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Abstract

We consider rotation invariant windowed Radon transforms that integrate a function over hy-
perplanes by using a radial weight (called window). T. Quinto proved their injectivity for square
integrable functions of compact support. This cannot be extended in general. Actually, when the
Laplace transform of the window has a zero with positive realfahte windowed Radon transform
is not injective on functions with a Gaussian decay at infinity, dependirdy Nevertheless, we give
conditions on the window that imply injectivity of the windowed Radon transform on functions with
a more rapid decay than any Gaussian function.
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1. Introduction

With the classical Radon transform, one integrates a function over hyperplanes. The
Radon transform has developed very rapidly in the early 1970s, with a lot of applications
in medicine, optics, physics and other areas. Itis well known that one can recover a function
from its integrals along all hyperplanes, that is, the Radon transform is injective (see, for
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example, [6,10]). It is no more the case when the Radon transform is replaced by a more
realistic generalization, basically when one integrates with respect to different weights on
the hyperplanes. Here we consider a weight that does not depend on the hyperplane.

Our starting point has been the work of Bonami and Estrade [3], in relation with the
engineering department of the university of Orléans [8], on image processing related to
bones radiographs. They model such radiographs by a Gaussian random field with sta-
tionary increments, characterized by a functincalled spectral density. They choose a
convenient windowy)s (smooth and rapidly decreasing for instance), and perform a win-
dowed Radon transform of the radiographs. Then, for each dire¢tos?, they obtain
a Gaussian random process with stationary increments and spectral @ﬁif}?(@, ).

Thus, a natural question is the following: for which windows does one have injectivity?
Sincey and its Fourier transform are used as windows, the choice of a Gaussian window
is natural. However we are interested in more general windows. Compared with the Radon
transform, the main difficulty is the loss of translation invariance for the windowed Radon
transform. One can force rotation invariance by choosing a radial window, which we do
here. The question of injectivity (in law) is then given by the injectivity of the windowed
Radon transform for spectral densities, which satisfy adapted integrability conditions at
infinity. Let us recall that their asymptotic behaviour in power law is of particular interest
since it gives the Hélder exponent for the corresponding field [3].

For such radial windows, Quinto [9] gave an injectivity result for square integrable func-
tions with compact support. In the literature, injectivity for generalized Radon transforms
is only studied for compactly supported functions (for instance, in the case of attenuated
Radon transforms in the so-called Emission Tomography [2,12]There are two main
reasons for this. On one hand, in general, such transforms appear in experiments and imply
real objects, which have compact support. On the other hand, there is a mathematical ob-
struction for injectivity in a general setting. Actually, one can find windows for which the
windowed Radon transform is not injective on square integrable functions with a Gaussian
decay at infinity. Here, we proceed further with counter-examples. We state conditions
on radial windows which guarantee the injectivity of the windowed Radon transform on
square integrable functions that decrease faster than any Gaussian function. The rotation in-
variance allows us to restrict to a collection of operators definet?gR+, pd=1p80r2 dr),
with 3o € R depending on the integrability of the window. For each one, we SiDd(Sg
such that it is injective om2(R+, r?=1e57% dr), wheres] := max(so, 0).

The paper is organized as follows. In Section 2, we define the windowed Radon trans-
form and recall Quinto’s proof for injectivity results, which allows us to weaken his
conditions on the windows. We emphasize in Section 3 the role of Gaussian functions.
On one hand, they are examples of windows for which there is injectivity. On the other
hand, they give counter-examples for injectivity, as test functions. In Section 4, we con-
sider the special case of radial functions. This case is simpler since the windowed Radon
transform can be reduced to an integral convolution operator. The general case is studied
in Section 5. By Laplace transform we obtain an ordinary differential equation with holo-
morphic coefficients. Using the inverse Laplace transform, we can reduce to an application
of the fixed point theorem. In a final remark, we mention that this injectivity question gives
rise to an open problem on outer functions in the complex plane.
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2. Definition and preliminary results

Let us first define thevindowed Radon transformnder consideration. We fix the di-
mensiond > 2, as well as thavindowg, which is assumed to be a smooth functionkn
such that, fol € R,

