
a

rance

er hy-
uare
en the
m
e
with

s. The
ations
nction
e, for
J. Math. Anal. Appl. 316 (2006) 383–396

www.elsevier.com/locate/jma

Injectivity of rotation invariant windowed
Radon transforms

Hermine Biermé

MAPMO-UMR 6628, Département de Mathématiques, Université d’Orléans, 45067 Orléans cedex 2, F

Received 13 January 2005

Available online 23 May 2005

Submitted by H.M. Srivastava

Abstract

We consider rotation invariant windowed Radon transforms that integrate a function ov
perplanes by using a radial weight (called window). T. Quinto proved their injectivity for sq
integrable functions of compact support. This cannot be extended in general. Actually, wh
Laplace transform of the window has a zero with positive real partδ, the windowed Radon transfor
is not injective on functions with a Gaussian decay at infinity, depending onδ. Nevertheless, we giv
conditions on the window that imply injectivity of the windowed Radon transform on functions
a more rapid decay than any Gaussian function.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

With the classical Radon transform, one integrates a function over hyperplane
Radon transform has developed very rapidly in the early 1970s, with a lot of applic
in medicine, optics, physics and other areas. It is well known that one can recover a fu
from its integrals along all hyperplanes, that is, the Radon transform is injective (se
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example, [6,10]). It is no more the case when the Radon transform is replaced by a
realistic generalization, basically when one integrates with respect to different weig
the hyperplanes. Here we consider a weight that does not depend on the hyperplan

Our starting point has been the work of Bonami and Estrade [3], in relation wit
engineering department of the university of Orléans [8], on image processing rela
bones radiographs. They model such radiographs by a Gaussian random field w
tionary increments, characterized by a functionF , called spectral density. They choose
convenient windowψ (smooth and rapidly decreasing for instance), and perform a
dowed Radon transform of the radiographs. Then, for each directionθ ∈ S1, they obtain
a Gaussian random process with stationary increments and spectral densityR|ψ̂ |2F(θ, .).
Thus, a natural question is the following: for which windows does one have inject
Sinceψ and its Fourier transform are used as windows, the choice of a Gaussian w
is natural. However we are interested in more general windows. Compared with the
transform, the main difficulty is the loss of translation invariance for the windowed R
transform. One can force rotation invariance by choosing a radial window, which w
here. The question of injectivity (in law) is then given by the injectivity of the window
Radon transform for spectral densities, which satisfy adapted integrability conditio
infinity. Let us recall that their asymptotic behaviour in power law is of particular inte
since it gives the Hölder exponent for the corresponding field [3].

For such radial windows, Quinto [9] gave an injectivity result for square integrable
tions with compact support. In the literature, injectivity for generalized Radon transf
is only studied for compactly supported functions (for instance, in the case of atten
Radon transforms in the so-called Emission Tomography [2,12]. . . ). There are two main
reasons for this. On one hand, in general, such transforms appear in experiments an
real objects, which have compact support. On the other hand, there is a mathemat
struction for injectivity in a general setting. Actually, one can find windows for which
windowed Radon transform is not injective on square integrable functions with a Ga
decay at infinity. Here, we proceed further with counter-examples. We state cond
on radial windows which guarantee the injectivity of the windowed Radon transfor
square integrable functions that decrease faster than any Gaussian function. The rot
variance allows us to restrict to a collection of operators defined onL2(R+, rd−1eδ0r

2
dr),

with δ0 ∈ R depending on the integrability of the window. For each one, we findδ > δ+
0

such that it is injective onL2(R+, rd−1eδr2
dr), whereδ+

0 := max(δ0,0).
The paper is organized as follows. In Section 2, we define the windowed Radon

form and recall Quinto’s proof for injectivity results, which allows us to weaken
conditions on the windows. We emphasize in Section 3 the role of Gaussian func
On one hand, they are examples of windows for which there is injectivity. On the
hand, they give counter-examples for injectivity, as test functions. In Section 4, we
sider the special case of radial functions. This case is simpler since the windowed
transform can be reduced to an integral convolution operator. The general case is
in Section 5. By Laplace transform we obtain an ordinary differential equation with h
morphic coefficients. Using the inverse Laplace transform, we can reduce to an appl
of the fixed point theorem. In a final remark, we mention that this injectivity question g
rise to an open problem on outer functions in the complex plane.
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2. Definition and preliminary results

Let us first define thewindowed Radon transformunder consideration. We fix the d
mensiond � 2, as well as thewindowϕ, which is assumed to be a smooth function onR,
such that, forδ ∈ R,

+∞∫
0

ϕ(r)2r(d−3)/2e−δr dr < ∞.

