that for the unit sphere S0 = {x ∈ Rd

: ‖x‖0 = 1} the mapping
Ψ : (0,∞) × S0 → Γ ,Ψ(r, θ) = r Eθ is a homeomorphism. Moreover for any x ∈ Γ
the function t 7→ ‖t E x‖0 is strictly increasing. Hence we can write any x ∈ Γ uniquely as
x = τ(x)E l(x) for some radial part τ(x) > 0 and some direction l(x) ∈ S0 such that x 7→ τ(x)
and x 7→ l(x) are continuous. Observe that S0 = {x ∈ Rd

: τ(x) = 1} is compact. Moreover
we know that τ(x) → ∞ as x → ∞ and τ(x) → 0 as x → 0. Hence we can extend τ(·)
continuously by setting τ(0) = 0. Note that further τ(−x) = τ(x) and l(−x) = −l(x).
The following result gives bounds on the growth rate of τ(x) in terms of the real parts of the
eigenvalues of E .

Lemma 2.1. For any (small) δ > 0 there exist constants C1, . . . ,C4 > 0 such that for all
‖x‖0 ≤ 1 or all τ(x) ≤ 1,

C1‖x‖
1/a1+δ
0 ≤ τ(x) ≤ C2‖x‖

1/ap−δ

0 ,

and, for all ‖x‖0 ≥ 1 or all τ(x) ≥ 1,

C3‖x‖
1/ap−δ

0 ≤ τ(x) ≤ C4‖x‖
1/a1+δ
0 .

Proof. We will only prove the first two inequalities. It follows from Theorem 2.2.4 of [16]
that for any δ′ > 0 we have ta1−δ

′

‖t−Eθ‖0 → 0 as t → ∞ uniformly in ‖θ‖0 = 1. Hence
‖t−E

‖0 := supθ∈S0
‖t−Eθ‖0 ≤ Ct−a1+δ

′

for all t ≥ 1 and some constant C > 0. Equivalently
‖s E

‖0 ≤ Csa1−δ
′

for all s ≤ 1. Since ‖x‖0 = ‖τ(x)E l(x)‖0 ≤ ‖τ(x)E
‖0 ≤ Cτ(x)a1−δ

′

we get
τ(x) ≥ C1‖x‖

1/a1+δ
0 , for δ =

1
a1−δ′

−
1
a1

, if ‖x‖0 ≤ 1 which is equivalent to τ(x) ≤ 1.
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Similarly we know that, for any δ′ > 0, t−ap−δ′
‖t Eθ‖0 → 0 as t → ∞ uniformly in ‖θ‖0 = 1.

Therefore ‖t E
‖0 ≤ Ctap+δ′ for all t ≥ 1 or equivalently ‖s−E

‖0 ≤ Cs−ap−δ′ for all s ≤ 1. But
x = τ(x)E l(x) and l(x) = τ(x)−E x . Thus, 1 ≤ ‖τ(x)−E

‖0‖x‖0 and ‖x‖0 ≥ C−1τ(x)ap+δ′

for all ‖x‖0 ≤ 1. Hence τ(x) ≤ C2‖x‖
1/ap−δ

0 for δ =
1

ap
−

1
ap+δ′

and ‖x‖0 ≤ 1. The proof is
complete. �

The following results generalize some of the results in [12], Chapter 1.A to our more general
case of exponents E .

Lemma 2.2. There exists a constant K ≥ 1 such that for all x, y ∈ Rd we have

τ(x + y) ≤ K (τ (x)+ τ(y)).

Proof. Observe that the set G = {(x, y) ∈ Rd
× Rd

: τ(x) + τ(y) = 1} is bounded by
Lemma 2.1 and closed by continuity of τ . Hence G is a compact set. Thus the continuous
function (x, y) 7→ τ(x + y) assumes a finite maximum K on G. Since S0 × {0} ⊂ G, we
have K ≥ 1. Given any x, y ∈ Rd both not equal to zero we set s = (τ (x)+ τ(y))−1. Then,
with τ(cE x) = cτ(x) it follows that

τ(x + y) = s−1τ(s E (x + y)) = s−1τ((s E x)+ (s E y)).

But (s E x, s E y) ∈ G since τ(s E x)+ τ(s E y) = s (τ (x)+ τ(y)) = 1. Therefore,

τ(x + y) ≤ K s−1
= K (τ (x)+ τ(y))

and the proof is complete. �

Now let q = trace(E) and observe that by multivariable change of variables we have
λd(cE (B)) = cqλd(B) for all Borel sets B ⊂ Rd , c > 0, which can be written as d(cE x) =

cqdx . Let B(r, x) = {y ∈ Rd
: τ(y − x) < r} denote the ball of radius r > 0 around

x ∈ Rd . Then it is easy to see that B(r, x) = x + B(r, 0) = x + r E B(1, 0) and hence
λd(B(r, x)) = rqλd(B(1, 0)). The following proposition provides an integration in polar
coordinates formula.

Proposition 2.3. There exists a unique finite Radon measure σ on S0 such that for all f ∈

L1(Rd , dx) we have∫
Rd

f (x) dx =

∫
∞

0

∫
S0

f (r Eθ) σ (dθ) rq−1 dr.

The proof of Proposition 2.3 is based on the following.

Lemma 2.4. If f : Γ → C is continuous and f (r E x) = r−q f (x) for all r > 0 and x ∈ Γ ,
then there exists a constant µ f such that for all g ∈ L1((0,∞), r−1dr) we have∫

Rd
f (x)g(τ (x)) dx = µ f

∫
∞

0
g(r)

dr
r
.

Proof. Let L f : (0,∞) → C be defined as

L f (r) =


∫

1≤τ(x)≤r
f (x) dx if r ≥ 1

−

∫
1≤τ(x)≤r−1

f (x) dx if r < 1.
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Since f is continuous on Γ , from dominated convergence, L f is continuous on (0, 1)∪(1,+∞).
But λd(B(r, 0)) = rqλd(B(1, 0)) implies that λd({x ∈ Rd

: τ(x) = r}) = 0, and
it follows that L f is also continuous at point 1 and thus on (0,+∞). Moreover, for any r > 0
we have L f (r−1) = −L f (r). When rs ≥ 1 with r, s > 0 a change of variables yields

L f (rs) =

∫
1≤τ(x)≤rs

f (x) dx =

∫
1≤τ(s E y)≤rs

f (s E y)sq dy =

∫
s−1≤τ(y)≤r

f (y) dy.

Let us assume for instance that 1 ≤ s−1
≤ r . Then, by continuity of L f ,∫

s−1≤τ(y)≤r
f (y) dy =

∫
1≤τ(y)≤r

f (y) dy −

∫
1≤τ(y)≤s−1

f (y) dy = L f (r)− L f (s−1).

It follows using L f (s−1) = −L f (s) that

L f (rs) = L f (r)+ L f (s). (2.1)

Similarly we show that (2.1) holds for s−1
≤ 1 ≤ r and s−1

≤ r ≤ 1 and thus for all rs ≥ 1.
Using again the fact that L f (r−1) = −L f (r), for all r > 0, (2.1) is valid for all r, s > 0. By
continuity of L f it follows that L f (r) = L f (e) log r . We set µ f = L f (e). If g(r) = 1]a,b](r)
for some 0 < a < b we get∫

Rd
f (x)g(τ (x)) dx =

∫
a<τ(x)≤b

f (x) dx = L f (b)− L f (a)

= µ f (log b − log a) = µ f

∫
∞

0
g(r)

dr
r
.