+00
/ (p(r)zr(d_s)/ze_‘s’ dr < 0o.
0

We callW; the class of such windows. We define the windowed Radon transform (with
the windowyg), for 6 € S~ andp € R, by

RyF(6, p) = / Foe(lx — pb[2) dxa, &)
xeH@,p)

when this make sense. Heté(6, p) is the hyperplangx € RY; 6.x = p}, anddxy is the

Lebesgue measure on this hyperplane. WRenL2(R¢) := L2(R?, S dx), the second
hand of (1) is well defined. This follows from the Cauchy—Schwarz inequality

//|R@F(0’p)|268p2dpd9<wa‘F(x)|2e5‘x|2dx,
§i-1R Rd

with d6 the Lebesgue measure 8fi-1 andC,, < +o0o wheng € Ws.

Thus, forg € Wy, R, : L2RY) — LZ(8971 x R) := L2($91 x R, d0 ® ¢** dp) is
a bounded operator. Moreover, sin@gF (0, —p) = R,F(—6, p), we can restrict our
study onLaz(S”l—1 x R1). The choice of a radial window allows us to obtain the rota-
tion invariance of the windowed Radon transform. Namely, for any rotatior0 (d) and
F € L3(R%), we have

RyF(k8, p) = (Ry(F 0 k)) (8, p) for (8, p) € 971 x RT.

Using this property, we can decompoB%(Rd) into a Hilbertian sum of subspaces for
which the windowed Radon transform simplifies. We denote.B¢S) the Hilbert space
of square integrable functions on the spher@®6f A spherical harmonic of degrdefor

I e N, is the restriction t of a homogeneous harmonic polynomialf of degred. As

in [1, p. 80], we writeH; (S) the space of such functions. TheA(S) is the Hilbertian sum
of the spaceg{;(S), namely

L%(S) = P Hi(S).

1=0
We proceed as in [13] to obtain decompositionsIgiR¢) and L2(S?~1 x R*) in
Hilbertian sums. We define

M5 = Vect(f(|x|)P<|x—|), feLld(RY, ri-te gr), Pe H,(S)) c L2(RY),
X
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and, in a similar way,
.5 =Vect(f(p)P(©O), feLARY, e dr), PeH(S)) C L3(s91 x RY).

Using an orthonormal basis &f;(S), we obtain the following result.

Proposition 2.1. For § € R we can write the Hilbertian decompositions

00 o
Lg(]Rd) = @'Hw and L(;Z(Sd_l X R+) = @7‘21,5.
=0 =0

The rotation invariance of the windowed Radon transform implies RyamapsH; s
into 74, 5. Let us define, forf € L2R+, rd—1e% dr),

oo 2\ (d-3)/2
Sif(p) = / f(u)ud—zw(uz—pz)q("2>/2(§) (1— ”—2> du,
p

u

where Cl(”_z)/2 is the Gegenbauer polynomial of degreeThen, S; maps L2(R™,

rd=1e5 dry into L2(R*, ¥ dr) and we can links; with R, by the following propo-
sition [9].

Proposition 2.2. Let F(x) = f(|x|) P(x/|x]) be a function of,; 5. Then

m(sd—Z)

R,F(O,p)=— "
¢ cU-272

Sif(p)P(®) € Hys.

By Proposition 2.1, the windowed Radon transfoRp is injective onLg(]Rd) if and

only if, for all 7, the operatos; is injective onL2(R+, r¢=1¢%" dr). However, it is more
convenient to consider the operators defined ffar L2(R*, r(¢=2/2¢% gr), by

+00
Tif(p)= f fepu— p)c,(d‘2>/2<\/§)(u _ )32,
p

Then,T; mapsL2(RT, r@=2/2¢5 dr) into L2(RT, r—1/2¢% dr) and S is injective on
L2(R*, r4=1e%% gry if and only if 7y is injective onL2(R*, r@=2/2¢9" gr).

Quinto [9] proved the injectivity oR,, on the class of square integrable functions with
compact support under the assumption that the winda@es not vanish. A careful read-
ing of his proof leads to the following result.