We callWδ the class of such windowsϕ. We define the windowed Radon transform (w
the windowϕ), for θ ∈ Sd−1 andp ∈ R, by

RϕF(θ,p) =
∫

x∈H(θ,p)

F (x)ϕ
(|x − pθ |2)dxH , (1)

when this make sense. Here,H(θ,p) is the hyperplane{x ∈ R
d; θ.x = p}, anddxH is the

Lebesgue measure on this hyperplane. WhenF ∈ L2
δ(R

d) := L2(Rd , eδ|x|2 dx), the second
hand of (1) is well defined. This follows from the Cauchy–Schwarz inequality∫

Sd−1

∫
R

∣∣RϕF(θ,p)
∣∣2eδp2

dp dθ � Cϕ

∫
Rd

∣∣F(x)
∣∣2eδ|x|2 dx,

with dθ the Lebesgue measure onSd−1 andCϕ < +∞ whenϕ ∈ Wδ .

Thus, forϕ ∈ Wδ , Rϕ : L2
δ(R

d) → L2
δ(S

d−1 × R) := L2(Sd−1 × R, dθ ⊗ eδp2
dp) is

a bounded operator. Moreover, sinceRϕF(θ,−p) = RϕF(−θ,p), we can restrict ou
study onL2

δ(S
d−1 × R

+). The choice of a radial window allows us to obtain the ro
tion invariance of the windowed Radon transform. Namely, for any rotationk ∈ O(d) and
F ∈ L2

δ(R
d), we have

RϕF(kθ,p) = (
Rϕ(F ◦ k)

)
(θ,p) for (θ,p) ∈ Sd−1 × R

+.

Using this property, we can decomposeL2
δ(R

d) into a Hilbertian sum of subspaces f
which the windowed Radon transform simplifies. We denote byL2(S) the Hilbert space
of square integrable functions on the sphere ofR

d . A spherical harmonic of degreel, for
l ∈ N, is the restriction toS of a homogeneous harmonic polynomial onR

d of degreel. As
in [1, p. 80], we writeHl (S) the space of such functions. ThenL2(S) is the Hilbertian sum
of the spacesHl (S), namely

L2(S) =
∞⊕
l=0

Hl (S).

We proceed as in [13] to obtain decompositions ofL2
δ(R

d) and L2
δ(S

d−1 × R
+) in

Hilbertian sums. We define

Hl,δ = Vect

(
f

(|x|)P(
x

)
, f ∈ L2(

R
+, rd−1eδr2

dr
)
, P ∈Hl (S)

)
⊂ L2

δ

(
R

d
)
,
|x|
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and, in a similar way,

H̃l,δ = Vect
(
f (p)P (θ), f ∈ L2(

R
+, eδr2

dr
)
, P ∈ Hl (S)

) ⊂ L2
δ

(
Sd−1 × R

+)
.

Using an orthonormal basis ofHl (S), we obtain the following result.

Proposition 2.1. For δ ∈ R we can write the Hilbertian decompositions

L2
δ

(
R

d
) =

∞⊕
l=0

Hl,δ and L2
δ

(
Sd−1 × R

+) =
∞⊕
l=0

H̃l,δ.

The rotation invariance of the windowed Radon transform implies thatRϕ mapsHl,δ

into H̃l,δ . Let us define, forf ∈ L2(R+, rd−1eδr2
dr),

Slf (p) =
+∞∫
p

f (u)ud−2ϕ
(
u2 − p2)C(d−2)/2

l

(
p

u

)(
1− p2

u2

)(d−3)/2

du,

where C
(n−2)/2
l is the Gegenbauer polynomial of degreel. Then, Sl maps L2(R+,

rd−1eδr2
dr) into L2(R+, eδr2

dr) and we can linkSl with Rϕ by the following propo-
sition [9].

Proposition 2.2. LetF(x) = f (|x|)P (x/|x|) be a function ofHl,δ . Then

RϕF(θ,p) = m(Sd−2)

C
(d−2)/2
l (1)

Slf (p)P (θ) ∈ H̃l,δ.

By Proposition 2.1, the windowed Radon transformRϕ is injective onL2
δ(R

d) if and

only if, for all l, the operatorSl is injective onL2(R+, rd−1eδr2
dr). However, it is more

convenient to consider the operators defined, forf ∈ L2(R+, r(d−2)/2eδr dr), by

Tlf (p) =
+∞∫
p

f (u)ϕ(u − p)C
(d−2)/2
l

(√
p

u

)
(u − p)(d−3)/2 du.