The general result follows by taking linear combinations and limits of these functions in the
standard way. �

Proof of Proposition 2.3. When f ∈ C(S0) define f̃ on Γ by f̃ (x) = τ(x)−q f (l(x)).
The function f̃ satisfies the hypothesis of Lemma 2.4. If f ≥ 0 then µ f̃ = L f̃ (e) =∫

1≤τ(x)≤e τ(x)
−q f (l(x)) dx ≥ 0. Moreover µa f̃ = aµ f̃ , µ f̃ +g̃ = µ f̃ + µg̃ and the mapping

f 7→ µ f̃ is continuous. Hence this mapping is a positive linear functional on C(S0). Therefore
there exists a Radon measure σ on S0 such that µ f̃ =

∫
S0

f (θ) σ (dθ).

If g1 ∈ Cc((0,∞)) we get from applying Lemma 2.4 with f̃ and g(r) = rq g1(r) that∫
Rd

f (l(x))g1(τ (x)) dx =

∫
Rd

f̃ (x)τ (x)q g1(τ (x)) dx

= µ f

∫
∞

0
g1(r)rq−1 dr

=

∫
∞

0

∫
S0

f (θ) σ (dθ) g1(r)rq−1 dr.

Since linear combinations of functions of the form f (l(x))g1(τ (x)) are dense in L1(Rd , dx) the
result follows. �

Corollary 2.5. Let β ∈ R and suppose f : Rd
→ C is measurable such that | f (x)| =

O(τ (x)β). If β > −q then f is integrable near 0, and if β < −q then f is integrable near
infinity.
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We are now in position to define the class of E-homogeneous functions and an important
subclass needed in the moving average representation of OSSRFs. Let E be a d × d matrix as
above such that 0 < a1 < · · · < ap and for x ∈ Γ let (τ (x), l(x)) be the polar coordinates
associated with E , that is x = τ(x)E l(x).

Definition 2.6. Let ϕ : Rd
→ C be any function. We say that ϕ is E-homogeneous if

ϕ(cE x) = cϕ(x) for all c > 0 and x ∈ Γ .

It follows that an E-homogeneous function ϕ is completely determined by its values on S0,
since ϕ(x) = ϕ(τ(x)E l(x)) = τ(x)ϕ(l(x)). Observe that if ϕ is E-homogeneous and continuous
with positive values on Γ , then

Mϕ = max
θ∈S0

ϕ(θ) > 0 and mϕ = min
θ∈S0

ϕ(θ) > 0. (2.2)

Moreover by continuity we necessarily have ϕ(0) = 0.

Definition 2.7. Let β > 0. A continuous function ϕ : Rd
→ [0,∞) is called (β, E)-admissible,

if ϕ(x) > 0 for all x 6= 0 and for any 0 < A < B there exists a positive constant C > 0 such
that, for A ≤ ‖y‖ ≤ B,

τ(x) ≤ 1 ⇒ |ϕ(x + y)− ϕ(y)| ≤ Cτ(x)β .

Remark 2.8. If a continuous function ϕ : Rd
→ [0,∞) is positive and Lipschitz on Γ , that

is |ϕ(x) − ϕ(y)| ≤ C‖x − y‖0 for x, y ∈ Γ , then ϕ is (β, E)-admissible for all β < a1 by
Lemma 2.1.

Remark 2.9. If ϕ is (β, E)-admissible then β ≤ a1. In fact, if Rd
= V1 ⊕ · · · ⊕ Vp is the

spectral decomposition of Rd with respect to E (see [16], Chapter 2 for details), by restricting
the argument of the proof of Lemma 2.1 to the space V1 one can show that for any δ > 0 there
exists a constant C > 0 such that τ(x) ≤ C‖x‖

1/a1−δ
0 for all x ∈ V1 with ‖x‖0 ≤ 1. Then, if

for some fixed nonzero u ∈ V1 we consider the function t 7→ ϕ(tu) we get for δ1 = βδ that
|ϕ(tu + su)− ϕ(su)| ≤ C |t |β/a1−δ1 for all small t and s bounded away from zero and infinity. If
one had β > a1, one could chose δ > 0 such that β/a1 − δ1 > 1 and hence there would exist a
constant K > 0 such that ϕ(tu) = K for all t 6= 0. But since ϕ is continuous and ϕ(0) = 0 this
is impossible.

Remark 2.10. In general the exponent E of a homogeneous function ϕ is not unique. It is easy
to check that ϕ(x) → ∞ as ‖x‖ → ∞, and then Theorem 5.2.13 in [16] implies that the set
of possible exponents is E + TS(ϕ) where E is any exponent, S(ϕ) is the set of symmetries
of ϕ, and TS(ϕ) is the tangent space at the identity. Here we say that A is a symmetry of ϕ if
ϕ(Ax) = ϕ(x) for all x ∈ Rd . The symmetries S(ϕ) form a Lie group, and the tangent space
consists of all derivatives x ′(0) of smooth curves x(t) on S(ϕ) for which x(0) = I , the identity.
For example, if ϕ is rotationally invariant then S(ϕ) is the orthogonal group and TS(ϕ) is the
linear space of skew-symmetric matrices. Although exponents are not unique, Theorem 5.2.14
in [16] shows that every exponent E of a homogeneous function ϕ has the same real spectrum
0 < a1 < · · · < ap and induces the same spectral decomposition Rd

= V1⊕· · ·⊕Vp, since these
structural components describe the growth properties of the homogeneous function. In particular,
the function r 7→ ϕ(r x) grows like r1/ai for any nonzero x ∈ Vi ; see Section 5.3 in [16] for more
details.
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We conclude this section with examples of (β, E)-admissible, E-homogeneous functions
ϕ : Rd

→ [0,∞) used in Theorem 3.1 below to define a moving average representation
of OSSRFs {Xϕ(x)}x∈Rd . Let us denote as 〈·, ·〉 the standard inner product on Rd and as E t

the transpose of any d × d matrix E with respect to this inner product. The following class
of examples is inspired by the log-characteristic function of a full operator stable law on Rd .
See [16] for details.

Theorem 2.11. Assume E is a real d × d-matrix such that the real parts of the eigenvalues
satisfy 1/2 < a1 < · · · < ap for p ≤ d. Assume M(dθ) is a finite measure on the unit sphere S0
corresponding to E such that

span{r E t
θ : r > 0, θ ∈ supp(M)} = Rd .

Then

ϕ(x) =

∫
S0

∫
∞

0
(1 − cos(〈x, r E t

θ〉))
dr
r2 M(dθ)

is a continuous, E-homogeneous function such that ϕ(x) > 0 for all x ∈ Γ . Moreover ϕ is
(β, E)-admissible for β < min

(
a1,

a1
ap

)
if a1 ≤ 1 and β = 1 if a1 > 1.

