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POISSON RANDOM BALLS: 
SELF-SIMILARITY AND X-RAY IMAGES 

HERMINE BIERME* ** AND 

ANNE ESTRADE,* *** Universite Rene Descartes 

Abstract 

We study a random field obtained by counting the number of balls containing a given point 
when overlapping balls are thrown at random according to a Poisson random measure. 
We describe a microscopic process which exhibits multifractional behavior. We are 
particularly interested in the local asymptotic self-similarity (LASS) properties of the 
field, as well as in its X-ray transform. We obtain two different LASS properties when 
considering the asymptotics either in law or in the sense of second-order moments, and 
prove a relationship between the LASS behavior of the field and the LASS behavior of its 
X-ray transform. These results can be used to model and analyze porous media, images, 
or connection networks. 
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1. Introduction 

The purpose of this paper is the study of a random field obtained by throwing overlapping 
balls. Such a field is particularly well adapted for modeling three-dimensional porous or 

heterogeneous media. In fact, we consider a collection of balls in I1R3 whose centers and radii 

are chosen at random according to a Poisson random measure on 1R3 x R+. Equivalently, we 

consider a germ-grain model where the germs are Poisson distributed and the grains are balls 

of random radius. 

The field under study, commonly known as a shot noise, is the mass density defined as the 

number of balls containing each point: the more balls covering a given point, the higher is the 

mass density at this point. From a mathematical point of view, the dimension-three case does 

not yield any specific behavior, so the study will be carried out in dimension d > 1. Let us 

quote, for instance, that for d = 2 the number of balls covering each point defines the discretized 

gray level of each pixel in a black-and-white picture. A one-dimensional (d = 1) germ-grain 
model is also relevant for modeling communications networks: the germs represent the starting 
times of the individual ON periods (calls) and the grains represent the 'half-ball' intervals of 

duration. The process obtained is a counter which, at each time, delivers the number of active 
connections in the network. 
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We have in mind a microscopic model which yields a macroscopic self-similarity property. 
In order to obtain this scaling property, we introduce some power law behavior in the radius 
distribution and consider Poisson random measures on Rd x R+ with intensities of the type 

v(d4, dr) = Cr-h dr d4, (1.1) 

for some h which may depend on the location 4 and some constant C > 0. The origin of the 
random-balls model described in this paper can be found in the 'micropulses' model introduced 
by Cioczek-Georges and Mandelbrot [7] with a fixed power h in the intensity measure. The idea 
is not new, but appeared eighty years ago when Wicksell [19] introduced a first model, the famous 
'corpuscles' model, made of random three-dimensional balls defined as above. The aim of his 

study was to answer a stereological question. Since then, this kind of model has been extensively 
deepened and extended. We refer the reader to [18, Chapters 3 and 6] or [17, Chapter XIII] 
for many examples of random models based on Poisson point process, germ-grain, or shot 
noise models. Let us also mention two recent papers dealing with similar questions. A one 
dimensional germ-grain model with locations (arrival times) uniformly distributed on the time 
axis and interval lengths (call durations) given by a power law was considered by Cohen and 
Taqqu in [8]. A mixed moving average was performed that sums the height of connections, 
and the so-called Poissonized telecom process was obtained. Also similar is the model recently 
studied by Kaj et al. [12]: there the germs were uniformly chosen at random in Rd and the 
grains obtained by random dilation of a fixed, bounded set. In contrast with the quoted models, 
let us point out that our model is not stationary since we choose a nonstationary intensity 

measure (1.1) with a nonconstant power h _ h (). 
This paper is not only concerned with the presentation of a model for random media; we 

also propose two methods of analyzing the random media mass intensity. On the one hand, 
self-similarity properties are explored; more precisely, we focus on a parameter that is supposed 
to contain tangible information on the structure of the media, the local asymptotic self-similar 
index, or LASS index. On the other hand, the action of an X-ray transform on the field is 
investigated. This transform is the mathematical interpretation of a radiographic process. These 
techniques are inspired by those created for Gaussian fields and are still valid in the Poisson 
context. More specifically, we turn to [6], where anisotropic Gaussian fields were analyzed 
by performing X-ray transforms and evaluating LASS indices. The fundamental aim of these 
methods is to make a three-dimensional parameter directly tractable from X-ray images of the 
media. 

The notion of local asymptotic self-similarity was introduced in [3] in a Gaussian context 
and extended to the non-Gaussian realm in [13] and [4], where a general presentation was 
given for fields with stationary increments. The LASS index can also be related to other 
parameters of interest, such as roughness index [2] or Hausdorff dimension [1]. In the area of 
network modeling the notion of self-similarity, at small or large scales, is also fundamental, 
and closely connected to long-range dependence. The usual self-similarity property requires 
a scale invariance in distribution, valid for all scales. This is quite restrictive and we will deal 

with self-similarity properties that are fulfilled 'at small scales' only. 
We now introduce a slight refinement of the LASS property of [3]. 

Definition 1.1. Let X = {X(x): x E Rd} be a random field and let xo E Rd. We call the 
distribution LASS (FDD-LASS) index of X at the point xo, denoted by HFDD, the supremum of 
a > 0 such that 

X (A\X(o X) - E(AX(o X))) O 0 as X 4, 0, 
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where A,0 X denotes the field of increments at xo, 

A50 X (x) = X (xo + x) -X (xo), 

FDD , 
and '- denotes convergence in finite-dimensional distributions. 

Let us remark that convergence in distribution towards the constant 0 is equivalent to 

convergence in probability. More precisely, HFDD is also equal to the supremum of a > 0 

such that 

-a(AX (Xx) - 
E(Axo0X(Xx))) A 0 as X 4. 0, x E Rd 

When H = HFDD(X, xo) is finite and the finite-dimensional distributions of the centered and 

renormalized increments X-H (AX0X (X) - E(AxoX (X *))) converge to the finite-dimensional 

distributions of a nonvanishing field as X 4 0, the limit field is called the tangent field at point 

xo (see [9]). 
When dealing with real-world data, it is almost impossible to see whether such a limit exists 

in distribution. We therefore introduce another asymptotic self-similarity property, which only 
uses the second-order moment. 

Definition 1.2. Let X = {X(x): x E Rd} be a random field and let xo E Rd. We call the 

covariance LASS (COV-LASS index) index of X at the point xo, denoted by HCOV(X, xo), the 

supremum of a > 0 such that 

X-2 cov(A,0X(Xx), A,0X(Xx')) ->. 0 as X 4 0, X, x' E R d. 