Then,Tl mapsL2(R+, r(d−2)/2eδr dr) into L2(R+, r−1/2eδr dr) andSl is injective on
L2(R+, rd−1eδr2

dr) if and only if Tl is injective onL2(R+, r(d−2)/2eδr dr).
Quinto [9] proved the injectivity ofRϕ on the class of square integrable functions w

compact support under the assumption that the windowϕ does not vanish. A careful rea
ing of his proof leads to the following result.

Theorem 2.1. Let δ ∈ R. Let ϕ ∈ Wδ be a window that does not vanish at0. Let F ∈
L2(Rd) such thatRϕF = 0. If F has compact support, thenF ≡ 0.
δ
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Proof. Let F ∈ L2
δ(R

d) be compactly supported in the ballB(0,M1/2) = {x ∈ Rd; |x| <

M1/2}. For l ∈ N, we choose(Ylm)1�N(l) an orthonormal basis ofHl (S). Then, the orthog
onal projection ofF ontoHl,δ is given by

PlF =
N(l)∑

1

flmYlm with flm(r) =
∫

Sd−1

F(rθ)Ylm(θ) dθ.

So each coordinateflm has also its support in[0,M1/2). We are reduced to prove th
injectivity of Tl on functionsf ∈ L2(R+, r(d−2)/2eδr dr) compactly supported in[0,M).
Let ε ∈ (0,M). By a change of variables, we write, fort ∈ (ε,M),

Tlf
(
t−1) =

t∫
1/M

Wl(s, t)s
−(d+2)/4f

(
s−1)(t − s)(d−3)/2 ds,

where

Wl(s, t) = s−d/4t−(d−3)/2ϕ

(
1

s
− 1

t

)
C

(d−2)/2
l

(√
s

t

)
.

Then, we are lead to study the following integral equation

g(t) =
t∫

1/M

f (s)Wl(s, t)(t − s)(d−3)/2 ds, (2)

whereg,f ∈ L2((1/M,1/ε)) andWl is a C∞ function on(1/M,∞)2, which does no
vanish on the diagonal. Existence and uniqueness results inL2 are known for Volterra
integral equations of the second kind [14, p. 10]. However, the kernel of the integral
form Wl(s, t)(t − s)(d−3)/2 can vanish along the diagonal according tod . Thus, T. Quinto
got rid off this difficulty by taking derivatives of (2). Let us recall that ifI = (1/M,1/ε),
the Sobolev spaceH 1(I ) is defined by

H 1(I ) =
{
u ∈ L2(I ); ∃v ∈ L2(I ) such that

∫
I

uψ ′ = −
∫
I

vψ, ∀ψ ∈ C1
c (I )

}
,

while, for m � 2, Hm(I) is defined by induction asHm(I) = {u ∈ Hm−1(I ); u′ ∈
Hm−1(I )}. Let us writen = (d − 3)/2 for d odd, n = d/2 − 1 for d even. We are in
terested in the case wheng = 0, so we assume thatg ∈ Hn+1((1/M,1/ε)). We taken

derivatives of (2),

g(n)(t) =
t∫

1/M

f (s)
∂n

∂tn

(
Wl(s, t)(t − s)(d−3)/2)ds. (3)

If d is odd, taking one more derivative, we get

g(n+1)(t) = (
n!t−(3d−6)/4C

(d−2)/2
(1)ϕ(0)

)
f (t)
l
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t∫

1/M

f (s)
∂n+1

∂tn+1

(
Wl(s, t)(t − s)n

)
ds,

which is a Volterra integral equation of the second kind, for which we have a unique
tion sinceϕ does not vanish at 0.

In the even case, we write

∂n

∂tn

(
Wl(s, t)(t − s)(d−3)/2) = Kl(s, t)(s − t)−1/2

such that

Kl(t, t) = (2n)!
22nn! t

−(3d−6)/4C
(d−2)/2
l (1)ϕ(0) �= 0.

Similar arguments as in the previous case allow us to show existence and uniquenes
solution of the generalized Abel integral equation (3) under the additional assumptio
g(n)(1/M) = 0 [9, Theorem B]. Hence, in all case, ifTlf ≡ 0, we get thatf ≡ 0 on(ε,M)

by uniqueness, for allε ∈ (0,M). This concludes the proof.�
We generalize this result to functions that do not have compact support, but de

rapidly at infinity. Again, we give injectivity result for the collection of operators(Tl)l∈N.
We will prove the following theorems.