Proof. Let a1 > 1/2 denote the smallest real part of the eigenvalues of E . Since E and E t have
the same eigenvalues, it follows from Theorem 2.2.4 of [16] that for any δ > 0 there exists a
constant C > 0 such that ‖r E t

θ‖0 ≤ Cra1−δ for all 0 < r ≤ 1 and θ ∈ S0. Therefore, from
dominated convergence, ϕ is well defined and continuous on Rd . Moreover we have ϕ(x) ≥ 0
and ϕ(x) = 0 implies x = 0. A simple change of variable shows that ϕ(cE x) = cϕ(x) for
all c > 0 and x ∈ Rd . It remains to show that ϕ is (β, E)-admissible. Using the trigonometric
identity cos(a)− cos(b) = −2 sin((a + b)/2) sin((a − b)/2) we have for any x, y ∈ Rd that

|ϕ(x + y)− ϕ(y)| ≤ 2
∫

S0

∫
∞

0

∣∣∣∣∣sin

(
〈x + 2y, r E t

θ〉

2

)
sin

(
〈x, r E t

θ〉

2

)∣∣∣∣∣ dr
r2 M(dθ).

(2.3)

First, let us assume that a1 > 1; then an upper bound of (2.3) is given by

2
∫

S0

∫
∞

0

∣∣∣∣∣sin

(
〈x, r E t

θ〉

2

)∣∣∣∣∣ dr
r2 M(dθ),

which is finite because a1 > 1, using ‖r E t
θ‖0 ≤ Cra1−δ for all 0 < r ≤ 1 and θ ∈ S0, and

elementary estimates. Moreover writing x = τ(x)E l(x) a change of variables yields

2
∫

S0

∫
∞

0

∣∣∣∣∣sin

(
〈x, r E t

θ〉

2

)∣∣∣∣∣ dr
r2 M(dθ) = 2τ(x)

∫
S0

∫
∞

0

∣∣∣∣∣sin

(
〈l(x), r E t

θ〉

2

)∣∣∣∣∣ dr
r2 M(dθ),

which proves that ϕ is 1-admissible.
Let us now consider the case where a1 ≤ 1. Choose δ > 0 small enough. On one hand, for

r ≤ 1, one can find C > 0 such that∣∣∣∣∣sin

(
〈x + 2y, r E t

θ〉

2

)
sin

(
〈x, r E t

θ〉

2

)∣∣∣∣∣ ≤ C(2‖y‖0 + ‖x‖0)‖x‖0r2a1−δ.
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On the other hand, it follows from Theorem 2.2.4 of [16] that one can find C > 0 such that
‖r E t

θ‖0 ≤ Crap+δ for all r ≥ 1 and θ ∈ S0. Thus, for γ < min
(

1, 1
ap

)
, using | sin(u)| ≤ |u|

γ ,
one can find C > 0 such that∣∣∣∣∣sin

(
〈x + 2y, r E t

θ〉

2

)
sin

(
〈x, r E t

θ〉

2

)∣∣∣∣∣ ≤ C‖x‖
γ

0 rγ ap+γ δ.

Therefore, by substituting these upper bounds into the right-hand side of (2.3) and integrating,
we have shown that, for some constant C > 0, |ϕ(x + y)−ϕ(y)| ≤ C‖x‖

γ

0 for all ‖x‖0 ≤ 1 and
A ≤ ‖y‖0 ≤ B.

Since by Lemma 2.1 ‖x‖0 ≤ Cτ(x)a1−δ for τ(x) ≤ 1, the assertion follows with β =

γ (a1 − δ). �

The following result gives a constructive description of a large class of continuous, admissible
E-homogeneous functions.

Corollary 2.12. Let θ1, . . . , θd be any basis of Rd , let 0 < λ1 ≤ · · · ≤ λd and C1, . . . ,Cd > 0.
Choose a d × d matrix E such that E tθ j = λ jθ j for j = 1, . . . , d. Then for any ρ > 0, if
ρ < 2λ1 the function

ϕ(x) =

(
d∑

j=1

C j |〈x, θ j 〉|
ρ/λ j

)1/ρ

is a continuous E-homogeneous and (β, E)-admissible function for β < min
(
λ1, ρ

λ1
λd

)
if

λ1 ≤ ρ and β = ρ if λ1 > ρ.

Proof. First observe that since r E t
θ j = rλ j θ j it follows that ϕ(cE x) = cϕ(x). Moreover ϕ is

continuous. Let B > A > 0; since y 7→
∑d

j=1 C j |〈y, θ j 〉|
ρ/λ j is continuous and positive on Γ ,

by the mean value theorem, for A ≤ ‖y‖ ≤ B and ‖x‖ ≤ A/2, one can find C > 0 such that

|ϕ(x + y)− ϕ(y)| ≤ C

∣∣∣∣∣ d∑
j=1

C j |〈x + y, θ j 〉|
ρ/λ j −

d∑
j=1

C j |〈y, θ j 〉|
ρ/λ j

∣∣∣∣∣ . (2.4)

Hence it remains to show that the right-hand side of (2.4) is (β, E)-admissible. Let M =∑d
j=1 γ jεθ j for suitable γ j > 0, where εθ denotes the Dirac mass in θ . Let us define for x ∈ Rd ,

ψ(x) =

∫
S0

∫
∞

0
(1 − cos(〈x, r (1/ρ)E

t
θ〉))

dr
r2 M(dθ),

which is well defined since ρ < 2λ1. Moreover, by Theorem 2.11, ψ is (β, (1/ρ)E)-admissible
for β < min

(
λ1
ρ
,
λ1
λd

)
if λ1 < ρ and β = 1 if λ1 > ρ. Let τρ(x) denote the radial part with

respect to (1/ρ)E . Then uniqueness implies that the radial part with respect to E τ(x) is given
by τ(x) = τρ(x)1/ρ . Hence ψ is (β, E)-admissible for β < min

(
λ1, ρ

λ1
λd

)
if λ1 < ρ and β = ρ

if λ1 > ρ.
Moreover, since r (1/ρ)E

t
θ j = rλ j /ρθ j we get

ψ(x) =

d∑
j=1

γ j

∫
∞

0
(1 − cos(rλ j /ρ |〈x, θ j 〉|))

dr
r2
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=

d∑
j=1

ργ j

λ j

(∫
∞

0
(1 − cos(s))s−(ρ/λ j )−1 ds

)
|〈x, θ j 〉|

ρ/λ j

=

d∑
j=1

C j |〈x, θ j 〉|
ρ/λ j .

This completes the proof. �

3. Moving average representation

In this section we consider a moving average representation of OSSRFs and derive its basic
properties. We first give sufficient conditions such that the integral representation exists. More
precisely, for 0 < α ≤ 2 we consider Zα(dy) an independently scattered SαS random measure
on Rd with Lebesgue control measure λd . Then we define a moving average representation
of OSSRFs using the basic fact that a random integral

∫
Rd f (y) Zα(dy) exists if and only if∫

Rd | f (y)|α dy < ∞.
Throughout this section we fix a real d × d matrix E with 0 < a1 < · · · < ap denoting the

real parts of the eigenvalues of E . As before, let q = trace(E).

Theorem 3.1. Let β > 0. Let ϕ : Rd
→ [0,∞) be an E-homogeneous, (β, E)-admissible

function. Then for any 0 < α ≤ 2 and any 0 < H < β the random field

Xϕ(x) =

∫
Rd
(ϕ(x − y)H−q/α

− ϕ(−y)H−q/α) Zα(dy) , x ∈ Rd (3.1)

exists and is stochastically continuous.

Proof. Let us recall that Xϕ(x) exists if and only if

Γ α
ϕ (x) =

∫
Rd

|ϕ(x − y)H−q/α
− ϕ(−y)H−q/α

|
α dy < ∞.