Theorem 2.1. Let § € R. Let ¢ € W;s be a window that does not vanish @tLet F €
L2(RY) such thatR, F = 0. If F has compact support, then= 0.
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Proof. Let F e L2(R?) be compactly supported in the b#l0, MY/?) = {x e RY; |x| <
M*Y/?}. Forl e N, we chooséY;,,)1< v an orthonormal basis 6{;(S). Then, the orthog-
onal projection ofF onto™; s is given by

N()
PIF =Y fin¥in Wth fin(r) = / F(r6)Y;n(6) do.
1

§d—1

So each coordinatg;,, has also its support if0, M¥/2). We are reduced to prove the
injectivity of 7; on functionsf € L2(R*, r4=2/2¢%" dr) compactly supported if0, M).
Lete € (0, M). By a change of variables, we write, foe (¢, M),

t
nee) = / Wi(s, 1)s~ @28 £ (571 (2 — 5)4=3/2 g,
1M

where

1 1 -
Wi(s, 1) =s_d/4t_(d_3)/2§0<; - ;) z(d 2)/2(\/5).

Then, we are lead to study the following integral equation

t
s = [ F&WG.00 -0 s @
M
whereg, f € L2((1/M, 1/€)) and W; is aC®™ function on(1/M, c0)?, which does not
vanish on the diagonal. Existence and uniqueness resultg @re known for Volterra
integral equations of the second kind [14, p. 10]. However, the kernel of the integral trans-
form W; (s, 1)(t — s)¢~3/2 can vanish along the diagonal according/tdrhus, T. Quinto
got rid off this difficulty by taking derivatives of (2). Let us recall thatlit= (1/M, 1/¢),
the Sobolev spacH(1) is defined by

HYI) = {u € L?(I); v e L3(I) such that/ uy' =— f vy, Yy € c}(l)},
1 1

while, for m > 2, H™(I) is defined by induction asi”(I) = {u € H" 1(I); u’ €
H™Y(I)}. Let us writen = (d — 3)/2 for d odd,n = d/2 — 1 for d even. We are in-
terested in the case when=0, so we assume thate H"*1((1/M, 1/¢)). We taken
derivatives of (2),

t
g = / f(s)a%(Wz(s, 0t — )42 gs. 3)
1M

If d is odd, taking one more derivative, we get

g (1) = (n= OB 2 (1) (0) £ (1)
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8n+l

t
+ / F) oz (Wils, 1)t — )" s,

3tn+l
/M

which is a Volterra integral equation of the second kind, for which we have a unique solu-
tion sincep does not vanish at 0.
In the even case, we write

n

%ﬂm@ﬁ@-ﬂ*”ﬂ:m@ﬁ@—o4ﬂ

such that
2n)! _ o, _

Similar arguments as in the previous case allow us to show existence and uniqueness of the
solution of the generalized Abel integral equation (3) under the additional assumption that
g™ (1/M) =019, Theorem B]. Hence, in all case/lif f = 0, we get thaif = 0 on(e, M)

by uniqueness, for all € (0, M). This concludes the proof.O

We generalize this result to functions that do not have compact support, but decrease
rapidly at infinity. Again, we give injectivity result for the collection of operat¢rs);en.
We will prove the following theorems.

Theorem 2.2. Let§p € R, (Sg = max(do, 0) andg € W, with ¢(0) # 0. We assume that
and all its derivatives have at most an exponential growth,

.
9™ ()] < Cre”, )

for r > 0, wherek is an integer andC;, a positive constant. Then, féran integer, there

existss > 84 (which depends oh such thatf; is injective onL2(R*, e r@=2/2gr).

Thus, the windowed Radon transform is injective considered on the intersection.

Theorem 2.3. Let §p € R. Letp € Wj, be a window withp(0) # 0. We assume that
satisfieg4). Let F € L2(R?) for all § > 8. If R,F =0, thenF = 0.

The first operatofy is related to the action of the windowed Radon transform on radial
functions. Before a careful study of this operator in Section 4, we consider the special case
of Gaussian functions in the next part. The last part deals with the injectivity iof the
general case.

3. Gaussian functions

A natural generalization of the Radon transform is given by Gaussian windows. We
consider windows of the form

s, (r) = €%/, with §g € R,
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SO thatgo,go(rz) is a Gaussian function whefy < 0. Obviouslygs, € W5, whens > o.
Let § > 8¢. Then, we can define the windowed Radon transform with the wingigvior
functions inL2(R?). Moreover, whenF € L2(R?),

Ry (F)®, p) = &0 I2R(F o 12) (9, p),

whereR is the classical Radon transform. Then, using injectivity of the Radon transform
on L1(R4), we can state the following theorem.