Theorem 2.2. Let δ0 ∈ R, δ+
0 = max(δ0,0) andϕ ∈ Wδ0 with ϕ(0) �= 0. We assume thatϕ

and all its derivatives have at most an exponential growth,∣∣ϕ(k)(r)
∣∣ � Cke

δ+
0 r , (4)

for r � 0, wherek is an integer andCk a positive constant. Then, forl an integer, there
existsδ > δ+

0 (which depends onl) such thatTl is injective onL2(R+, eδr r(d−2)/2 dr).

Thus, the windowed Radon transform is injective considered on the intersection.

Theorem 2.3. Let δ0 ∈ R. Let ϕ ∈ Wδ0 be a window withϕ(0) �= 0. We assume thatϕ
satisfies(4). LetF ∈ L2

δ(R
d) for all δ � δ0. If RϕF = 0, thenF ≡ 0.

The first operatorT0 is related to the action of the windowed Radon transform on ra
functions. Before a careful study of this operator in Section 4, we consider the specia
of Gaussian functions in the next part. The last part deals with the injectivity ofTl in the
general case.

3. Gaussian functions

A natural generalization of the Radon transform is given by Gaussian windows
consider windows of the form

ϕδ (r) = eδ0r/2, with δ0 ∈ R,
0
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so thatϕδ0(r
2) is a Gaussian function whenδ0 < 0. Obviouslyϕδ0 ∈ Wδ , whenδ > δ0.

Let δ > δ0. Then, we can define the windowed Radon transform with the windowϕδ0 for
functions inL2

δ(R
d). Moreover, whenF ∈ L2

δ(R
d),

Rϕδ0
(F )(θ,p) = e−δ0p

2/2R
(
Feδ0|x|2/2)(θ,p),

whereR is the classical Radon transform. Then, using injectivity of the Radon trans
onL1(Rd), we can state the following theorem.

Theorem 3.1. Let δ0 ∈ R. Then the windowed Radon transformRϕδ0
is injective on

L2
δ(R

d), whenδ > δ0.

Let us remark that, with further smoothness assumptions, we can also extend tRϕδ0
the classical inversion formulas of the Radon transform.

On the other hand, Gaussian functions give counter-examples for injectivity as tes
tions. Letδ0 ∈ R andϕ ∈Wδ0. From above, the windowed Radon transform is injective

Hδ0,0 if and only if S0 is injective onL2(R+, rd−1eδ0r
2
dr). Since the Gegenbauer polyn

mial C(d−2)/2
0 is a constantc, we have a simpler expression ofS0. Let z ∈ C, after a change

of variables, we obtain the image of the functione−zr2
. For�(z) > δ0,

S0
(
e−zr2)

(p) = c

2
e−zp2

Φ(z), whereΦ(z) = 2

+∞∫
0

e−zr2
ϕ
(
r2)rd−2 dr

is the Laplace transform ofϕ(r)r(d−3)/2. Sinceϕ ∈ Wδ0, the abscissa of convergence
Φ is lower thanδ0. It is obvious that ifΦ has a zeroz0 on the half planeΠδ0, S0 is not

injective onL2(R+, rd−1eδr2
dr) for δ ∈ (δ0,�(z0)).

Let us remark that the Laplace transform ofϕδ0(r)r
(d−3)/2 is, for�(z) > δ0/2,Φδ0(z) =

Γ ((d − 1)/2)(z − δ0/2)−(d−1)/2. ThusΦδ0 does not vanish onΠδ , whereΠδ denotes the
half plane{z ∈ C;�(z) > δ}. The next section gives a kind of converse.

4. Injectivity for radial functions

Let δ0 ∈ R andϕ ∈ Wδ0 with ϕ(0) �= 0. We will prove Theorem 2.2 forl = 0. Under
the growth conditions (4) onϕ, we will find δ � δ+

0 such that, whenF ∈ L2
δ(R

d) is radial
andRϕF ≡ 0, thenF ≡ 0. Let us remark that the assumptionϕ(0) �= 0 is a natural one
when compared with Theorem 2.1. From above, we need a control on the zeros
holomorphic functionΦ. This is given in the next proposition.

Proposition 4.1. Let δ0 ∈ R andϕ ∈ Wδ0 with ϕ(0) �= 0. Under the assumption(4), there
existsδ1 > δ+

0 such thatΦ does not vanish inΠδ1.