Let us assume that H ∈ (0, β). Observe that by (2.2) and the fact that ϕ is E-homogeneous,
ϕ(z) ≤ Mϕτ(z) and ϕ(z) ≥ mϕτ(z) for all z 6= 0. Fix any x ∈ Γ . Then,

|ϕ(x − y)H−q/α
− ϕ(−y)H−q/α

|
α

≤ C(τ (x − y)αH−q
+ τ(y)αH−q).

But for any R > 0 it follows from Corollary 2.5 that
∫
τ(y)≤R τ(y)

αH−q dy < ∞ if H > 0.
Moreover, by Lemma 2.2 {y : τ(x − y) ≤ R} ⊂ {y : τ(y) ≤ K (R + τ(x))} and hence, by a
change of variable, we obtain using Corollary 2.5 again that, if H > 0,∫

τ(y)≤R
τ(x − y)αH−q dy =

∫
τ(x−y)≤R

τ(y)αH−q dy

≤

∫
τ(y)≤K (R+τ(x))

τ(y)αH−q dy < ∞.

It remains to show that for some R = R(x) > 0 we have∫
τ(y)>R

|ϕ(x + y)H−q/α
− ϕ(y)H−q/α

|
α dy < ∞. (3.2)

Observe that for τ(y) > R, ϕ(y) > 0, so we can write

ϕ(x + y) = ϕ(ϕ(y)E (ϕ(y)−E x + ϕ(y)−E y)) = ϕ(y)ϕ(ϕ(y)−E x + ϕ(y)−E y),
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since ϕ is E-homogeneous. Moreover ϕ
(
ϕ(y)−E y

)
= 1 and since ϕ is (β, E)-admissible, one

can find C > 0 such that

|ϕ(ϕ(y)−E x + ϕ(y)−E y)− 1| ≤ Cτ(ϕ(y)−E x)β = Cϕ(y)−βτ (x)β .

Hence by the mean value theorem applied to the function t H−q/α near t = 1, one can find C1 > 0
such that

|ϕ(x + y)H−q/α
− ϕ(y)H−q/α

| = ϕ(y)H−q/α
|ϕ(ϕ(y)−E x + ϕ(y)−E y)H−q/α

− 1|

≤ C1ϕ(y)H−β−q/ατ (x)β ,

for all τ(y) > R, where R > 0 is chosen sufficiently large so that Cϕ(y)−βτ (x)β < 1/2
for all τ(y) > R. But ϕ(y)H−β−q/α

≤ C2τ(y)H−β−q/α and by Corollary 2.5 we know that∫
τ(y)≥R τ(y)

αH−q−αβ dy < ∞ if H < β. This allows us to conclude that Γ α
ϕ (x) is finite for all

x ∈ Rd . Let us now show that Xϕ is stochastically continuous. Since Xϕ is a SαS field, it follows
from Proposition 3.5.1 in [18] that Xϕ is stochastically continuous if and only if, for all x0 ∈ Rd ,∫

Rd
|ϕ(x0 + x − y)H−q/α

− ϕ(x0 − y)H−q/α
|
α dy → 0 as x → 0.

By a change a variables, this holds if and only if

Γ α
ϕ (x) → 0 as x → 0. (3.3)

But ϕ is continuous on Rd so

|ϕ(x − y)H−q/α
− ϕ(−y)H−q/α

|
α

→ 0 as x → 0

for almost every y ∈ Rd . Moreover, arguing as above, as soon as τ(x) ≤ 1, for suitable R > 0,
one can find C > 0 such that

|ϕ(x − y)H−q/α
− ϕ(−y)H−q/α

|
α

≤ C(τ (y)αH−q1τ(y)≤K (R+1)(y)+ τ(y)α(H−β)−q1τ(y)≥R(y)),

where 1B(y) denotes the indicator function of a set B. Then (3.3) holds using dominated
convergence, which concludes the proof. �

Corollary 3.2. Under the conditions of Theorem 3.1, the random field {Xϕ(x)}x∈Rd has the
following properties:

(a) operator scaling, that is, for any c > 0,

{Xϕ(cE x)}x∈Rd
f.d.
= {cH Xϕ(x)}x∈Rd . (3.4)

(b) stationary increments, that is, for any h ∈ Rd ,

{Xϕ(x + h)− Xϕ(h)}x∈Rd
f.d.
= {Xϕ(x)}x∈Rd . (3.5)

Proof. We will only prove part (a). The proof of part (b) is left to the reader. Fix any x1, . . . , xm ∈

Rd . Then (3.4) follows if we can show that for any t1, . . . , tm ∈ R we have
m∑

j=1

t j Xϕ(cE x j )
d
= cH

m∑
j=1

t j Xϕ(x j ).
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By a change of variable together with ϕ(cE x) = cϕ(x) and the fact that Zα(cE dz) d
= cq/αZα(dz)

we get
m∑

j=1

t j Xϕ(cE x j ) =

∫
Rd

m∑
j=1

t j (ϕ(cE x j − y)H−q/α
− ϕ(−y)H−q/α) Zα(dy)

d
= cq/α

∫
Rd

m∑
j=1

t j (ϕ(cE (x j − z))H−q/α
− ϕ(−cE z)H−q/α) Zα(dz)

= cH
m∑

j=1

t j Xϕ(x j )

and the proof is complete. �

Remark 3.3. Theorem 3.1 and Corollary 3.2 include the following classical isotropic random
fields as special cases. Assume ϕ(x) = ‖x‖ and E = I , the identity matrix. Observe that ϕ is an
E-homogeneous, (1, E)-admissible function. Then

Xϕ(x) =

∫
Rd
(‖x − y‖

H−d/α
− ‖y‖

H−d/α) Zα(dy).

In particular, if α = 2, then {Xϕ(x)}x∈Rd is known as the Lévy fractional Brownian field.
Note that in this case, for any 0 < α ≤ 2 Eq. (3.4) reduces to the well-known self-similarity

property {Xϕ(cx)}x∈Rd
f.d.
= {cH Xϕ(x)}x∈Rd . Moreover our results also include the well known

one-dimensional case d = 1 of linear fractional stable motions and especially the fractional
Brownian motion when α = 2.

4. Harmonizable representation

In this section we consider a harmonizable representation of OSSRFs and derive its basic
properties. We first give necessary and sufficient conditions such that the integral representation
exists and yields a stochastically continuous field. For 0 < α ≤ 2, let Wα(dξ) be a complex
isotropic SαS random measure with Lebesgue control measure (see [18] p. 281).

Throughout this section we fix a real d × d matrix E with 0 < a1 < · · · < ap denoting the
real parts of the eigenvalues of E . As before, let q = trace(E).

Theorem 4.1. Let ψ : Rd
→ [0,∞) be a continuous, E t -homogeneous function such that

ψ(x) 6= 0 for x 6= 0. Then for any 0 < α ≤ 2 the random field

Xψ (x) = Re
∫
Rd
(ei〈x,ξ〉

− 1)ψ(ξ)−H−q/α Wα(dξ) , x ∈ Rd (4.1)

exists and is stochastically continuous if and only if H ∈ (0, a1).

Proof. Let us recall that Xψ (x) exists if and only if

Γ α
ψ (x) :=

∫
Rd

|ei〈x,ξ〉
− 1|

αψ(ξ)−αH−q dξ < +∞.

