ON THE CONJUGACY OF INJECTORS IN LOCALLY FINITE GROUPS

OLIVIER FRÉCON

ABSTRACT. We characterize the largest subgroup-closed classes of locally finite groups where injectors behave as in finite groups. The present paper is the second part of [1].

1. Results

The notations are the ones of [1], we add just the following definition.

Definition 1.1. Let G be a locally finite group. If \mathfrak{X} is a set of subgroups of G, a subgroup V of G is an \mathfrak{X} -sn-injector of G if, for every subnormal subgroup A of G, $V \cap A$ is a maximal \mathfrak{X} -subgroup of A.

Proposition 1.2. Let G be a locally finite group, and \mathfrak{X} a normal Fitting set of G such that

- any X-group is radical;
- for any normal \mathfrak{X} -subgroup K of a subgroup H of G, if H/K is abelian, then $H \in \mathfrak{X}$;

Moreover, we assume that any subgroup H of G satisfies one of the following conditions:

- *H* has exactly one conjugacy class of \mathfrak{X} -sn-injectors and its \mathfrak{X} -sn-injectors are pronormal in *H*;
- *H* has exactly one conjugacy class of \mathfrak{X} -a-injectors and its \mathfrak{X} -a-injectors are pronormal in *H*;
- *H* has exactly one conjugacy class of \mathfrak{X} -injectors.

Then G is an \mathfrak{X} -group.

Proof. We prove the result in the case of " \mathfrak{X} -sn-injectors", but the same proof works in the other cases, except the last paragraph in the case of " \mathfrak{X} -injectors".

We show that G is locally soluble. Let H be a finite subgroup of minimal order for the condition that H is not soluble. Then every proper normal subgroup of H is soluble, and the subgroup N generated by them is soluble too. Moreover, the \mathfrak{X} -sn-injectors of H are the maximal \mathfrak{X} -subgroups of H containing N. Let U be an \mathfrak{X} -sn-injector of H, p a prime, and P/N a Sylow p-subgroup of H/N. Then P is an \mathfrak{X} -subgroup, so P is contained in a maximal \mathfrak{X} -subgroup of H, which is an \mathfrak{X} -sn-injector. By the conjugacy of \mathfrak{X} -sn-injectors of H, U/N contains a Sylow p-subgroup of H/N for every prime p. Hence we have H = U and H is soluble, so G is locally soluble.

Date: November 11, 2013.

¹⁹⁹¹ Mathematics Subject Classification. Primary 20F17; Secondary 20D10.

 $Key\ words\ and\ phrases.$ locally finite groups, Fitting sets, Injectors.

OLIVIER FRÉCON

We show that each \mathfrak{X} -sn-injector V of G covers all the chief factors H/K of G. Since $V \cap K$ is a maximal \mathfrak{X} -subgroup of K, it is self-normalizing in K. Since $V \cap K$ is an \mathfrak{X} -sn-injector of K, a Frattini Argument applied with $V \cap K$ gives $H = KN_H(V \cap K)$. Since G is locally soluble, the quotient $H/K \simeq N_H(V \cap K)/(V \cap K)$ is abelian, and $N_H(V \cap K)$ is an \mathfrak{X} -group. But $V \cap H$ is a maximal \mathfrak{X} -subgroup of H, so $V \cap H = N_H(V \cap K)$. Hence V covers H/K.

We assume toward a contradiction that G is not an \mathfrak{X} -group. Let V be an \mathfrak{X} sn-injector of G, and let $L = G_{\mathfrak{X}n}$. Then we have $L \leq V < G$. Moreover, for each $g \in N_G(V)$, the subgroup $V\langle g \rangle$ is an \mathfrak{X} -group, so $N_G(V) = V$ by the maximality of V, and we obtain L < V. Let p be a prime such that $\rho(V/L)$ has a nontrivial Sylow p-subgroup P/L. Let C/L be the intersection of the centralizers of all p'chief factors of G/L. If (H/L)/(K/L) is a p'-chief factor of G/L, then V covers H/K by the previous paragraph and P avoids H/K. But V normalizes P, so $[P, H]K = [P, V \cap H]K$ is contained in $(P \cap H)K = K$ and P centralizes H/K. Therefore C contains P. By [2, Theorem 3.8], C/L has a normal Sylow p-subgroup S/L. Thus we obtain $P/L \leq S/L \leq \rho(G/L)$, and $V/L \cap \rho(G/L)$ is nontrivial.