Theorem 3.1. Let §o € R. Then the windowed Radon transform)(SO is injective on
L2(R%), whens > .

Let us remark that, with further smoothness assumptions, we can also ext&pd to
the classical inversion formulas of the Radon transform.

On the other hand, Gaussian functions give counter-examples for injectivity as test func-
tions. Letsp € R andg € Wj,. From above, the windowed Radon transform is injective on

Hs,.0 if and only if Sp is injective onL2(R+, r?~1¢%"* 4r). Since the Gegenbauer polyno-

mial Céd_z)/z is a constant, we have a simpler expression$y. Letz € C, after a change

of variables, we obtain the image of the functieri”’. Forf(z) > do,
+00
—zr? C _zp? —zr2 2\..d-2
So(e )(p):Ee P P(z), whered(z)=2 | e * <p(r )r dr
0
is the Laplace transform af(r)r“=3/2. Sincep € Ws,, the abscissa of convergence of
@ is lower thandp. It is obvious that if¢ has a zergo on the half plandTs,, So is not
injective onL2(R*, r4=1e5 dr) for 8 € (80, R (z0)).
Let us remark that the Laplace transformpgf(r)r@=3/2 s, for\(z) > 80/2, @s,(z) =

r'(d—1)/2)(z — 80/2)~@~V/2, Thus®s, does not vanish ofils, wherelTs denotes the
half plane{z € C; R(z) > §}. The next section gives a kind of converse.

4. Injectivity for radial functions

Let 8o € R andg € Ws, with ¢(0) # 0. We will prove Theorem 2.2 far=0. Under
the growth conditions (4) o, we will find § > 8§ such that, wherF € L2(R¢) is radial
andR,F =0, thenF = 0. Let us remark that the assumptip0) # O is a natural one
when compared with Theorem 2.1. From above, we need a control on the zeros of the
holomorphic function®. This is given in the next proposition.

Proposition 4.1. Letdg € R and ¢ € Wi, with ¢(0) # 0. Under the assumptiofd), there
existss1 > §§ such that® does not vanish iiT;, .

Actually, the assumptions on the growthgfnd its derivatives allow us to give growth
results on® and its derivatives. We give here a stronger result that we will need later.
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Lemma4.l. Letp € Wj, that satisfieg4). Then® may be written as
d—3 —(d-3)/2-1
D) =eOI T+1 z + ¥ (2),
wherey is a holomorphic function o+ such that, whea > 8,

(W ® (2)] < Cy|L+ z|~@HD/Zk, (5)

for z € ITs. Herek is an integer and’y is a positive constantdepending o).

Proof. We write v = ¢ — ¢(0) and ¥ for the Laplace transform of the function
¥ (1)t @=3/21,_ . Therefore, the abscissa of convergencerofs lower thansd . Then,
whenz e C is such thabi(z) > &,

?(z) = ¢(0>F<d7_3 + 1>z<d3>/“ +¥(2),

sincel" ((d — 3)/2 + 1)z~@=3/2-1 s the Laplace transform of¢—3/21,_,,.

For § > 84, we will prove thaty satisfies (5) for alk € IT;. In fact, if 9i(z) > 57,
the functiony (1)r@=3/2¢=% is integrable oveiR*. Thus, ¥ is holomorphic onfTy:.
Moreover, for allk € N, the function(1 + z)@+D/2+ky ®)(z) has a polynomial growth,
and we apply the Phragmen Lindel6f method (see, for instance, [11]). To obtain a uniform
upper bound over the domailts, it is sufficient to obtain a uniform upper bound over the
line {8 +is; s € R}, which follows from the next lemma.