By analogy with the situation for HFDD, when H = HCOV is finite and the covariance function 

of )-H Axo X (X *) converges to a nonvanishing covariance function as X 4 0, the limit covariance 

will be called the tangent covariance at point xo. 

Note that the above self-similarity indices are equal for Gaussian fields but not in a general 

setting. Note also that the existence of a tangent covariance does not imply the existence of the 

tangent field, and vice versa. Actually, if HCOV is the COV-LASS index for X at point xo, then 

the covariance function of )-H Ax0 X(X ) converges to 0 as X 4, 0, for all H < HCOV- Thus, 
the finite-dimensional distributions of its centered version also converge to 0 as X 0, and the 

FDD-LASS index for X at point xo - if it exists - satisfies HFDD > HCOV 
Our main results can be summarized as follows. 

* The proposed models provide microscopic descriptions of macroscopic, asymptotically 
self-similar fields which look like (multi)fractional Brownian motions, depending on the 

involved intensity measure. 

* In contrast to the Gaussian case, the covariance LASS index and distribution LASS index 

are not equal: the first can be finite while the second is infinite, or they can take different, 

finite values. 

* The asymptotic distributions are not necessarily Gaussian. 

* We obtain explicit formulae that link the LASS indices of a field and the LASS indices 

of its X-ray transform. In particular, when inhomogeneity or anisotropy is introduced 

into the model, its presence can be inferred from the LASS indices. 

The paper is organized as follows. The random-balls model, i.e. the field that counts 

the number of balls covering each point, is introduced in Section 2. The intensities of the 
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Poisson random measures we will use are prescribed by (1.1) for small radii. A constant power 

h _ M will yield a field which is asymptotically stationary, isotropic, and (mono)fractional. 

A nonconstant power h(4) will yield a multifractional model. We also introduce, in Section 2.2, 

the X-ray transform. Section 3 is devoted to the scaling properties of the random-balls model 

and its X-ray transform. Theorems 3.1 and 3.2 deal with the LASS properties in the respective 

cases where h (t) is a smooth function and a singular function. We also compare our results to 

homogenization results, in Section 3.2. In Section 4 we present some extensions of our model. 
The proofs of Theorems 3.1 and 3.2 are detailed in Appendix A. 

2. The random-balls model and its X-ray transform 

2.1. The random-balls model 

As in [12], we want to study the mass distribution generated by a family of balls B(4j, rj) 
with random centers 4j and random radii rj. We assume that the (4j, rj) are given by a Poisson 

point process with intensity v(d4, dr), where v is a nonnegative, a-finite measure on Rd x R+. 

Inspired by [7], we assume that the radii of such a random grain model obey a power law. 

Following a widespread idea [15], [3], [6], we assume that the exponent of the power law can 

depend on the location, $, of the center of the ball. We define the field X that provides, at each 

point x E Rd, the number of balls B(t, r) that contain the point x, namely 

X(x) = card{j: x E B($j, rj)} = E lB(tj rj)(X) = f 1B(tr)(x)N(d$, dr), 

where N is a Poisson measure with intensity v such that 

L|X+ 1B(?,r) (x)v(dt, dr) < x. 

We consider intensity measures v satisfying the following assumptions. 

* v(dt, dr) = F(4, r) dt dr for some nonnegative, measurable function F on Rd x R+. 

* There exists a real function h, defined almost everywhere (a.e.) on Rd, such that for all 

E > 0 there exists a a > 0 such that, for a.e. (t, r) E Rd x R+, 

|F(t, r) - r-h() I < Er-h(t) (2.1) 

for all r < S. 

* There exists an M < d + 1 such that 

h(t) < M a.e. and F(4, r) < Cr-M a.e. (2.2) 

We call the field X = {X (x): x E Rd I the random-balls model with index h. Note that X admits 

moments of all order. In particular, its mean value and its covariance function are respectively 

given by 

E(X(x)) = 1B( ,r) (x)v(dt, dr), 

cov(X(x), X(x')) = J 1B( ,r) (X) 1B(?,r) (X')V (d4, dr). 
xR+drJ 
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2.2. X-ray transform 

One motivation for this paper is to describe, model, and analyze heterogeneous media. We 

have in mind the possibility of studying their three-dimensional behavior using X-ray images, 

by which means it will be possible to perform an analysis of the media without entering it (a 

noninvasive method). In this section the mathematical tool associated with X-ray images is 

presented and tested on the random-balls model. We assume that d > 2. 

Following the usual notation (see [16, p. 13], for instance), the X-ray transform of a function 

f E L1(JRd) in the direction a E Sd-i = {x E Rd: lIxII = 1I is given by (a)1 3 y F-+ 

fR f (y + pa) dp, where (a)1 : {x E IERd: x a a = 01 and '.' denotes the usual scalar product 
on Rd. We are interested in defining a kind of X-ray transform for the random-balls model. We 

will work with the windowed X-ray transform defined in terms of a fixed window p. We assume 

that p is a continuous function on JR with fast decay, i.e. for all N E N, IP(P) I < CN (1 + IP )-N 

for all p E JR and some constant CN. For any function f E L1 (Rd) with compact support, we 

define the windowed X-ray transform of f in the direction a to be the map 

(a)1 3 y ' ea ff(y) :=f f(y + po)p(p) dp. 

It is straightforward to see that (t, r) i-+ 8'g B(?,r) (y) is integrable with respect to v(d4, dr) 

for each y E (a)1. Thus, we can define the windowed X-ray transform of X in the direction a 

to be the field given by 

)PaX(y) f:= 1j B, (,r) (y) N(dt, dr), y E (a)L. (2.3) 

Note that, for y E (t)1, by the Cauchy-Schwarz inequality, ,Pi' 1B( ,r) (y) belongs to 

L2(JRd x JR+, v(dt, dr)), so J'cyX admits a second-order moment. 

3. Scaling properties 

3.1. Self-similarity properties 

In this section we study the LASS properties of a random-balls model with index function 
h and, simultaneously, the LASS properties of its X-ray transform. We are looking for links 

between the LASS indices and the index h of the random-balls model. 