Let $R/L = \rho(G/L)$. Then $V \cap R$ is pronormal in R, and since $V \cap R$ contains L, the subgroup $V \cap R$ is both pronormal and serial in R, so it is normal in R. But $V \cap R$ is a maximal \mathfrak{X} -subgroup of R, so it is self-normalizing in R, and we obtain $R \leq V$. Now R is a normal \mathfrak{X} -subgroup of G, so it is contained in L, contradicting that $\rho(G/L)$ is nontrivial. Thus G is an \mathfrak{X} -group as desired.

In the case of " \mathfrak{X} -injectors", the previous paragraph does not work. However, for each $r \in R$ the subgroup $\langle r \rangle L/L$ is serial in $R/L = \rho(G/L)$ so $\langle r \rangle L$ is serial in G. But since L is an \mathfrak{X} -group, it is an \mathfrak{X} -group too, hence we find $r \in V$ and Vcontains R. Thus R is an \mathfrak{X} -group, contradicting $\mathfrak{X}n = L < R$. \Box

Lemma 1.3. it Let G be a locally finite group, and π be a set of primes. We assume that any two \mathfrak{X}_{π} -injectors of a subgroup H of G are conjugate in H. If $G = S\rho(G)$ for a Sylow π -subgroup S of G, then the Sylow π -subgroups of G are conjugate and S is an \mathfrak{X}_{π} -injector of G.

Proof. Let R be a Sylow π -subgroup of G, P be the Sylow π -subgroup of $\rho(G)$ and Q be the Sylow π' -subgroup of $\rho(G)$. In particular $S \cap R\rho(G)$ and R contain P, and we have $R\rho(G) = (S \cap R\rho(G))\rho(G)$.

We show that, if L is a π -subgroup of G containing P and if $L\rho(G) = R\rho(G)$, then L is an \mathfrak{X}_{π} -injector of $R\rho(G)$. Let A be a serial subgroup of $R\rho(G)$. Then APis a serial subgroup of $A\rho(G)$. Thus, if $A\rho(G)$ has a π -element $x \notin AP$, there exist U and V two subgroups of $A\rho(G)$ containing AP such that $V \trianglelefteq U$ and $x \in U \setminus V$. Since $A\rho(G) = APQ$, Q covers U/V and U/V has not a π -element, contradicting the choice of x. Therefore AP contains all the π -elements of $A\rho(G)$ and we have $L \cap A\rho(G) = L \cap AP = (L \cap A)P$.

Let T be a Sylow π -subgroup of A containing $L \cap A$. We obtain

$$\begin{array}{rcl} A &=& A \cap (L \cap A\rho(G))\rho(G) = A \cap (L \cap A)\rho(G) = (L \cap A)(A \cap \rho(G)) \\ T &=& (L \cap A)(T \cap A \cap \rho(G)) = (L \cap A)(T \cap \rho(G)) \leq (L \cap A)P \leq L. \end{array}$$

Thus $L \cap A$ is a Sylow π -subgroup of A and L is an \mathfrak{X}_{π} -injector of $R\rho(G)$.

By the paragraph above, $S \cap R\rho(G)$ and R are two \mathfrak{X}_{π} -injectors of $R\rho(G)$, so they are conjugate in $R\rho(G)$. Thus, there exists $g \in R\rho(G)$ such that S^g contains R, hence $R = S^g$ and $G = R\rho(G)$. This finishes the proof. \Box Notation 1.4. For each set π of primes, we denote by \mathfrak{X}_{π} the set of π -subgroups of locally finite groups.