Actually, the assumptions on the growth ofϕ and its derivatives allow us to give grow
results onΦ and its derivatives. We give here a stronger result that we will need later
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Lemma 4.1. Letϕ ∈ Wδ0 that satisfies(4). ThenΦ may be written as

Φ(z) = ϕ(0)Γ

(
d − 3

2
+ 1

)
z−(d−3)/2−1 + Ψ (z),

whereΨ is a holomorphic function onΠδ+
0

such that, whenδ > δ+
0 ,

∣∣Ψ (k)(z)
∣∣ � Ck|1+ z|−(d+1)/2−k, (5)

for z ∈ Πδ . Herek is an integer andCk is a positive constant(depending onδ).

Proof. We write ψ = ϕ − ϕ(0) and Ψ for the Laplace transform of the functio
ψ(t)t(d−3)/21t>0. Therefore, the abscissa of convergence ofΨ is lower thanδ+

0 . Then,
whenz ∈ C is such that�(z) > δ+

0 ,

Φ(z) = ϕ(0)Γ

(
d − 3

2
+ 1

)
z−(d−3)/2−1 + Ψ (z),

sinceΓ ((d − 3)/2+ 1)z−(d−3)/2−1 is the Laplace transform oft (d−3)/21t>0.
For δ > δ+

0 , we will prove thatΨ satisfies (5) for allz ∈ Πδ . In fact, if �(z) > δ+
0 ,

the functionψ(t)t(d−3)/2e−zt is integrable overR+. Thus,Ψ is holomorphic onΠδ+
0

.

Moreover, for allk ∈ N, the function(1 + z)(d+1)/2+kΨ (k)(z) has a polynomial growth
and we apply the Phragmen Lindelöf method (see, for instance, [11]). To obtain a un
upper bound over the domainΠδ , it is sufficient to obtain a uniform upper bound over t
line {δ + is; s ∈ R}, which follows from the next lemma.

Lemma 4.2. Let k ∈ N and λ ∈ (k − 1; k]. Let ψ be a function inCk+2((0,+∞)). We
assume there existsδ+

0 � 0 andC > 0 such that, for allj = 0, . . . , k + 2, for all t > 0,

∣∣ψ(j)(t)
∣∣ � Ctλ−j eδ+

0 t .

Then, for allδ > δ+
0 ,

+∞∫
0

e−(δ+is)tψ(t) dt = O|s|→+∞
(|s|−λ−1).

Proof. The scheme for proving such estimates is well known. We sketch the proo
completeness. We may assume thats > 1 and prove this lemma by induction onk ∈ N. We
write

∫ +∞
0 e−(δ+is)tψ(t) dt = ∫ 1/s

0 + ∫ +∞
1/s

. By assumptions onψ , we obtain the uppe
bound for the first term. For the second one, we use an integration by parts. Assum
on ψ are sufficient to conclude for one of the two terms. Whenk = 0, another integration
by part and the assumptions onψ ′ andψ ′′ give right upper bound for the integral on
Afterwards, we use the induction onψ ′, which satisfies the growth conditions fork − 1, to
conclude. �
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The assumptions onϕ show thattk+(d−3)/2ψ(t) satisfies the conditions of Lemma 4
with λ = k + (d − 1)/2. Thus we can find a positive constantCk such that, for alls ∈ R,∣∣∣∣∣(1+ (δ + is)

)(d+1)/2+k

+∞∫
0

e−(δ+is)t tk+(d−3)/2ψ(t) dt

∣∣∣∣∣ � Ck.

Finally, by the Phragmen Lindelöf method, we obtain the required upper bounds forΨ and
its derivatives. �

The proof of Proposition 4.1 follows. Sinceϕ(0) �= 0, one can find constantsC > 0 and
δ1 > δ+

0 such thatΦ does not vanish inΠδ1 since, forz ∈ Πδ1,∣∣Φ(z)
∣∣ � C|z|−(d−3)/2−1. (6)

Now we prove the injectivity ofT0. From Proposition 4.1, there existsδ1 > δ+
0 such

that Φ does not vanish in the half planeΠδ1. We will find δ > δ1 such thatT0 is in-
jective onL2(R+, eδr r(d−2)/2 dr), or equivalently, such that its adjointT ∗

0 has a dens
range inL2(R+, eδr r(d−2)/2 dr). Fora > 0, we writeL2

a(R
+, eδr r(d−2)/2 dr) (respectively

L2
a(R

+, eδr r−1/2 dr)) for the space of functions inL2(R+, eδr r(d−2)/2 dr) (respectively
L2(R+, eδr r−1/2 dr)) with support in(a,+∞). SinceT0 is injective on compactly sup
ported functions by Theorem 2.1, we only have to prove the following proposition.