When dealing with the COV-LASS properties, we have to study, in particular, the asymptotic 

behavior of var(Ax0X(Xx)) as X 4. 0, for all xo, x E Rd. By a change of variables, 

var(Ax0X(Xx)) = f Xd+l ((s,r)Gr) 
- 

1B(t,r) (0))2F(xo + Xt, Xr) dt dr. (3.1) 

Since we want to replace F(xo + AX, Xr) by (Xr)<h(xo? ), it appears that further assumptions 

on h have to be made. We are mainly interested in two kinds of index functions. The first 

kind are smooth on Rd, and are linked with the multifractional Brownian motion [15], [3] 

obtained by substituting the Hurst parameter H by a Holder regular function on the state space. 

The second class is of functions h($) that depend only on the direction of $, which induces a 

singularity at the point 0. We consider a Holder regular function on the sphere extended onto 

Rd \ {0} by taking h(t) = h(t/II1lI), i.e. h(?4) = h(t) for all X E R \ {0}. This follows 

the point of view taken in [6] to obtain anisotropic generalizations of the fractional Brownian 

motion. 
Let us recall the definition of a f-Holder function. 
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Definition 3.1. Let (E, dE) be a metric space and let , E (0, 1]. A function f: E -+ R is 
called ,B-Holder on E if there exists a C > 0 such that, for any x, y E E with dE (x, y) < 1, 

If (x) - f (y)l < CdE(X, Y)fi. 

3.1.1. The smooth case. Let us first study the case of a ,6-HWlder function on Rd. By continuity 
of h around xo E Rd, it intuitively follows from (3.1) that the COV-LASS index of X at point 
xo is equal to (d + 1 - h(xo))/2. Moreover, similar arguments can be applied to ?PcXX, the 
X-ray transform of X with the window p, given by (2.3). The COV-LASS index is equal to 
(d + 2 - M(a, yo))/2, with 

M(a, yo) := sup{h(yo + ta): t E suppP1} 

where supp p denotes the support of p. This suggests the following theorem, whose detailed 
proof is given in Section A. 1. We denote by meas(-) the Lebesgue measure. 

Theorem 3.1. Let d > 2. Let h be a /3-Hblderffunction on Rd such that d < h < d + 1. Let X 
be a random-balls model with index h and let S'PX be its windowed X-ray transform in the 
direction a: E Sd-1. The following statements then hold. 

* At any point xo E Rd 

d + 1 - h(xo) and HFDD(X, XO) > 2Hcov(X, xo). 
2 

Moreover, the covariance of X-HcOv(X,xO) AxX(X. ) converges, up to a multiplicative 
constant, to the covariance of a fractional Brownian motion of index HCOV(X, xo). 

* At any point yo e (a)1, 

HcOV(?P(X, YO) = HFDD('PaX, YO) = d+2-M(a,yo) 
2 

Moreover, when meas({t E supp p: h(yo + ta) = M(a, yo)}) > 0, the covariance and 
thefinite-dimensional distributions of 

Xt-Hcov('aX,yo) (,Ayo (A(8X) (X - E(Ayo ('a X) ())) 

respectively converge, up to a multiplicative constant, to those of a fractional Brownian 
motion of index Hcov(J'aX, yO). 

Remark 3.1. (Concerning the first point of Theorem 3.1.) First note that the first point of 
Theorem 3.1 is still true in the one-dimensional case (d = 1). This result describes the small 
scale behavior of the number of active connections in a communications network: the covariance 
is locally asymptotically self-similar and behaves like a fractional Brownian motion covariance. 

More generally, the same is observed in the multidimensional case. Hence, the random-balls 
model provides a microscopic description of random media which behave, up to the second 

order moment, like multifractional Brownian motion. 

Concerning the FDD-LASS property, let us point out that HFDD A HCOV- Moreover, it is 

straightforward to see that HFDD = oX when F(4, r) = r-M 1(o,j)(r). 
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Remark 3.2. (Concerning the second point of Theorem 3. 1.) From a practical point of view, the 

correspondence between the COV-LASS index of X and the COV-LASS index of C'PcX allows 

for the estimation of the three-dimensional LASS index through the analysis of radiographic 

images. However, note that only the suprema of h along straight lines in the support of p can 

be recovered. 

Remark 3.3. (Concerning the case in which h = M is constant.) When h = M is constant, 

there is a one-to-one correspondence between the COV-LASS indices at any points: 

d +2 -M 1 
Hcov(PaX, YO) = 2 = HCOV(X, xo) + 

Note that the same link between the LASS indices was obtained in [6] for Gaussian fields of 

fractional Brownian type. 

3.1.2. The singular case. Now let us assume h to be an even /3-Holder function on the sphere 

extended onto Rd \ {O} by taking h(t) = h(t/I11 II) and choosing any value for h(O). Let 

us remark that, unless h is constant, there is no way to extend h continuously at the point 0. 

To distinguish the random-balls model associated with such a singular index h from the one 

associated with a smooth h, we will call it the singular random-balls model. Let xo E DRd \ {O}, 

let t E 3Rd, and note that 

xO 
+0 _ X < 2 U 11 forIII < l 2 

IIxo + ~II lixoll - lixoll - 2 

Thus, the /3-Holder assumption on the sphere and the boundedness of h imply that there exists 

a C > 0 such that 

Ih (xo + t)h (xo) I ' C llxo 11 
- 11 jIfi 

Thus, given that xo is not 0, the LASS properties of the singular random-balls model at xo are 

the same as those of the smooth model, given in Theorem 3.1. The next theorem will therefore 

only deal with the LASS properties around 0. 

Theorem 3.2. Let h be an even, nonconstant f-HYlderfunction on Sd-I such that d < h < 

M = maxsd-i h < d + 1. Let X be the singular random-balls model with index h and let J'P X 

be its X-ray transform in the direction cx E Sd-1. The following statements then hold. 

* ForH=(d+1-M)/2, 

Hcov(X, 0) = H and HFDD(X, O) = 2H. 

When meas({h = M}) > 0, the covariance of )-HAOX(X.) converges to 

IH (X, X') = f lh()=d+1-2H} +(x, ?, r)r(x', t, r)r-d-1+2H d4 dr, 

x, xI E Rd 

while thefinite-dimensional distributions of X-2H(AoX(X.) - E(AoX (X.))) converge 

to the deterministicfield 

ZH(X) = IIXII2H f th()=d+1-2H} / -1+ 2 dt dr, 

x E R 
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Here *fr is given by 

+(x, $, r) = 1B(t,r)(X) - 1B(4,r)(O) = 
l{lIx-4i11<r<1111} 

- 
1J{JJtJ<r<JIx-VJ}* (3.2) 

* HCOV (,CP X, 0) = HFDD (CfP X, 0) = (d + 2 - h(at)/2). Moreover, the covariance and 

thefinite-dimensional distributions of)t-Hcov(3aXO) (A0o(ePxX) (X ) -E(Ao(RotaX) ( ))) 

respectively converge, up to a multiplicative constant, to those of a fractional Brownian 
motion of index Hcov(?,9X, 0). 