Let us assume that H ∈ (0, a1). By the integration in polar coordinates for E t given by
Proposition 2.3,

Γ α
ψ (x) =

∫
∞

0

∫
S0

|ei〈x,r Et
θ〉

− 1|
αr−αH−1ψ(θ)−αH−q σ(dθ) dr.
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For δ ∈ (0, H − a1), by considering the cases r > 1 and 0 ≤ r ≤ 1 separately and using the
same spectral bounds on the growth of ‖r E t

‖ as in the proof of Lemma 2.1, one can find C > 0
such that

|ei〈x,r Et
θ〉

− 1|
α

≤ C
(
1 + ‖x‖

α
)

min(rα(a1−δ), 1).

Moreover, since ψ is continuous with positive values on the sphere S0, and hence bounded away
from zero,∫

S0

ψ(θ)−αH−q σ(dθ) < ∞.

This allows us to conclude that Γ α
ψ (x) is finite for all x ∈ Rd . Let us show now that Xψ is

stochastically continuous. Since Xψ is a SαS field, it is stochastically continuous if and only if,
for all x0 ∈ Rd ,∫

Rd
|((ei〈x0+x,ξ〉

− 1)− (ei〈x0,ξ〉 − 1))|α ψ(ξ)−αH−q dξ → 0 as x → 0

that is, equivalently,

Γ α
ψ (x) → 0 as x → 0. (4.2)

It is straightforward to see that (4.2) holds for H ∈ (0, a1), using dominated convergence and
the upper bound computed above.
Conversely, let us assume that Xψ exists and that it is stochastically continuous. Let us remark
that in this case Γ α

ψ (x) exists for all x ∈ Rd and satisfies, for all λ > 0,

Γ α
ψ (λ

E x) = λαHΓ α
ψ (x).

Let us fix any x ∈ Rd , with x 6= 0 and let us notice that Γ α
ψ (x) 6= 0. Since Xψ is stochastically

continuous, by (4.2)

λαHΓ α
ψ (x) → 0 as λ → 0,

which implies that H > 0.
Let us now prove that H < a1.
First case: Assume that a1 is an eigenvalue of E . Then there exists θ1 ∈ Rd such that ‖θ1‖ = 1
and Eθ1 = a1θ1. Therefore

Γ α
ψ (θ1) =

∫
∞

0

∫
S0

|ei〈θ1,r Et
θ〉

− 1|
αr−αH−1ψ(θ)−αH−q σ(dθ) dr,

with

|〈θ1, r E t
θ〉| = ra1 |〈θ1, θ〉| ≤ Cra1 .

Then, for r ≤
(
π
C

)1/a1 ,

|ei〈θ1,r Et
θ〉

− 1| = 2

∣∣∣∣∣sin

(
〈θ1, r E t

θ〉

2

)∣∣∣∣∣ ≥ 2ra1
|〈θ1, θ〉|

π
,

and hence

Γ α
ψ (θ1) ≥

1
πα

∫ ( πC )1/a1

0

∫
S0

|〈θ1, θ〉|
αr−α(H−a1)−1ψ(θ)−αH−q σ(dθ) dr.
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Since ψ is positive on the sphere S0,∫
S0

|〈θ1, θ〉|
αψ(θ)−αH−q σ(dθ) > 0,

and then Γ α
ψ (θ1) < +∞ implies that H < a1.

Second case: Assume that a1 is not an eigenvalue of E . Then there exists b1 ∈ R such
that λ1 = a1 + ib1 and λ1 are complex eigenvalues of E . One can find θ1, γ1 ∈ Rd , with
‖θ1‖ = ‖γ1‖ = 1 such that

r Eθ1 = ra1 (cos (b1 log r) θ1 + sin (b1 log r) γ1)

r Eγ1 = ra1 (− sin (b1 log r) θ1 + cos (b1 log r) γ1) .

Then it can be shown using the inequality |eiω
− 1| ≥ |ω|/π for |ω| < π that a lower bound of

Γ α
ψ (θ1)+ Γ α

ψ (γ1) is given by

1
πα

∫ ( π2C )
1/a1

0

∫
S0

(
|〈r Eθ1, θ〉|

α
+ |〈r Eγ1, θ〉|

α
)

r−αH−1ψ(θ)−αH−q σ(dθ) dr.

Observe that for a, b ≥ 0 we have aα + bα ≥ (a2
+ b2)α/2. Therefore

|〈r Eθ1, θ〉|
α

+ |〈r Eγ1, θ〉|
α

≥

(
|〈r Eθ1, θ〉|

2
+ |〈r Eγ1, θ〉|

2
)α/2

≥ rαa1
(
|〈θ1, θ〉|

2
+ |〈γ1, θ〉|

2
)α/2

.

Then we conclude as in the first case that H < a1. The proof is complete. �

Corollary 4.2. Under the conditions of Theorem 4.1, the random field {Xψ (x)}x∈Rd has the
following properties:

(a) operator scaling, that is, for any c > 0,

{Xψ (cE x)}x∈Rd
f.d.
= {cH Xψ (x)}x∈Rd . (4.3)

(b) stationary increments, that is, for any h ∈ Rd ,

{Xψ (x + h)− Xψ (h)}x∈Rd
f.d.
= {Xψ (x)}x∈Rd . (4.4)

Proof. Let us recall that by Corollary 6.3.2 of [18], for f ∈ Lα(Rd), the characteristic function
of the random variable Y = Re

∫
Rd f (y)Wα(dy) is given by

E
(

eitY
)

= exp
(

−c0|t |α
∫
Rd

| f (y)|αdy
)

where c0 =
1

2π

∫ π

0
(cos θ)2 dθ. (4.5)

Hence, for any x1, . . . , xm ∈ Rd , the finite-dimensional characteristic function of
(Xψ (x1), . . . , Xψ (xm)) is given by

E

(
exp

(
i

m∑
j=1

t j Xψ (x j )

))
= exp

(
−c0

∫
Rd

∣∣∣∣∣ m∑
j=1

t j

(
ei〈x j ,ξ〉 − 1

)∣∣∣∣∣
α

ψ(ξ)−αH−qdξ

)
,
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for any t1, . . . , tm ∈ R. Thus, for any c > 0, by a change of variable γ = cE t
ξ in the integral of

the right side, since ψ is an E t homogeneous function, we get

E

(
exp

(
i

m∑
j=1

t j Xψ (cE x j )

))
= E

(
exp

(
i

m∑
j=1

t j cH Xψ (x j )

))
,

which proves (a). Furthermore, for any h ∈ Rd and x ∈ Rd , we have that

Xψ (x + h)− Xψ (h) = Re
∫
Rd

ei〈h,ξ〉(ei〈x,ξ〉
− 1)ψ(ξ)−H−q/α Wα(dξ).