Let $\mathfrak{V}sn$ (resp. $\mathfrak{V}a$, \mathfrak{V}) be the largest subgroup-closed class of locally finite subsoluble groups (resp. SN^* -groups, radical groups) G such that, for any set π of primes, G has a unique conjugacy class of \mathfrak{X}_{π} -sn-injectors (resp. \mathfrak{X}_{π} -a-injectors, \mathfrak{X}_{π} -injectors).

We recall that if a group G has a normal \mathfrak{U} -subgroup H such that G/H is finite and soluble, then G is a \mathfrak{U} -group too [3, Lemma 6.6].

Lemma 1.5. Let G be a \mathfrak{V} -sn-group (resp. \mathfrak{V} -a-group, \mathfrak{V} -group). If $G/\rho(G)$ is a Baer(resp. Gruenberg, locally nilpotent) group, then G is a \mathfrak{U} -group.

Proof. Let π be a set of primes, and V an \mathfrak{X}_{π} -sn-injector (resp. \mathfrak{X}_{π} -a-injector, \mathfrak{X}_{π} -injector) of G. Since $G/\rho(G)$ is locally nilpotent, $G/\rho(G)$ has a unique Sylow π -subgroup $G_{\pi}/\rho(G)$, and we have $V \leq G_{\pi}$.

By Lemma 1.3, we have just to prove that $G_{\pi} = V\rho(G)$. For each $g \in G_{\pi}$, $\rho(G)\langle g \rangle$ is a finite extension of $\rho(G)$ and, by [3, Lemma 6.6], $\rho(G)\langle g \rangle$ is a \mathfrak{U} -group. But $G/\rho(G)$ is a Baer group (resp. an Gruenberg group, a locally nilpotent group), so $\rho(G)\langle g \rangle$ is subnormal (resp. ascendant, serial) in G. Thus $V \cap \rho(G)\langle g \rangle$ is a Sylow π -subgroup of $\rho(G)\langle g \rangle$, and we obtain $\rho(G)\langle g \rangle = (V \cap \rho(G)\langle g \rangle)\rho(G)$ [2, Lemma 2.1 (ii)]. In particular, $V\rho(G)$ contains g and G_{π} , so $G_{\pi} = V\rho(G)$, as desired.

Fact 1.6. ([3, Theorem E] and [4, Lemma 1.1]) If G is a \mathfrak{U} -group, then $G/\rho(G)$ is (2-step soluble)-by-finite. In particular $G/\rho(G)$ is soluble. Moreover, $G/\rho(G)$ is characteristically hyperfinite.

Theorem 1.7. The classes $\mathfrak{V}sn$, $\mathfrak{V}a$ and \mathfrak{V} are contained in \mathfrak{U} .

Proof. We give the proof just for $\mathfrak{V}sn$, since the same proof works for $\mathfrak{V}a$ and \mathfrak{V} . Let G be a $\mathfrak{V}sn$ -group. Let α be the least ordinal such that, if we define $B_0(G) = \rho(G)$, $B_{i+1}(G)/B_i(G) = \beta(G/B_i(G))$ for each ordinal i and $B_{\gamma}(G) = \bigcup_{i < \gamma} B_i(G)$ for limit ordinals γ , then $G = B_{\alpha}(G)$. We may assume that for each $\mathfrak{V}sn$ -group H, if $H = B_i(H)$ for $i < \alpha$, then H is a \mathfrak{U} -group. By Lemma 1.5, we may assume $\alpha \geq 2$.

(1) $G/\beta(G)$ is hyperfinite. If $\alpha > \omega$, then $B_{\omega}(G)$ is a \mathfrak{U} -group containing $B_n(B_{\omega}(G)) = B_n(G)$ for each integer n, contradicting Fact 1.6. So we have $\alpha \leq \omega$. Suppose $\alpha = \omega$. Then $B_i(G)$ is a \mathfrak{U} -group for each $i \in \mathbb{N}$, and $B_i(G)/\rho(G)$ is

characteristically hyperfinite for each $i \in \mathbb{N}$ (Fact 1.6), so $G/\rho(G)$ is hyperfinite.