Let us remark that, for the singular random-balls model, there exist both a COV-LASS index 

and a FDD-LASS index, and that the latter equals twice the former. This multiplicative factor 

is typical given the Poisson structure, since for Poisson random variables the variance equals 

the mean. 

Moreover, when {h = M} has positive measure, the tangent field at 0 is deterministic and 

nonzero, and hence does not have stationary increments. This result is linked to a result of 

Falconer [9] which states that at almost all points the tangent field - if it exists - must have 

stationary increments. The point 0 therefore appears as an 'exceptional point' (see [14] for 

other examples of exceptional points). 

Finally, let us point out that the tangent field of the X-ray transform, when it exists, is 

Gaussian - perhaps even fractional Brownian motion - whereas the tangent field of the singular 

random-balls model is deterministic. This can justify, from a mathematical point of view, the 

modeling of radiographic images using fractional Brownian motion even when the media under 

study are far from being of this type (see [10] for an experimental study). 

3.2. Comparison with homogenization results 

There are different ways to consider self-similarity at small scales, depending on which part 

of the signal is concerned with the scaling. Instead of performing a scaling on the increments 

lag, as done in Section 3.1, we act on the radius of the balls as follows. Suppose we zoom in and 

consider the balls B(t, r/e) instead of the balls B(t, r), where the (t, r) are randomly chosen 

by the Poisson random measure N and we let e decrease to 0. Denoting by XI the associated 

field 

X?(x) = j 1B($ r/E)(x)N(dt, dr), x E Rd 

we look for normalization terms n(xo) such that En(xO)(AxOXE - E(Ax0X8)) converges in 

distribution to a nondegenerate field. Note that the field X? can also be considered to be a 

random-balls model associated with a Poisson measure with intensity 

v? (dt, dr) = EF(t, er) d4 dr. 

Actually, this procedure is nothing but homogenization and is close to the thermodynamical 

limit investigated in [7] and the scaling limit in [11] or [12]. Computations similar to those for 

the previous theorems yield the following results. 

* If d < M:= maxSd-i h < d + 1 and the set {t: h(t) = MI has positive measure, then 

the normalization term n(xo) is equal to (M - 1)/2 for all xo E R 

* Moreover, if h = M is constant, then the limit field is a fractional Brownian motion with 

index (d + 1 - M)/2 (see [5] for similar ideas). 
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4. Conclusion and more general setting 

We have proposed to model, from a microscopic point of view, the mass intensity of porous 

media or the number of connected customers in a network using a non-Gaussian field that 

exhibits macroscopic (multi)fractional behavior. The rich structure of Poisson point processes 
allows us to reach this goal and also to perform explicit computations, as in the Gaussian 

case. In order to keep the model as intuitively clear as possible, we have not introduced more 

general fields. The Poisson structure can obviously be exploited further by considering 
more general integrators with respect to the Poisson measure. Replacing the ball B(4, r) 

by a more general set will, for instance, allow one to model granular media with nonspherical 

grains. One can also consider a general function f (. - 4, r) instead of the indicator function 

1B(?,r) (.), which leads to a nonstationary shot noise process. In order to obtain self-similarity 
properties under the power law assumption on the intensity measure, one has to consider an 

integrator f (. - 4, r) that is asymptotically homogeneous. Another model for porous media 

could be built up from a collection of random balls which no longer correspond to grains but 

to pores or bubbles. This way, one will obtain a {0, 1 1-valued field. 

Appendix A. Proofs of the LASS properties 

In this section we will give rigorous proofs for the LASS properties of the random-balls 

models and their windowed X-ray transforms. We will first state a preliminary lemma which 

allows us to replace the intensity measure by its equivalent when the radius decreases to 0. Note 

that assumption (2.1) holds uniformly in 4 E Rd. However, with smoothness assumptions on 

the function h on Rd, we want to replace F (xo + AX, Xr) not by (Xr) -h(xo+Xi) but by (Xr)h(xO). 
In fact, 

jr-h(xo+t) 
_ r-h(xo) I < Cejjt 11I jln(r) Jr-h(xo) 

holds for small r and 4 E Rd such that 11: llfi Iln(r) I 1, using the /8-Holder assumption on h. 

We state the next lemma in this general setting. 

Lemma A.1. Let d > 1 and / E (0, 1]. Let F, Fo, and Foo be nonnegative functions on 

Rd x R+. Let us assume that, for all e > 0, there exists a 8 > 0 such that 

IF(4, r) - Fo(4, r)I < eFo(4, r) 

for almost every (4, r) in Rd x R+ such that r < 8 and 114:IjIIln(r)I < 8. Let us also assume 

that F and Fo are boundedfrom above by Foo, which satisfies 

F,,,(t, r) < C r -M a. e. (A. 1) 

for someM E (d,d +1). 

Let (fx) be afamily offunctions on Rd x R+ boundedfrom above by a nonnegative function 

fOO such that, for some qo and ql, qo < M < qI, 

fA , O(t, r) dt < C min (r q I- 
l,rq? 1) a.e. (A.2) 

and, for all sufficiently large A > 0, 

hl A l? fco(4, r)r-M dr < CA-(M-d). (A.3) 
0ll>A R+ 
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Then, for any q such that max(qo, d) < q < M and any 8 > 0, there exists a 8o > 0 such that 

fRR fx (4 r)F Q4, Xr) d4 dr - fX (t, r)Fo(?4, Xr) d4 dr 
xRd+ xRd+ 

< I' Ifk (t, r)IFo(X4, Xr) dt dr + CX-q 
JRd x+ 

for X < So. 

Proof Let us choose an s E (0, 1) and an n E N with n A 0, and let us remark that, for 

Uj114 < )-s and r E (n, ,X-1) 

jjXt 1 ljln(Xr) I < nf(l -s) lln(,X) 1 

Therefore, for e > 0, we can choose A small enough that 

L(O)JS fx(t, r)(FQ(X, Xr) - Fo(X, Xr)) d4 dr 

< ? f Ifx (t, r)IFo(X4, Xr) d4 dr. 