Proposition 4.2. Under the assumptions of Theorem2.2, there existsδ > δ+
0 such that,

whena > 0, T ∗
0 (L2

a(R
+, eδr r−1/2 dr)) is dense inL2

a(R
+, eδr r(d−2)/2 dr).

Let us denote byC∞
c ((a,+∞)) the space of smooth functions with compact suppo

(a,+∞). SinceC∞
c ((a,+∞)) is dense inL2

a(R
+, eδr r(d−2)/2 dr), it is enough to prove

that, whenh ∈ C∞
c ((a,+∞)), there existsg ∈ L2

a(R
+, eδr r−1/2 dr) such that

h(u) = T ∗
0 (g)(u)

= cu−(d−2)/2e−δu

u∫
0

g(p)p−1/2eδpϕ(u − p)(u − p)(d−3)/2 dp. (7)

Then (7) is equivalent to the next convolution integral equation.

Proposition 4.3. Let ϕ ∈ Wδ0 be a window which satisfies(4), with ϕ(0) �= 0. Then, there
existsδ > δ+

0 such that, whena > 0 andh ∈ C∞
c ((a,+∞)), the equation

h(u) =
u∫

0

g(p)ϕ(u − p)(u − p)(d−3)/2 dp (8)

has a unique solutiong ∈ L2
a(R

+, e−δr r1/2 dr).

Proof. We assume thatg ∈ L2
a(R

+, e−δr r1/2 dr) satisfies (8). Taking the Laplace tran
form of (8) we have, forz ∈ C such that�(z) > δ, H(z) = G(z)Φ(z), whereH andG are
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the Laplace transforms ofh andg. Since the Laplace transform is injective, Eq. (8) h
at most one solution, which has support in(a,+∞). Sinceϕ satisfies the assumption (4
there existsδ1 > δ+

0 such thatΦ does not vanish inΠδ1. Thus, ifδ > δ1, for all z ∈ Πδ ,

G(z) = H(z)Φ(z)−1.

We will take the inverse Laplace transform of the above equation. From [5, p. 36]
sufficient to have holomorphic functions that decay faster than|z|−λ, with λ strictly greater
than 1. Sinceh is smooth, with compact support inR+, for all n ∈ N, H(z) = L(h)(z) =
z−nL(h(n))(z), with L(h(n)) holomorphic and bounded inΠδ1. Thus, from (6), one ca
find a positive constantC such that, for allz ∈ Πδ1,∣∣H(z)Φ(z)−1

∣∣ � C
∥∥L(

h(d)
)∥∥∞|z|−(d+1)/2.

Therefore, we can define, forb > δ1, the function

g(t) = 1

2π

∫
R

H(b + iu)

Φ(b + iu)
e(b+iu)t du.

Finally, whenδ > δ1, theng ∈ L2
a(R

+, e−δr r1/2 dr) and hasHΦ−1 for Laplace transform
in Πδ . The Laplace transform injectivity allows to conclude for the proof.�

Therefore, whenδ > δ1, Eq. (7) has a unique solution andT ∗
0 has a dense range

L2
a(R

+, eδr r(d−2)/2 dr). SinceT0 is injective on compactly supported functions, The
rem 2.2 is proved forl = 0.

5. General case

We give here similar injectivity results for the operators(Tl)l∈N and prove Theorem 2.2
Let δ0 ∈ R andϕ ∈ Wδ0 with ϕ(0) �= 0. We assume thatϕ satisfies (4). Forl ∈ N we will
find δ > δ+

0 (which depends onl) such thatTl is injective onL2(R+, eδr r(d−2)/2 dr).
We follow the scheme of the proof for the radial case. By Theorem 2.1, it is

sufficient to find δ > δ+
0 such that, if f ∈ L2(R+, eδr r(d−2)/2 dr) satisfiesTlf ≡ 0,

then f has compact support. Leta > 0. As previously, we will findδ > δ+
0 such that,

T ∗
l (L2

a(R
+, eδr r−1/2 dr)) is dense inL2

a(R
+, eδr r(d−2)/2 dr). Here,T ∗

l , the dual operato
of Tl , is given by

T ∗
l g(u)

= u−(d−2)/2e−δu

u∫
0

g(p)p−1/2eδpϕ(u − p)C
(d−2)/2
l

(√
p

u

)
(u − p)(d−3)/2 dp.