Lemma 4.2. Letk e N and A € (k — 1; k]. Let ¢ be a function inC**2((0, +00)). We
assume there exist§ > 0andC > Osuch that, forallj =0,...,k+2, forall r > 0,

[y )| < crrieler,

Then, for all§ > 7,

+00
/ e_((S—HS)tw(t) dt = O|S|—>+OO(|S|_)L_1)-
0

Proof. The scheme for proving such estimates is well known. We sketch the proof for
completeness. We may assume that1 and prove this lemma by induction ére N. We

write [F* e~ G+t 1y dr =[5 + /15" - By assumptions ony, we obtain the upper
bound for the first term. For the second one, we use an integration by parts. Assumptions
on v are sufficient to conclude for one of the two terms. Whken 0, another integration

by part and the assumptions gri and " give right upper bound for the integral one.
Afterwards, we use the induction @, which satisfies the growth conditions for- 1, to
conclude. O
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The assumptions op show thatr+(@=3/2, (1) satisfies the conditions of Lemma 4.2,
with A =k + (d — 1)/2. Thus we can find a positive constant such that, for alk € R,

+00
(1+(8+ls))(d+l)/2+k / e—(5+i5)ttk+(d—3)/2w(t)dt gck
0

Finally, by the Phragmen Lindel6f method, we obtain the required upper boundsegod
its derivatives. O

The proof of Proposition 4.1 follows. Singg&0) # 0, one can find constané> 0 and
81 > 8¢ such thatd does not vanish i, since, forz € IT5,,

()| = Clz|~ @372, (6)

Now we prove the injectivity ofTo. From Proposition 4.1, there exisés > Sar such
that @ does not vanish in the half plands,. We will find § > §; such thatTjy is in-
jective onL2(R*, ¥ r@=2/24r), or equivalently, such that its adjoirlty has a dense
range inL?(R*, ¢ r@=2/2 gr). Fora > 0, we writeL2(R*, %" r@=2/2 4r) (respectively
L2(RT, e r~1Y2dr)) for the space of functions in?(R*, ¥ r@=2/2 4r) (respectively
L%(RT, &% r=12 4r)) with support in(a, +00). SinceTy is injective on compactly sup-
ported functions by Theorem 2.1, we only have to prove the following proposition.

Proposition 4.2. Under the assumptions of Theoré?, there exists} > 8;{ such that,
whena > 0, T3 (L2(RT, &% r~Y/2dr)) is dense inL2(RT, ¥ r(@=2/24r).

Let us denote b¢2°((a, +00)) the space of smooth functions with compact support in
(a, +00). SinceC((a, +00)) is dense inL2 (R, ¢ r@=2/24r), it is enough to prove
that, wher: € C°((a, +00)), there existg € L2(R*, ¥ r~1/2 dr) such that

h(u) = Tg (8) ()

u

= cu (17220 / g(p)p~ 2P — py(u — p)=32dp. (7)
0
Then (7) is equivalent to the next convolution integral equation.

Proposition 4.3. Letp € W, be a window which satisfi€d), with ¢(0) # 0. Then, there
existss > 83 such that, whea > 0 andh € C°((a, +00)), the equation

u
hu) = / (P — p)u — p)a=324p (8)
0
has a unique solutiog € L2(R*, e~ r1/2 dr).

Proof. We assume thag € L2(RT, e~ r1/?dr) satisfies (8). Taking the Laplace trans-
form of (8) we have, for € C such thati(z) > 3, H(z) = G(2)®(z), whereH andG are
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the Laplace transforms df and g. Since the Laplace transform is injective, Eq. (8) has
at most one solution, which has supporiin +o0). Sincey satisfies the assumption (4),
there exist$, > 85“ such thap does not vanish itils,. Thus, if§ > 81, for all z € ITs,

G =H@®(@) ™
We will take the inverse Laplace transform of the above equation. From [5, p. 36], it is
sufficient to have holomorphic functions that decay faster thiart, with A strictly greater
than 1. Since: is smooth, with compact support &*, foralln e N, H(z) = L(h)(z) =

27 "L(h™)(z), with £(h™) holomorphic and bounded ifis,. Thus, from (6), one can
find a positive constar@ such that, for alt € I15,,

|H@)® @) < C|| L D)zl @HD72,

Therefore, we can define, fér> §1, the function

1 [ HO+iu) g
H=— | ——— du.
8O=2 ] so+m® !
R
Finally, whens > 81, theng € L2(R*, e~ r1/2dr) and hasd @~ for Laplace transform

in ITs. The Laplace transform injectivity allows to conclude for the proafi

Therefore, whers > 81, Eq. (7) has a unique solution arff has a dense range in
L2(RT, % r@=2/24r). Since Ty is injective on compactly supported functions, Theo-
rem 2.2 is proved fof = 0.