Moreover, 

fx(t, r)F(Xt, Xr) dt dr < C-M f | f (, r)r-M dt dr 
,_'XS (s^-l 0ll>A,-S D+ 

< CV-M-s(d-M) 

by (A. 1) and (A.3). On the other hand, 

jO,) I|d ffx(4, r)F(Xt, Xr) dt dr <CV-M f rql -M-l dr 

< C'X-M+n(qj-M) 

by (A.1) and (A.2), since M < qi. Finally, 

f fx (t r)F( 4, Xr) d4 dr < C f-M qo-M-1 dr 

< CSqo-MX-qo 

by (A.1) and (A.2), since M > qo. 

Since the same upper bounds are valid for Fo, it is sufficient to take s = (M - q)(M- d) 

and n > (M -q) I(q I- M) to complete the proof. 

The following corollary will play the role of Lebesgue's theorem to ensure convergence of 

the integrals. 

Corollary A.1. We make the assumptions of Lemma A.]. Let us assume, moreover, that there 

exist a real number H > M and two functions, fo and Fo, such that, for almost all (t, r) E 

Rd x R+, 
X fx(t, r)Fo(X4, Xr) -+ fo($, r)Fo (t, r) as X 4 0. 
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Then 

lim | 
H4 fJ(, 

r)F(t, )r) dt dr = fo(4, r)Fg (4, r) d4 dr. 
'Xt? xRd+ xRdX 

Proof. Let ? > 0. From Lemma A. 1, there exists a 80 > 0 such that, for X < 8o, 

xR fx(, r) F (X, Xr) dt dr -| Hf (t, r)FO(X4,,Xr) d4 dr 

JRdR+ - fRd xR+ 

< XH+ xIfx (, r)IFo(X4, Xr) d4 dr + CXH-q. 

Moreover, by (A.1), 

XH If(4, r)IFo(X4, Xr) < CXH-Mff(, r)r-M 

with foo (, r)r-M E L1 (Rd x R+) according to (A.2). Lebesgue's theorem then implies that 

lim | k AHX(t, r) Fo(A Q.,r) dt dr =| f(,rF t )d r 
X Rd xR+ = RLd XR+fo(4,r)F (4,r)d4dr, 

which yields the result. 

A.1. Proof of Theorem 3.1 

Let us first consider the COV-LASS property of the random-balls model. Let xo E Rd. For 

H E (0, 1) and X > 0, let us write rPH (xo, *) for the covariance function of A-H Ax ). By 

the same change of variables used to obtain (3.1), for x, x' E R d, FH(xo, x, x') is equal to 

fR xR 2H+d+ x, Al , Ar)(Ax', A4, Ar)F(xo + A4, Ar) d4 dr, 

with l, given by (3.2), satisfying i /(Ax, )4, Ar) = if(x, 4, r). In order to apply Corollary A.1, 

let us check that i satisfies assumptions (A.2) and (A.3) of Lemma A. 1. 

Lemma A.2. Let M E (d, d + 1). There exists a constant CM E (0, oo) such that, for all 

p E (0, oo) and x E Rd, 

fxR 1(x, 4, r)lPrM d4 dr = CMIIxlld+-M, 

with 

|1(x, ?,r) IP dt < C (x)min (rd, rd- 
i 

(A.4) 
Rd 

and, for A > 2 1lx 11, 

2M-d 

| | '(x,, r)lPr-M d dr < C(x)A-(M-d), (A.5) 
whr>)i tiA + M-d 

where C (x) is a positive constant that depends on x. 
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Proof: Note that 1k(x, ?, r)IP = 1lr(x, ?, r)I = l{jj1x-j<r<Ijj,jj + 'HIi<r<Ix-ll. Hence, 

for all x, t E Rd, the integral fR+ jifr(x, $, r)IPr-Mdr is equal to 

Ml - 1 (1{[11I1<Ix.4l - 11} 1 - x110 -RIM+1- i _ m+1) 

For d < M < d + 1, the function 4 IIt 1- lix - tlI1M+' is integrable on Rd. 

The equality is obtained by rotational invariance and homogeneity. 

Let us prove (A.4) and (A.5). It is straightforward to see that 

1*|(x, ?, r)|P dt < C((r + IIX ||)d -rd), 

whence (A.4) holds with C (x) = C max (2d, 2d- 1 d) max (11 x 11, 1). Finally, let us choose 

A > 2 11x 11 and note that 

/|>A L| k1*(x, t, r)IPr-M d dr < f L l(x, t, r)lPr-M d dr; 
~11t 1>A l+ A/2 R 

thus, (A.5) holds as a consequence of (A.4), and Lemma A.2 is proved. 

Let us remark that, according to (2.1), (2.2), and the 16-HWlder assumption, F(xo + *,*) 

satisfies the assumptions of Lemma A. 1 with Fo(t, r) = r-h(xo). We first establish that, for 

H = (d + 1-h(xo))/2, 

rHf(xo, x, xI) *H(x,x') as X A O, (A.6) 

where 

rH(x, x') = j *(x, ?, r)4r(x', $, r)r-d?1+2H d$ dr. 

Then we prove that (up to a constant) rH is the covariance function of a fractional Brownian 

motion with Hurst index H. 

We set f(,r) =r(Ax, 4, Ar) k(Ax', )4, Ar) = b(x, t, r)4r(x', ,r). Thenfoo = IfxI 
satisfies (A.2) and (A.3) with qo = d and ql = d - 1, using the Cauchy-Schwartz inequality, 

(A.4), and (A.5). Moreover, for fo = fx, 

Xh(xo)fx (t, r)Fo0(X, Ar) fo(t, r)r-h(xO) as X r 0. (A.7) 

Thus, (A.6) is obtained from Corollary A. 1, for -2H + d + 1 = h (xo). It remains to show that 

(up to a constant) rH is the covariance function of a fractional Brownian motion with Hurst 

index H = (d + 1 - h(xo))/2. A straightforward computation gives 

J + -((x, , r)-+(x, $, r))2r-h(xO) dt dr = f ifr(x -x', , r)2r-h(xO) dt dr. 
xRdX+ idXR+ 

This allows us to write rH as rH(x, x') = 2(v(x) + v(x') - v(x - x')), where v(x) = 

['H(x x) = clIxl2H according to Lemma A.2. 