Thus, forh ∈ C∞
c ((a,+∞)), it is sufficient to findδ > δ+

0 such thath(u) = T ∗
l g(u), with

g ∈ L2
a(R

+, eδr r−1/2 dr). For l � 2 this is no more a convolution equation. Neverthel
we use the particular structure of the Gegenbauer polynomial. Ifl is odd (respectively
even),C(d−2)/2 is odd (respectively even). We sketch the proof in the even case (th
l
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case is similar). Let us assume thatl = 2n, n ∈ N∗, and writeC(d−2)/2
l (X) = ∑n

k=0 αkX
2k .

Whenh ∈ C∞
c ((a,+∞)), the functionun+(d−2)/2eδuh belongs also toC∞

c ((a,+∞)). As
in the radial case, we are reduced to prove the following result.

Proposition 5.1. Let h ∈ C∞
c ((a,+∞)). Let ϕ ∈ Wδ0 be a window that satisfies(4) with

ϕ(0) �= 0. Then, for(αk)0�k�n ∈ R
n+1 with

∑n
k=0 αk �= 0, there existsδ > δ+

0 such that
the equation

h(u) =
n∑

k=0

αku
n−k

u∫
0

pkg(p)ϕ(u − p)(u − p)(d−3)/2 dp (9)

has a unique solutiong ∈ L2
a(R

+, e−δr r1/2 dr).

Proof. Let us take the Laplace transform of both members of Eq. (9). With the fo
notations, sinceL(pkg) = (−1)kG(k), we obtain, for all�(z) > δ,

H(z) =
n∑

j=0

AjG
(j)(z)Φ(n−j)(z),

with Aj = (−1)n
∑j

k=0 αkC
j−k
n−k . From Proposition 4.1 we can chooseδ > δ+

0 such that,
for �(z) > δ, Φ(z) �= 0. SinceAn = (−1)n

∑n
k=0 αk �= 0,

G(n)(z) = H(z)

AnΦ(z)
−

n−1∑
j=0

AjG
(j)(z)

Φ(n−j)(z)

AnΦ(z)
. (10)

Thus, we are lead to solve a differential equation of ordern whose coefficients are holo
morphic functions. To come back to the initial problem we need a growth control o
solution. Such equations can be solved by taking the inverse Laplace transform (s
instance, [4]). Let us prove that the coefficients satisfy growth conditions that allow to
inverse Laplace transforms. We chooseδ1 > δ+

0 sufficiently large. Then, from Lemma 4.
for k ∈ {1, . . . , n}, one can findck �= 0 andΨk a holomorphic function onΠδ1 such that

Φ(k)(z)

Φ(z)
= ckz

−k + Ψk(z), with
∣∣Ψk(z)

∣∣ � Ck|z|−k−1.

Sincez−k = L( tk−1

(k−1)! )(z), we can define, for anyb > δ1, the function

ϕk(t) = −An−k

An

(
ckt

k−1

(k − 1)! + 1

2π

∫
R

Ψk(b + iu)e(b+iu)t du

)
.

Then, whenδ > δ1, ϕk ∈ L2(R+, e−δr dr), andϕk admits−An−kΦ
(k)

AnΦ
for Laplace trans

form in Πδ . Similarly, with the same arguments as in the radial case, there existsg0 ∈
L2

a(R
+, e−δr dr) with Laplace transformH(z)/AnΦ(z) in Πδ . We take the inverse Laplac

transform of Eq. (10) to obtain

(−1)ntng(t) = g0(t) +
n−1∑
j=0

(−1)j

t∫
sj g(s)ϕn−j (t − s) ds, (11)
0
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whereg0 andg have support in(a,+∞). For δ > 0 andn ∈ N∗, we writeL2
n,δ((a,+∞))

for functions inL2(R+, (1+ t)2n−2e−δt ) with support in(a,+∞). Forg ∈ L2
n,δ((a,+∞)),

let us define onR+,

N (g)(t) =
{∑n−1

j=0(−1)j+nt−n
∫ t

0 sj g(s)ϕn−j (t − s) ds if t � a,

0 else.

Lemma 5.1. There existsδ2 > δ1 such that, for allδ � δ2, the operator

N : L2
n,δ

(
(a,+∞)

) → L2
n,δ

(
(a,+∞)

)
has norm strictly smaller than1.