Hence

E

(
exp

(
i

m∑
j=1

t j
(
Xψ (x j + h)− Xψ (h)

)))

= exp

(
−c0

∫
Rd

∣∣∣∣∣ m∑
j=1

t j ei〈h,ξ〉
(

ei〈x j ,ξ〉 − 1
)∣∣∣∣∣
α

ψ(ξ)−αH−qdξ

)

= E

(
exp

(
i

m∑
j=1

t j Xψ (x j )

))
,

proving (b). �

Remark 4.3. In the Gaussian case, the covariance function of the random field Xϕ(x) defined by
the moving average representation (3.1) can be computed by an argument similar to Proposition
8.1.4 of [18]. Let σ 2

θ = E[(Xϕ(θ))2] for any unit vector θ , and define τ(x) and l(x) as before so
that x = τ(x)E l(x). Using Corollary 3.2(a) it follows that E[(Xϕ(x))2] = τ(x)2Hσ 2

l(x), and then
we can use the fact that 2Xϕ(x)Xϕ(y) = Xϕ(x)2 + Xϕ(y)2 − (Xϕ(x) − Xϕ(y))2 to conclude
that

E
[
Xϕ(x)Xϕ(y)

]
=

1
2

[
τ(x)2Hσ 2

l(x) + τ(y)2Hσ 2
l(y) − τ(x − y)2Hσ 2

l(x−y)

]
. (4.6)

In the isotropic case discussed in Remark 3.3 we have τ(x) = ‖x‖ and l(x) = x/‖x‖, and
a change of variables in (3.1) shows that σ 2

θ ≡ σ 2 is the same for any unit vector, using the
fact that ϕ(Rx) = ϕ(x) for any orthogonal linear transformation R in this case. Then (4.6)
reduces to the familiar autocovariance function for a fractional Gaussian random field. A similar
argument shows that the autocovariance function of the random field defined by the harmonizable
representation (4.1) is given by

E
[
Xψ (x)Xψ (y)

]
=

1
2

[
τ(x)2Hω2

l(x) + τ(y)2Hω2
l(y) − τ(x − y)2Hω2

l(x−y)

]
(4.7)

where ω2
θ = E[(Xψ (θ))2]. For the isotropic case, where (4.1) reduces to the harmonizable

representation (1.3) for a fractional Gaussian field, we again note that ω2
θ is constant over the unit

sphere. Since a mean zero Gaussian random field is determined by its autocovariance function,
we recover the well-known fact that the moving average and harmonizable representations of the
fractional Gaussian random field differ by at most a constant factor. It does not seem possible
to extend this argument to the general case of operator scaling Gaussian random fields, since
it would be difficult to compare σ 2

θ to ω2
θ in this case. Hence there remains an interesting
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open question of under which relationship between the functions ϕ and ψ in the Gaussian
case the moving average representation of Theorem 3.1 and the harmonizable representation
of Theorem 4.1 are equivalent.

Remark 4.4. Many random fields occurring in applications have Hurst indices that vary with
coordinate [7,8]. Consider a random field satisfying (1.1), and suppose that the matrix E has an
eigenvector e with associated real eigenvalue λ. Then it follows from (1.1) that the stochastic
process r 7→ X (re) is self-similar with

{X (cλre)}r∈R
f.d.
= {cH X (re)}r∈R for all c > 0,

so that the Hurst index of this process is H/λ. If E has a basis of eigenvectors with distinct
real eigenvalues, then the projections of this random field onto the eigenvector directions yield
processes with different Hurst indices in each coordinate. This also shows that the usual methods
for estimating the Hurst index, such as rescaled range analysis [14] and dispersional analysis [9],
can also be applied to estimate the scaling indices of the operator scaling random field from
data, once the proper coordinates are established. How to estimate these coordinate directions
from data is an interesting open question. In some practical applications, these coordinates are
known from the problem set-up. For example, in a groundwater aquifer the coordinates of the
hydraulic conductivity field are thought to correspond to the vertical, the direction of horizontal
mean flow, and the horizontal direction perpendicular to the mean flow [7]. In fractured rock,
the scaling coordinates of the transmissivity field correspond to the main fracture orientations,
and are usually not mutually perpendicular [19]. Similarly, in materials science, the crack fronts
determine the natural coordinates [17]. We caution, however, that estimating the Hurst index in
the wrong (non-eigenvalue) coordinates is likely to be misleading, because in those directions the
field is not self-similar. Finally, we note that the parameters E, H in (1.1) are not unique. If (1.1)

holds, then we also have {X (cE ′

x)}
f.d.
= {cX (x)} where E ′

= (1/H)E , so that the Hurst indices
of the random field are the ratio of H and the eigenvalues of E , as already noted. Furthermore, the
exponents of an admissible function are not unique, because of possible symmetries, as discussed
previously in Remark 2.10. Hence the Hurst index of each component is really an estimate of
H/ai where 0 < a1 < · · · < ap is the real spectrum of E , and these indices, as well as the
coordinate system to which they pertain, are the same for any choice of H and E .

We have already seen that the OSSRFs, defined by a moving average or a harmonizable
representation, were stochastically continuous. In the next section we show that in the Gaussian
case α = 2 one can get Hölder regularity for the sample paths.

5. Gaussian OSSRFs

In this section, we are interested in the smoothness of the sample paths of Gaussian OSSRFs
given by Theorem 3.1 or Theorem 4.1. Moreover we compute the box- and the Hausdorff-
dimension of the graph of OSSRFs in these cases. We follow the terminology used in [8]. Using
their definition of the Hölder critical exponent of a random process (Definition 5) we state the
following definition.

Definition 5.1. Let γ ∈ (0, 1). A random field {X (x)}x∈Rd is said to have Hölder critical
exponent γ whenever it satisfies the following two properties:
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(a) For any s ∈ (0, γ ), the sample paths of X satisfy almost surely a uniform Hölder condition
of order s on any compact set, that is for any compact set K ⊂ Rd , there exists a positive
random variable A such that

|X (x)− X (y)| ≤ A‖x − y‖
s for all x, y ∈ K .

(b) For any s ∈ (γ, 1), almost surely the sample paths of X fail to satisfy any uniform Hölder
condition of order s.

For a Gaussian random field X a well-known result links the Hölder regularity of the sample
paths x 7→ X (x, ω) to those of the quadratic mean. Let us recall this property when the field
also has stationary increments. We refer the reader to [2] Theorem 8.3.2 and Theorem 3.3.2 for
a detailed proof.

Proposition 5.2. Let {X (x)}x∈Rd be a Gaussian random field with stationary increments. Let
γ ∈ (0, 1) and assume that

γ = sup{s > 0; E((X (x)− X (0))2) = o‖x‖→0(‖x‖
2s)}.

Then, for any s ∈ (0, γ ), any continuous version of X satisfies almost surely a uniform Hölder
condition of order s on any compact set.
If moreover

γ = inf{s > 0; ‖x‖
2s

= o‖x‖→0(E((X (x)− X (0))2))},

then any continuous version of X admits γ as the Hölder critical exponent.

The previous definition and proposition are given in [8] for random processes (d = 1) in order
to study regularity properties of a field along straight lines. More precisely, when {X (x)}x∈Rd is
a random field, it is also interesting to study the Hölder regularity of the process {X (x0 + tu)}t∈R,
for x0 ∈ Rd and u a unit vector. This will provide some additional directional regularity
information. For {X (x)}x∈Rd with stationary increments, one only has to consider {X (tu)}t∈R
for all directions u. Let us recall Definition 6 of [8].

Definition 5.3. Let {X (x)}x∈Rd with stationary increments and let u be any direction of the unit
sphere. If the process {X (tu)}t∈R has Hölder critical exponent γ (u) we say that X admits γ (u)
as directional regularity in direction u.