This proves the covariance part of the first point of Theorem 3.1. Now let us prove the 

convergence in finite-dimensional distributions. Let us denote by X = X - E(X) the centered 

version of X. For the sake of notational simplicity, we will only consider the limit in distribution 
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of ,-HAXO X(Xx) for a fixed x in Rd, instead of a random vector (JX-HA 0X(Xx))i<J<n 
The general case follows along the same lines. For H > 0, x E Rd, and s E R, let us write 

E exp is XH ] =exp[? (H, X, xo, x, s)], 

where cF(H, X, xo, x, s) is given by 

J + 4(exp[is-H (Ax, -xo, r)] -1 - isJ-H 4 r(Xx, 4-xo, r))F(4, r) d4 dr. 

By a change of variables, 4(H, X, xo, x, s) is equal to 

Xd+l(exp[is-H*f(x, 4, r)] - 1I- isX-H*(x, 4, r))F(xo + AX, Xr) d4 dr. 

Lemma A.2 allows us to split the integral into ci = (1I + ('i - (D1), where (1 (H, X, xo, x, s) 
is equal to 

J|dXR+ Xd+l(exp[isJ-H r(x, 4, r)] - )F(xo + X4, Xr) d4 dr. 

Let us set fx(4, r) = exp[isJ-H /r(x, 4, r)] -1. Using (3.2), we note that 

Ifx(4, r)l < 2 x l{i(x4,r)#O} = 21t(x, 4, r)l. 

Then Xd+lfI( f r)F(xo + X4, Xr) -. 0 as \ 4 0, since F(4, r) < Cr-M with M < d + 1. 

Corollary A. 1 implies that 

lim 41 (H, X, xo x, t) = 0. 

The second term, (2 = c) - (I, is given by 

-is X|d+I- H' (x, 4, r)F(xo + X4, Xr) d4 dr. 

Corollary A.1 with fx (4, r) = 4(x, 4, r), Fo(4, r) = r-h(xo), and H = d + 1 - h(xo) implies 
that 

liM)2(H, X, xo, x, s) = -is f 4(x, 4, r)r-h(xO) d4 dr = 0, 

since 

X+lHfx(4, r)Fo(X4, Xr) + (x, 4, r)r h(x) as X 4 (A.8) 

This proves that HFDD(X, XO) > H = 2HCOV(X, xo). 
Now let us prove the LASS properties of the windowed X-ray transform. As for the model 

itself, we begin with the COV-LASS property. Let d > 2 and a E Sd-i. For yo, y E (a)1, let 
us consider 

A yop X(y) = ?ot X(yo + y) - J'aX(yo) = f Gp(y, 4-yo, r)N(d4, dr), 

where 

Gp(y, 4, r) = jV,(y, -pa, r)p(p) dp 
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with * as given by (3.2). Let us write 4 = y + ta, with y E (a)1 and t E IR, and denote 

by Pt the window obtained by translation of t, namely Pt (p) = p (t + p). By a change of 

variable, Gp(y, 4, r) = Gp,(y, y, r). Let us denote by KA1(yo *) the covariance function of 
HA- H Ayo,aX(X X ) for H E (O, 1) and yo E (a)L. Then 

KH(yo, Y, Y') = 
Gx-2HGpt (Xy, y-yo, r)Gp,(ly', y-yo,r)F(y+ta,r)dydtdr 

(a)l xRxR+P 

for y, y' E (a)1. Let us remark that Gp (Xy, Xy, Xr) = XGpt(X.)(y, y, r) by a change of 

variables. Thus, K H(yo, y, y') is equal to 

f V-2H+d+2Gp(x.)(y, y, r)Gpt(x.)(y', y, r)F(yo + ta + Ay, Ar) dy dt dr, 
J(c) xR xR+ 

which can be written as 

IRx(a)1xIR ;R~ 7-2H+d+2 i/(y, y - pt, r)pt (Xp) 
lx (a)l xRlxRl+ 

x 
GP,(X ) (y', y, r)F(yo + ta + ?y, Xr) dp dy dt dr. 

Let us set t' = t + Xp and 4 = y - p et d E (a)1 x R. In this notation, we can write 
K H(yo, y, y') as 

J|dXR+ xRx-2H+d+2*(y, 4, r)Gpt,(X.)(Y, 4, r)F(yo + t'a + X4, Xr)p(t') d4 dr dt'. 

In order to apply Lemma A. 1 and Corollary A. 1, let us check assumptions (A.2) and (A.3) for 

fx(4, r) = t(y, 4, r)Gpt,(X.)(y', 4, r) (A.9) 

We remark that, in the special case where p -1, writing G instead of G1, a simple computation 
gives 

G(y, y, r) =_ GI(y, y, r) = (r2-IlY _ Y12)1/2 _ (r2 _ IIY1I2)1/2 

for y, y in (a)1 and r in R+, where, as usual, t+ := max(O, t) for all t E JR. 
Lemma A.4 provides upper bounds for the integral of G(y, .). We first provide a preliminary 

result necessary in its proof. 

Lemma A.3. Let n E N with n > 1. There exists a constant C > 0 such that 

f I(r2 _ lix - eII2)1j2 _ (r2 _ llx + eli2)1/212 dx < Crn ln(2 + r), 

for all directions e E Sn-1 and all r > 0. 

Proof For n = 1, we have to prove that there exists a constant C such that, for r > 0, 

I 
r2 _ (X _ 1)2)1/2 _ (r2 _ (X + 1)2)1/212 dx < Cr ln(r + 2). 

This is an easy consequence of the fact that the function that we integrate is bounded by 4r for 
x E [r-1, r + 1] and by 16r2((r-1)(r-x + 1))-' for x E [0, r-1] when r > 1. 
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In the general case (n > 1), we write x = x' + x"e with x' E (e)l1 and x" E R. From the 

one-dimensional case, for x' E (e) , 

J I(r - lIx 112 -_ x" - 112)1/2 _ (r2 _ lix' 112 _ X + 112)1!2l2 dX 

< C(r 2- lIxf112)1/2 ln(r + 2). 

However, 

-(r2 _ llx 112)1/2 dx' = rn ISn-2i 1(1 -t2)/2tn-2 dt 
(e)l ? 

Finally, we can change the constant C such that 

R(r 2 -_ lle112)/2 _ (r2 _ lix + el )2)/212 dx < Crn ln(2 + r), 

which concludes the proof. 