5. General case

We give here similar injectivity results for the operat¢fs);cy and prove Theorem 2.2.
Let §p € R andg € Ws, with ¢(0) # 0. We assume that satisfies (4). Fot ¢ N we will
find 8 > 84 (which depends of) such thatf; is injective onL?(R™, ¥ r@=2/24r).

We follow the scheme of the proof for the radial case. By Theorem 2.1, it is still
sufficient to find§ > 84 such that, if f € L2R*, e r@=2/24r) satisfies7; f =0,
then f has compact support. Let> 0. As previously, we will finds > 8:{ such that,
TF(L2(RT, &% r~Y24dr)) is dense inL2(R*, &7 r@=2/24r). Here, T}*, the dual operator
of T;, is given by

T g(u)

u
—(d— — — d—2)/2 P —
=u~ @Az / g(Pp 2o — p)c (\/;)w—p)(d 92 dp.
0

Thus, forh € C°((a, +00)), it is sufficient to finds > 8{{ such thati(u) = T,*g(u), with
g € L2(R*, e r~Y/2dr). Forl > 2 this is no more a convolution equation. Nevertheless
we use the particular structure of the Gegenbauer polynomialisifodd (respectively

even),C,(d*z)/2 is odd (respectively even). We sketch the proof in the even case (the odd



H. Biermé / J. Math. Anal. Appl. 316 (2006) 383—-396 393

case is similar). Let us assume that 2n, n € N*, and WriteC,(‘l_z)/Z(X) =30 o X%
Whenh € C((a, +00)), the functionu”+@¢=2/2.5, pelongs also t€° ((a, +00)). As
in the radial case, we are reduced to prove the following result.

Proposition 5.1. Leth € C2°((a, +00)). Letyp € W, be a window that satisfig@) with
@(0) # 0. Then, for(ax)ock<n € R with 3}_gax # 0, there existss > 83 such that
the equation

u

h(w) =" apu"* / Pre(pyp — p)u — p)“=>"2dp ©)

has a unique solutiog € L2(R*, e =% r¥/?dr).

Proof. Let us take the Laplace transform of both members of Eq. (9). With the former
notations, sinc&(p¥g) = (—1)*G®, we obtain, for albi(z) > 8,

H@) =) A6V 0" (),
j=0

with A; = (=1)" ZI{:OOU‘C/{:I]:' From Proposition 4.1 we can choose- §; such that,
for M(z) > 8, @(z) £ 0. SinceA,, =(=D" Y oo #0,

(n) . H(Z) ) (n ])(Z)
=100 ZA O 4,00 4o

Thus, we are lead to solve a differential equation of ordarhose coefficients are holo-
morphic functions. To come back to the initial problem we need a growth control of the
solution. Such equations can be solved by taking the inverse Laplace transform (see, for
instance, [4]). Let us prove that the coefficients satisfy growth conditions that allow to take
inverse Laplace transforms. We chodse- 8;{ sufficiently large. Then, from Lemma 4.1,

fork € {1,...,n}, one can find; # 0 and¥; a holomorphic function o7, such that

q;(k)(z)
D(z)

=z ¥ H W), with |¥(2)| < Crlzl L

Sincez % = E((k 1)v)(Z) we can define, for any > §1, the function

An_k thk 1 / ) boti
H=-— — | o GF gy ).
@k (1) A, <(k—1)!+2n (b +iu)e u

Then, whens > 81, ¢x € L3R, e dr), andg; admits— i for Laplace trans-
form in I7;. Similarly, with the same arguments as in the rad|al case, there exists
Lg(}Rﬂ —% dr) with Laplace transfornt (z) /A, ® (z) in ITs. We take the inverse Laplace
transform of Eq. (10) to obtain

n—1 !
(=D)""g(1) = go(t) + Y (1)’ / 5T 8()pn—j(t —s)ds, 11)

Jj=0 0
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wherego andg have support iffa, +00). Foré > 0 andn € N*, we WriteL,ZL’a((a, +00))
for functions inLA(R*, (1+1)2"~2¢~%") with supportin(a, +o0). Forg € L2 ((a, +00)),
let us define oR T,

N(g)®) = { YD i sig()gu- it —s)ds if1>a,
0 else

Lemma5.1. There exists, > §; such that, for alls > &, the operator
N: L,%’(;((a, +00)) — Lﬁ’a((a, +00))

has norm strictly smaller that.