Let us investigate these properties for the Gaussian OSSRFs given by Theorem 3.1 or
Theorem 4.1. Throughout this section we fix a real d × d matrix E with 0 < a1 < · · · < ap
denoting the real parts of the eigenvalues of E . Following [16], Section 2.1, let V1, . . . , Vp be
the spectral decomposition of Rd with respect to E . For i = 1, . . . , p, let us define

Wi = V1 ⊕ · · · ⊕ Vi ,

and W0 = {0}. Observe that E |Wi has a1 < · · · < ai as real parts of the eigenvalues. As before
let q = trace(E).

Theorem 5.4. Let ϕ : Rd
→ [0,∞) be an E-homogeneous, (β, E)-admissible function. For

0 < H < β let Xϕ be the moving average Gaussian OSSRF given by Theorem 3.1. Moreover
let ψ : Rd

→ [0,∞) be a continuous E t -homogeneous function with ψ(x) > 0 for all x 6= 0.
For 0 < H < a1 let Xψ be the harmonizable Gaussian OSSRF given by Theorem 4.1. Then
any continuous version of Xϕ and Xψ , respectively, admits H/ap as Hölder critical exponent.



328 H. Biermé et al. / Stochastic Processes and their Applications 117 (2007) 312–332

Moreover, for any i = 1, . . . , p, for any direction u ∈ Wi\Wi−1, the fields Xϕ and Xψ admit
H/ai as directional regularity in direction u.

Proof. Let x ∈ Rd . With a little abuse of notation we write Xϕ/ψ to indicate that we consider
either Xϕ or Xψ . Observe that Xϕ/ψ (0) = 0 and in order to apply Proposition 5.2 we define

Γ 2
ϕ/ψ (x) = E(Xϕ/ψ (x)2) =


∫
Rd

|ϕ(x − y)H−q/2
− ϕ(−y)H−q/2

|
2dy

4
∫
Rd

sin2
(

〈x, ξ〉
2

)
ψ(ξ)−2H−qdξ.

Using polar coordinates with respect to E , it is straightforward to see that

Γ 2
ϕ/ψ (x) = τ(x)2HΓϕ/ψ (l(x)), (5.1)

where for all θ ∈ S0,

0 < m ≤ Γ 2
ϕ/ψ (θ) ≤ M, (5.2)

since Γ 2
ϕ/ψ is continuous and positive on the compact set S0.

For any i = 1, . . . , p let us fix u ∈ Wi\Wi−1. Since the spaces V1, . . . , Vp are E-invariant
and the real parts of the eigenvalues of E |Wi are a1 < · · · < ai it follows as in the proof of
Lemma 2.1, by considering the space Wi instead of Rd , that for any small δ > 0 there exists a
constant C2 = C2(u) > 0 such that τ(tu) ≤ C2|t |1/ai −δ for any |t | ≤ 1. Furthermore, observe
that if we write u = ui + ūi−1 with ui ∈ Vi and ūi−1 ∈ Wi−1 we have ui 6= 0. Writing
tu = τ(tu)E l(tu) and l(tu) = li (tu)+ l̄i−1(tu) with li (tu) ∈ Vi and l̄i−1(tu) ∈ Wi−1, it follows
from the E-invariance of the spectral decomposition that tui = τ(tu)E li (tu) with li (tu) 6= 0.
Since we have E = E1 ⊕ · · · ⊕ E p where every real part of the eigenvalues of Ei equals ai we
conclude

|t |‖ui‖ = ‖τ(tu)E li (tu)‖ = ‖τ(tu)Ei li (tu)‖ ≤ ‖τ(tu)Ei ‖‖li (tu)‖ ≤ Cτ(tu)ai −δ

for any |t | ≤ 1 using the fact that ‖li (tu)‖ ≤ C3 for any |t | ≤ 1 and some C3 > 0. Hence there
exists a constant C1 = C1(u) > 0 such that τ(tu) ≥ C1|t |1/ai +δ for any |t | ≤ 1. Therefore
we have shown that for all directions u ∈ Wi\Wi−1 and any small δ > 0 there exist constants
C1,C2 > 0, such that

C1|t |1/ai +δ ≤ τ(tu) ≤ C2|t |1/ai −δ for all |t | ≤ 1. (5.3)

In view of (5.1)–(5.3) we therefore get that for any direction u ∈ Wi\Wi−1 and any δ > 0 there
exist constants C1,C2 > 0 such that C1|t |2H/ai +δ ≤ Γ 2

ϕ/ψ (tu) ≤ C2|t |2H/ai −δ for |t | ≤ 1, which
by Proposition 5.2 shows that Xϕ/ψ admits H/ai as directional regularity in direction u.

It follows from this that for any s ∈ (H/ap, 1) almost surely the sample paths of Xϕ/ψ fail
to satisfy any uniform Hölder condition of order s, since H/ap is the Hölder critical exponent of
Xϕ/ψ in any direction of Wp\Wp−1. Finally, in view of (5.1), (5.2) and Lemma 2.1 we know that
for any δ > 0 there exists a constant C > 0 such that Γ 2

ϕ/ψ (x) ≤ C‖x‖
2H/ap−δ for ‖x‖ ≤ 1 and

hence by Proposition 5.2 it follows that any continuous version of Xϕ/ψ satisfies almost surely a
uniform Hölder condition of order s < H/ap on any compact set. This concludes the proof. �

Having described the Hölder regularity of Gaussian OSSRFs, a natural question that arises is
how to determine the box- and the Hausdorff-dimensions of their graphs on a compact set. We
refer the reader to Falconer [11] for the definitions and properties of box- and the Hausdorff-
dimensions. Let us fix a compact set K ⊂ Rd . For a random field X on Rd we consider
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G(X)(ω) = {(x, X (x)(ω)); x ∈ K } the graph of a realization of this field over the compact K .
We will denote as dimH G(X) and dimB G(X) the Hausdorff-dimension and the box-dimension
of G(X), respectively.

It is a well-understood fact that directional regularity implies information about the Hausdorff-
dimension of the field in that direction. See e.g. [2], Chapter 8. As an immediate corollary to
Theorem 5.4 we get:

Corollary 5.5. Under the assumptions of Theorem 5.4 we have for all i = 1, . . . , p and all
directions u ∈ Wi\Wi−1 that

dimH{(t, Xϕ/ψ (tu)) : t ∈ [0, 1]} = 2 − H/ai a.s.

Proof. The result is a direct consequence of Theorem 5.4 and the corollary on page 204 of [2],
using the fact that t 7→ Xϕ/ψ (tu) is a β = H/ai -index process and that 2 − β ≤ 1/β for
0 < β < 1. �

Our next result investigates the global box- and Hausdorff-dimensions of Gaussian OSSRFs.

Theorem 5.6. Under the assumptions of Theorem 5.4, for any continuous version of Xϕ and
Xψ , almost surely

dimH G(Xϕ/ψ ) = dimB G(Xϕ/ψ ) = d + 1 − H/ap.

Proof. Let us choose a continuous version of Xϕ/ψ . From Theorem 5.4, for any s < H/ap, the
sample paths of Xϕ/ψ satisfy almost surely a uniform Hölder condition of order s on K . Thus by
a d-dimensional version of Corollary 11.2 of [11], we have

dimH G(Xϕ/ψ ) ≤ dimB G(Xϕ/ψ ) ≤ d + 1 − s, a.s.

where dimB denotes the upper box-dimension. Therefore

dimH G(Xϕ/ψ ) ≤ dimB G(Xϕ/ψ ) ≤ d + 1 − H/ap, a.s.

and it remains to show that a.s. dimH G(Xϕ/ψ ) ≥ d + 1 − H/ap. Since the lower box-dimension
satisfies dimBG(Xϕ/ψ ) ≥ dimH G(Xϕ/ψ ) the proof is then complete.