Lemma A.4. Let M E (d, d + 2). There exists a constant CM E (0, oX) such that, for all 

y E (a)1, 

f G(y, y, r)2r-M dy dr = CMiiyIid+2-M (A.10) 

with 

| G(y, y, r)2 dy < C(y) min(r d+1, rd-I I n (r) 1). (A.ll ) 

Proof. For y E (a)1, on the one hand, 

| G(y, y, r)2 dy < r 2 | ((1[jy_yjj<r} + l1ly1j<r)) dy < Cr d+1. (A. 12) 
(a)l (a) 

I 

On the other hand, for y :A 0 and r > 0, a change of variables gives 

(IYI) | G(y, y, r)2 dy 

- Ia' l((ir)2 -1- y 2)1/2 ((2r)2 - y + 2)1/2 2 

Lemma A.3 provides an upper bound for the last quantity: we obtain 

f G(y, y, r)2dy < CIyI 2 lrd In(2 + 1lyj). (A.13) 

Since M E (d, d + 1), inequalities (A. 12) and (A. 13) imply the integrability of G2. The result, 

(A. 10), is then obtained by homogeneity as in the proof of Lemma A.2. 

Let us verify that fi, given by (A.9), satisfies the assumptions of Lemma A. 1. First let us 

remarkthat IGpt,(X .)(y, 4, r)I < IIpI ooIG(y', y, r)I, meaningthatfx isboundedbyffO(4, r) = 

IIpIKT'I (y, 4, r)G(y', 4, r)I, with IIpIIoo = suptER IPI Moreover, 

j Ifo(y + pa, r)I dp < jIplKIIG(y, y, r)I x IG(y', y, r)I, 



868 o SGSA H. BIERME AND A. ESTRADE 

and (A.1) implies (A.2) for all qo > d and qi = d + 2. In order to prove (A.3), let us note 

that, for A > 0 large enough in comparison with y, 4"(y, ?, r) = 0 for 1411 > A and r < A/2. 

Hence, 

Ifoo(t, r)lr-M dt dr < J I / foo( f(r)lr-M dr dt 
JI11>A J+ A/2 R 

E C(y, y')AqO-M 

for any qo E (d, M), according to (A.2). Then Lemma A.1 holds with Fo(4, r) = rh(Yo+t'). 

Moreover, for M(oa, yo) = sup{h (yo + tot): t E supp p}, as X decreases to 0, 

XM(`,YO)f.(t, r)Fo(XQ, Xr)p(t') 

-* 4(y, ?, r)G(y', $, r)r M(a YO)p(tf)2 l{h(yo+t'a)=M(x,yo)}. 

By Corollary A.1 and then Lebesgue's theorem, for -2H + d + 2 = M (a, yo), 

Kf(yo, y, y') -(f l{h(yo+t'ct)=M(a,yo)} p2(t') dt )KH(y, y') as X 4, 0, 

where 

KH(Yy, y) = [ G(y, y, r)G(y', y, r)rd+2?2H dy dr. 
J( )0 xR+ 

The identification of KH as the covariance of a fractional Brownian motion defined on (a)1 

with Hurst index H = (d + 2 - M(a, yo))/2 is straightforward following the same arguments 

as for the random-balls model itself. 

If {t E supp p: h(yo + ta) = M(oa, yo)I has positive measure then the proof of the COV 

LASS property is complete. Otherwise, it is sufficient to remark that, following the same lines as 

intheproofsofLemmaA.1 andCorollaryA.1,forall8 > OandH = (d + 2- M(a, yo))/2+E 

we can find a C > 0 such that, for small enough X, a lower bound of K H (yo, y, y) is given by 

C f X EG(y, y, r)2r M(a,YO)+E l{h(yo+t'a)>M(a,yo)-E} p (t')2 d4 dr dt'. 
Rd XRi+ XR 

This proves that HCOV( PaX, yo) < H and yields the result. 

Finally, we consider the FDD-LASS property at point yo for the X-ray transform. _As 
above, we restrict the computation to the one-dimensional distribution and denote by paX = 

P%X - E( PaX) the centered version of MPaX. For any y E (1)1, s E IR, and H E (0, 1), we 

write 
Eexp[is)jH(8P X(yo + Xy) - PaX(yo))] = exp[CP(H, X, yo, y, s)], 

where cF(H, X, yo, y, s) is given by 

| (exp[isX-HGp(Ay, t-yo, r)] - 1I- isV-HGp(Xy, 4-yo, r))F(4, r) d4 dr. 

By the same change of variables as in the covariance part of the proof, (D(H, X, yo, y, s) is 

equal to 

Xd(exp[isXl1HGp,(x.)(y, y, r)] - 1 - isXl HGpt(x.)(y, y, r)) 
et)IxR x Fd+ 

x F(Xy + tt + yo,Xr) dy dtdr. 
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Let us remark that, for S E [0, 1], 

exp[isA GP,(X.)(y, y, r)] - 1 -isXl HGpt(x.)(y, y, r) + 2HG pt(x.)(y, y,r)2 
2 

< C(s)X(l-H)(2+8)Gpt(x.)(y, y, r)2+8 

Following the same kind of computations as in the proof of the COV-LASS property, we replace 

fx, from (A.9), by fx(4, r) = i(y, ?, r)G>+8 .)(y, ?, r). Since IGp,(x.)(y, y, r)l < Cr, by 

choosing S E (0, M - d) for H = (d + 2 - M(a, yo))/2 we obtain 

lim xd+2-2H+S(l-H) Gp (x .)(y, y, r)2+8F(Xy + ta + yo, Xr) dy dt dr = 0. 
XAO 

t) 
I 
xRxR+ 

Therefore, as X decreases to 0, 

cI (H, X, yo, y, s) - s2(f l{h(yo+t'a)=M(a,yo)} p(t )2 dt )rH(y, y), 

which concludes the proof. 

A.2. Proof of Theorem 3.2 

We now assume that h is given by an even P-Hdlder function on the sphere, extended onto 

Rd \ {0} by taking h ( ) = h (4 / 11 11). 

Let us prove the COV-LASS property for the random-balls model at point xo = 0. We retain 

the notation of Section A. 1. We have 

I,H (x, x, x) = j ? 2H+d+lsl(Xx, XA, Xr)ifr(Xx', X4, Xr)F(X?, Xr) d4 dr. 

In this case, F satisfies the assumption of Lemma A.1 with Fo(t, r) = rh(t/IItII). For M = 

maxsd-i h, (A.7) is replaced by 

XMfx(t, r)Fo(2)4, Xr) -* fo(t, r)r-M l{h(?)=M} as X 4 0. 