Proof. Let δ > δ1 andδ′ ∈ (δ1, δ). By the Cauchy–Schwarz inequality,

+∞∫
a

t−2n

( t∫
0

sj g(s)ϕn−j (t − s) ds

)2

(1+ t)2n−2e−δt dt

� a−2nC(ϕn−j , δ)

t∫
a

g(s)2(1+ s)2n−2e−δs ds,

where

C(ϕn−j , δ) =
( +∞∫

0

∣∣ϕn−j (u)
∣∣e−(δ/2)u du

)2

� 1

δ − δ′

+∞∫
0

ϕn−j (u)2e−δ′u du.

Thus, sinceϕn−j ∈ L2(R+, e−δ′r dr), N (L2
n,δ((a,+∞))) ⊂ L2

n,δ((a,+∞)) and one can
find Cn,a > 0 such that

‖N‖ � Cn,a

δ − δ′ .

Then it is sufficient to chooseδ2 > δ′ + Cn,a such thatN has norm strictly smalle
than 1. �

Therefore, whenδ > δ2, Eq. (11) has a unique solutiong in L2
n,δ2

((a,+∞)) ⊂
L2

a(R
+, e−δr r1/2 dr). Moreover, by taking Laplace transform of (11), the Laplace tra

form of g satisfies Eq. (10) andg is the unique solution of Eq. (9).�
Finally, T ∗

l (L2
a(R

+, eδr r−1/2 dr)) is dense inL2
a(R

+, eδr r(d−2)/2 dr) and Theorem 2.2
is proved.

Final remark. Let us mention that this study leads to a natural problem of complex a
sis. We have given sufficient conditions on the windowϕ such thatRϕ is injective on⋂

δ>δ0
L2

δ(R
d). More precisely, under these assumptions, we have found, for eachl, an

abscissaδ(l) > δ0 such thatTl is injective onL2(R+, eδ(l)r r(d−2)/2 dr). We would like to
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find necessary and sufficient conditions on the windowϕ for injectivity of Rϕ on L2
δ(R

d)

for a fixedδ > δ0. The radial case emphasizes the necessary condition thatΦ, the Laplace
transform ofϕ, must have no zero onΠδ (a condition which cannot be written easily
ϕ itself). Thus, one may consider this problem on the Laplace transform domain,
complex analysis methods. When considering the Laplace transform, it is natural to
first with Hardy spacesH 2 andH∞ of the half-plane{z ∈ C; �(z) > 0}. We can state
the following characterization which relies on the theory of outer functions and inva
subspaces (see, for instance, [7]).

Proposition 5.2. Letd = 2 andϕ ∈ Wδ0. Then, forδ > δ0, T0 is injective onL2(R+, eδr dr)

if and only ifΦ(z) �= 0 for all z ∈ {z ∈ C; �(z) � δ/2}, where

Φ(z) = L
(
ϕt−1/2)(z) =

+∞∫
0

e−ztϕ(t)t−1/2 dt.

Proof. We have already seen thatT0 is injective on L2(R+, eδr dr) if and only if
T ∗

0 has a dense range inL2(R+, eδr dr). SinceL2(R+) ∩ L2(R+, r1/2 dr) is dense in
L2(R+, r1/2 dr) andL2(R+, dr), T ∗

0 has a dense range inL2(R+, eδr dr) if and only if

{ u∫
0

g(p)ϕ(u − p)(u − p)(d−3)/2e−(δ(u−p))/2 dp; g ∈ L2(
R

+)}

is dense inL2(
R

+)
. (12)

By Laplace transform we have a correspondence betweenL2(R+) and H 2, the Hardy
space of the half-plane{z ∈ C; �(z) > 0}. Actually, the Paley–Wiener theorem [7, p. 13
states thatg ∈ L2(R+) if and only if its Laplace transform belongs toH 2. Sinceϕ ∈ Wδ0,
with δ0 < δ, τδ/2Φ(z) := Φ(z + δ/2) ∈ H∞. Then (12) holds if and only if{

τδ/2ΦG; G ∈ H 2} is dense inH 2.

By the Lax theorem [7, p. 107] this holds if and only ifτδ/2Φ is an outer function ofH∞.
But, sinceτδ/2Φ is continuous on the imaginary axis, it is an outer function ofH∞ if and
only if τδ/2Φ(z) �= 0 for all z ∈ {z ∈ C; �(z) � 0}. �

We do not know whether the injectivity holds forRϕ under the assumptions of Propo
tion 5.2. An easy modification of the proof above has allowed us to prove the injectiv
T1, T2 andT3 onL2(R+, eδr dr).
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