We follow the same kind of ideas as are developed in [6,4]. Let s > 1. Following the same
argument as in Theorem 16.2 of [11], in view of the Frostman criterion (Theorem 4.13(a) in [11]),
if one proves that the integral Is

Is =

∫
K×K

E[((Xϕ/ψ (x)− Xϕ/ψ (y))2 + ‖x − y‖
2)−s/2

] dx dy,

is finite, then almost surely dimH G(Xϕ/ψ ) ≥ s.
As before, let V1, . . . , Vp denote the spectral decomposition of Rd with respect to E and let

Wi = V1 + · · · + Vi . We will choose an inner product (·, ·) on Rd which makes these spaces
mutually orthogonal and use the norm ‖x‖ = (x, x)1/2. Since all norms on Rd are equivalent,
this entails no loss of generality.

Since by assumption s > 1, the function (ξ2
+ 1)−s/2 is in L1(R) and its Fourier transform,

denoted by fs , is not only in L∞(R) but also in L1(R). Then we can write, using Fourier
inversion (fundamental lemma in [6]),

(ξ2
+ 1)−s/2

=
1

2π

∫
R

eiξ t fs(t)dt.
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It follows that

E[((Xϕ/ψ (x)− Xϕ/ψ (y))2 + ‖x − y‖
2)−s/2

]

=
1

2π
‖x − y‖

−s
∫
R

E
(

eit
Xϕ/ψ (x)−Xϕ/ψ (y)

‖x−y‖

)
fs(t)dt

=
1

2π
‖x − y‖

−s
∫
R

e
−

t2
2
E((Xϕ/ψ (x)−Xϕ/ψ (y))

2)

‖x−y‖2 fs(t)dt,

since Xϕ/ψ is Gaussian. Then, as fs ∈ L∞(R), one can find C > 0 such that

E[((Xϕ/ψ (x)− Xϕ/ψ (y))2 + ‖x − y‖
2)−s/2

]

≤ C‖x − y‖
1−s(E[(Xϕ/ψ (x)− Xϕ/ψ (y))2])−1/2

≤ Cm−1
‖x − y‖

1−sτ(x − y)−H ,

according to (5.1) and (5.2) and using the fact that Xϕ/ψ has stationary increments.
Let us choose A > 0 such that K ⊂ {x ∈ Rd

; ‖x‖ ≤ A/2}. Then for some constant C > 0

Is ≤ C
∫

‖x‖≤A
‖x‖

1−sτ(x)−H dx,

as long as the integral in the right-hand side is bounded. If p = 1, by Lemma 2.1, for δ > 0, one
can find C > 0 such that, for ‖x‖ ≤ A,

τ(x)−H
≤ C‖x‖

−H/ap−δ,

and hence Is is finite as soon as s < d + 1 − H/ap − δ. If p ≥ 2 let us write x = x p + y for
some x p ∈ Vp and y ∈ Wp−1 and write x = τ(x)E l(x) with l(x) ∈ S0. Use the decomposition
l(x) = lp(x)+ θ with lp(x) ∈ Vp and θ ∈ Wp−1. By the direct sum decomposition we see that
x p = τ(x)E lp(x) and y = τ(x)Eθ . Moreover, since Vp and Wp−1 are orthogonal in the chosen
inner product it follows that ‖x‖ ≤ A implies both ‖x p‖ ≤ A and ‖y‖ ≤ A in the associated
norm. In view of the proof of Lemma 2.1, restricted to the spaces Vp and Wp−1, respectively, it
follows that for any δ > 0 and some constants C1,C2 > 0, if ‖x‖ ≤ A then

‖x p‖ ≤ C1τ(x)ap−δ and ‖y‖ ≤ C2τ(x)a1−δ.

Then one can find c > 0 such that

τ(x)H
≥ c‖x p‖

H/ap+δ and τ(x)H
≥ c‖y‖

H/a1+δ

and thus

τ(x)H
≥ c/2

(
‖x p‖

H/ap+δ
+ ‖y‖

H/a1+δ
)
.

Hence, for any δ > 0

Is ≤ C
∫

‖x p‖≤A

∫
‖y‖≤A

(
‖x p‖

2
+ ‖y‖

2
)1/2−s/2 (

‖x p‖
H/ap+δ

+ ‖y‖
H/a1+δ

)−1
dy dx p.

Let k = dim Vp and observe that in the present case 1 ≤ k ≤ d − 1. By using polar coordinates
for both Vp and Wp−1, for some constant C > 0 we have Is ≤ C Js where

Js =

∫ A

0

∫ A

0
(u2

+ v2)1/2−s/2
(

u H/ap+δ
+ vH/a1+δ

)−1
uk−1vd−1−k du dv.
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The change of variables u = tv yields

Js =

∫ A

0

∫ A/v

0
vd−s−H/ap−δ(t2

+ 1)1/2−s/2
(

t H/ap+δ
+ vH/a1−H/ap

)−1
tk−1 dt dv

≤

(∫ A

0
vd−s−H/ap−δdv

)(∫
+∞

0
(t2

+ 1)1/2−s/2t−H/ap−δ+k−1dt
)
.

Since H
ap
< 1 ≤ k, the second term is bounded as soon as s > k + 1 − H/ap − δ, whereas the

first one is finite whenever s < d + 1 − H/ap − δ. Thus, for all δ > 0 small enough, it follows
that almost surely dimH G(Xϕ/ψ ) ≥ d + 1 − H/ap − δ and the proof is complete. �

Remark 5.7. As pointed out in the introduction, the fractional Brownian sheet {BH (x)}x∈Rd

is operator scaling and satisfies the scaling relation (1.1) with H = d and E =

diag(1/H1, . . . , 1/Hd) for 0 < H j < 1, but does not have stationary increments. By Theorem
1.1 of [3] we know that dimH G(BH ) = dimB G(BH ) = d + 1 − min(H1, . . . , Hd). Now let
Xϕ/ψ be a Gaussian OSSRF that satisfies the same scaling relation (1.1) with the same scaling
parameters H = d and E = diag(1/H1, . . . , 1/Hd). Remark 2.9 gives β ≤ a1 and Theorem 3.1
requires H < β, so that a1 > d for the moving average representation, or similarly d = H < a1
for the harmonizable one by the assumption in Theorem 4.1. Since a1 = min(1/H1, . . . , 1/Hd),
in our case we require 0 < H j < 1/d . Then Theorem 5.6 can be reformulated as

dimH G(Xϕ/ψ ) = dimB G(Xϕ/ψ ) = d + 1 − d min(H1, . . . , Hd)

so that the graphs of the two kinds of Gaussian random fields span the same range of fractal
dimensions between d and d+1. However, the graph of an OSSRF with the same operator scaling
as a fractional Brownian sheet will have a different fractal dimension. Unlike fractional Brownian
sheets, the random fields constructed in this paper have stationary increments. Stationary
increments are important in applications, since the increments yield a stationary random field
with desirable scaling properties.
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