Thus, using Corollary A. 1, we find that FiH (0, x, x') tends to 

fR|xR+ l{h(t)=M} if(x, ?, r)t(x', ?, r)r-dl1+2H d4 dr =: [H(X, x') 

for -2H +d + 1 = M. Letus remarkthat fH vanishes if and only if {4 E Rd \ {O}: h(4) = MI 

has measure 0. In this case, for d + 1 - 2H = M - 2e with E E (0, (M - q)/2) and for X 

small enough, Lemma A. 1 yields 

X, X) 2 
f ( l{h(t)>M-e} *f(x, $, r)2rh(t) d4 dr -CM-28-q 

where {t E Rd \ {O}: h(4) > M - e} has positive measure. The above quantity thus tends to xc 

as X decreases to 0. Hence, the exponent H = (d + 1 - M)/2 is proved to be the COV-LASS 

index for X at xo = 0. 



870 * SGSA H. BIERME AND A. ESTRADE 

Let us now prove the remainder of point one of Theorem 3.2. In the notation of Section A. 1, 

for H = d + 1 - M = 2Hcov(X, 0), (A.8) is replaced by 

Xd+l Hfx( r)Fo(?4, Xr) + (X, , r)r M l{h(t)=M} as X 4 0, 

since Fo(4, r) = r-h(t/I 14) in this case. By Corollary A. 1, we obtain 

limP(H,X,O,x,s) = lim 2(H,X,O,x,s) 
X40 40O 

-=-iS j l{h(t)=M} +(x, $, r)rd+ d dr. 
Rd XR+ 

In the following, we will distinguish between two cases according to whether or not {t: h(4) = 

M} has positive measure. 

First assume that {t: h(t) = MI has positive measure. Hence, the finite-dimensional dis 

tributions of )-H AOX(X .) converge to the finite-dimensional distributions of the deterministic 

field 

ZH(X) = l| {h()=M} +r(x, ?, r)r-dl1+H d4 dr, x E Rd. 

It remains to show that ZH is nonzero. This follows from the next lemma since, by continuity 

of h, {[: h(t) 0 MI contains a ball. 

Lemma A.5. Let M E (d, d + 1). For all Borel sets E C Rd with positive measure, if 

L| + lE(t)Vf(X, t, r)r M dt dr = 0 

for all x E Rd, then the (complement) set EC does not contain an open ball. 

Proof. 
Let us write I M(x) = 

fRd>X+ lE(-W"(x, d, r)r M dd dr for x E Rd. Note that 

| +(x, $, r)r-M dt dr = (M - 1)-'(Ilx 
- 

11-M+1 -11 -M+1) 

Then, for all Borel sets E c Rd, 

IE(X) = f 1E(O)(M -1)' (li x 11 -M+I-11 11-M+ 1) d. 

Let us suppose that we can find an open, nonempty ball B c EC. Then ij is smooth on B. 

The Laplacian of IE is 

A4'(X) = (M + 1-d) j lE(4)lix- 17M 1 dt 

and proves to be positive on B. Thus, IE does not vanish on B. This completes the proof 

of Lemma A.5 and, thus, that of Theorem 3.2 in the case where {t: h(t) = M} has positive 

measure. 

Now assume that {t: h( ) = M} is of measure 0. We will establish that the FDD-LASS index 

ofXatOisstillequaltod+1-M. ForH < d+l-M,wefindthatlimXs>o '(H, X, 0, x, s) = 0. 

On the other hand, for H > d + 1 - M, we have to prove that there exists at least one x E Rd 
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such that P2 (H, X, 0, x, s) does not tend to 0. First, let us remark that, from Lemma A. 1 and 

for all x E IRd, 'D2(H, X, 0, x, s) is equivalent to -is42(H, X, x) as X decreases to 0, with 

(2(H, X, x) = k xd+1Hh(t)g(x ?, r)r-( dt dr. 

However, 42(H, X, x) may be written as fRd(h() - l)-1d+l-H-h()f (X, ) dt with 

f (X, O) = l|x 
- 

11--h(t)+l-_j 11-h(t)+l 

The function f(-, t) is smooth on Rd \ {1}, and its Laplacian, given by 

Af (x, 4) = (h(t) + 1 - d)(h(4)-l)IIX _ II-h(t)-I, 

is positive. Approximating the Laplacian by the second-order increments, we can thus find a 

C > 0 such that 

82 
|, f (x +3ej, t) +f (x-Sej, t)-2 f(x, t)- Af (x, t) |<C3lx_11-()2(A. 14) 

2 
l'j<d 

whenever lix - 7 0 and 8 < 2Ix - Let us choose H such that minsd-i h < d + 

1- H < M, and note that the sets {[: h(t) < d + 1- HI and {[: h(t) > d + 1- H} 

have positive measures. Moreover, by continuity of h, there exists an open, nonempty ball 

B C {1: h(t) < d + 1 - HI. For every x E Rd, we introduce 

4 
(X) = 1| l{h(4)>d+1-H}(h() 

- 
I)-lIXd+l-H-h(,)f (X, ) d) 

and write 

4)2(H, X, x) = jDX(x) + (OP2(H, X, x) -D (x)). 

The second term tends to 0 with i, by Lebesgue's theorem. Suppose that (D (x) tends to 0 with 

X for every x in Rd. Then 

A(2) jD.(x) : =E(jD (x + Bej) + jDx (x 
- 

ej) 
- 

2Px(x)) 
O- as X 

J, 

O, (A. 15) 

1<j<d 

for all x E JRd and all 8 E R. However, for x E B and a 8 > 0 small enough that B(x, 8) c B, 

according to (A. 14) we have 

A8(x )(x) > C(^) f l{h(t)>d+1-H}(h(t) + 1 - d)IIx - |h(t)1 dt > 0, 

since Xd+l1H-h(4) l{h(t)>d+1-H} > lh(t)>d+1-H}. Equation (A.15) then implies that 

{4: h(t) > d + 1 - HI has measure 0, which contradicts the assumption that d + 1 - H < M. 

The proof of the first part of Theorem 3.2 is now complete. 

Let us conclude with the proof of the LASS properties of the windowed X-ray transform. 

It is sufficient to remark that, for any t :A 0, since h is P-H6lder on Sd-I with 0 < ,B < 1, we 

obtain 
Ih (ta + x) - h(a) < Cltl- lix ll. 

We can therefore argue in the same way as we did in proving Theorem 3.1, with yo = 0, 

M(ox, yo) = h(Qt), and l{h(yo+ta)=M(a,yo)} = 1 a.e. 
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