Proof. Lets > 81 and§’ € (81, 8). By the Cauchy—Schwarz inequality,

+00 t

2
/ tz"(/.sjg(s)gon_j(t —5) ds) A+0)% 2 ar

a 0
t
<a ' Clpn-j,9) / 8’1+ 9% 2 " ds,
a

where
+00

+00 2 1
Clpn-j,0) = < / “Pn*j(u)ye_(a/z)u du) < PR / §0n7j(u)26_8/” du.
0

0

Thus, sincep,—; € L2R*, e dr), N (L2 ;((a, +00))) C L2 (((a,+00)) and one can
find C,, , > 0 such that

Cn,a

§—48"

Then it is sufficient to choosé, > §' + C,, such that\ has norm strictly smaller
than 1. O

INI <

Therefore, whens > 82, Eq. (11) has a unique solutiog in Lﬁ,az((a,Jroo)) -

L2(R*, e~ rY/24dr). Moreover, by taking Laplace transform of (11), the Laplace trans-
form of g satisfies Eq. (10) anglis the unique solution of Eq. (9).O

Finally, 7, (L2(R™, % r=Y/2dr)) is dense inL2(R™, ¥ r@=2/2 4r) and Theorem 2.2
is proved.

Final remark. Let us mention that this study leads to a natural problem of complex analy-
sis. We have given sufficient conditions on the windgwsuch thatR, is injective on
ﬂ5>50 Lg(Rd). More precisely, under these assumptions, we have found, forieach

abscissa (/) > 8¢ such thatl} is injective onL?(R™, 37 r@=2/2 gy We would like to
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find necessary and sufficient conditions on the wingofer injectivity of R, on LSZ(IRd)

for a fixeds > 8p. The radial case emphasizes the necessary conditiotttae Laplace
transform ofp, must have no zero ofis (a condition which cannot be written easily on

¢ itself). Thus, one may consider this problem on the Laplace transform domain, using
complex analysis methods. When considering the Laplace transform, it is natural to work
first with Hardy space$/? and H> of the half-plane{z € C; %(z) > 0}. We can state

the following characterization which relies on the theory of outer functions and invariant
subspaces (see, for instance, [7]).

Proposition 5.2. Letd = 2andg € Wjs,. Then, ford > 8g, To is injective onL2(RT, % dr)
if and only if@(z) #0for all z € {z € C; N (z) > §/2}, where

+00
D(z) = ﬁ((pt_l/z)(z) = / e o) Y?dr.
0

Proof. We have already seen thdp is injective on L2(R*,e% dr) if and only if
T¢ has a dense range ib?(R™, ¥ dr). Since L2R*) N L2(RT, rY24dr) is dense in
L2(R*, rY/2dry andL2(R*, dr), T has a dense range IF(R*, ¢ dr) if and only if

{ / g(P)ou — p)(u — p) 22 4p; g L2(R+)}
0
is dense inL?(R™T). (12)

By Laplace transform we have a correspondence betwigg¢R ") and H?, the Hardy
space of the half-plang € C; 9%(z) > 0}. Actually, the Paley—Wiener theorem [7, p. 131]
states thag € L?(R*) if and only if its Laplace transform belongs . Sincey e Wsos
with 8g < 8, 15/2@ (2) := @ (z + 6/2) € H*. Then (12) holds if and only if

{15/2®0G; G € H?} is dense inH?.

By the Lax theorem [7, p. 107] this holds if and onlyrif>® is an outer function o7 *°.
But, sincers»@ is continuous on the imaginary axis, it is an outer functio6¥f if and
only if zsp@(z) #O0forallze {zeC; R(z) 20}. O

We do not know whether the injectivity holds f&, under the assumptions of Proposi-
tion 5.2. An easy modification of the proof above has allowed us to prove the injectivity of
T1, T>» andT3 on L2(R™, €% dr).
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