Suppose $\alpha < \omega$. By the minimality of α , $B_1(G)$ is a \mathfrak{U} -group. So $B_1(G)$ has a Carter subgroup C [2, Theorem 5.4], $B_1(G) = \rho(G)C$ and the Carter subgroups of $B_1(G)$ are conjugate. Then we have $N_G(C) \cap B_1(G) = C$ and a Frattini Argument gives $G = \rho(G)N_G(C)$. We obtain $G/B_1(G) \simeq N_G(C)/C$, and since C is locally nilpotent, $N_G(C) = B_{\alpha-1}(N_G(C))$. Therefore, by the minimality of α , $N_G(C)$ is a \mathfrak{U} -group. Moreover, since $G = \rho(G)N_G(C)$, we have $\rho(N_G(C)) \leq N_G(C) \cap B_1(G) = C$, and $G/B_1(G) \simeq N_G(C)/C$ is hyperfinite (Fact 1.6). As $B_1(G)$ is a \mathfrak{U} -group, $B_1(G)/\rho(G)$ is characteristically hyperfinite (Fact 1.6), hence $G/\rho(G)$ is hyperfinite.

(2) G is a \mathfrak{U} -group. By (1), there exists an ordinal γ such that $G/\rho(G)$ has a normal series $(U_i/\rho(G))_{0 \le i \le \gamma}$ with U_{i+1}/U_i finite abelian for every $i < \gamma$, $U_0 = \rho(G)$ and $U_{\gamma} = G$. We may assume that G is not a \mathfrak{U} -group. Then there exists a set π of primes such that Sylow π -subgroups of G are not conjugate. Since G is an $\mathfrak{V}sn$ -group, G has a Sylow π -subgroup S such that S is not an \mathfrak{X}_{π} -sn-injector.

OLIVIER FRÉCON

Let β be the least ordinal such that there exists a Sylow π -subgroup R of RU_{β} which is not an \mathfrak{X}_{π} -sn-injector of RU_{β} . By Lemma 1.3, we have $\beta > 0$.

Assume that β is a limit ordinal. Let A be a normal subgroup of RU_{β} and T be a Sylow π -subgroup of A containing $R \cap A$. By the minimality of β , R is an \mathfrak{X}_{π} -sn-injector of RU_i for every $i < \beta$, therefore $R \cap A$ is a Sylow π -subgroup of $A \cap RU_i$. We obtain $R \cap A = T \cap RU_i$ for every $i < \beta$, so $R \cap A = T \cap RU_{\beta} = T$. Thus R is an \mathfrak{X}_{π} -sn-injector of RU_{β} , contradicting the choice of R.

Assume there is an ordinal δ such that $\beta = \delta + 1$. Let $C = C_{RU_{\beta}}(U_{\beta}/U_{\delta})$. Then C is a normal subgroup of finite index of RU_{β} . Since U_{β}/U_{δ} is abelian, we have $U_{\beta} \leq C$ and $C = (R \cap C)U_{\beta}$. By the minimality of β , R is an \mathfrak{X}_{π} -sn-injector of RU_{δ} , so $R \cap C = R \cap (C \cap RU_{\delta})$ is an \mathfrak{X}_{π} -sn-injector of $C \cap RU_{\delta}$. Let $M = N_{RU_{\beta}}(R \cap C)$. Then $R/(R \cap C)$ is a finite Sylow π -subgroup of $M/(R \cap C)$. Thus, since $M/(R \cap C)$ is locally soluble, the Sylow π -subgroups of $M/(R \cap C)$ are finite, and conjugate. As $R \cap C$ is a π -subgroup, we obtain the conjugacy of the Sylow π -subgroups of M.

Let V be an \mathfrak{X}_{π} -sn-injector of RU_{β} . As $C \cap RU_{\delta}$ is normal in RU_{β} , the subgroup $V \cap (C \cap RU_{\delta})$ is an \mathfrak{X}_{π} -sn-injector of $C \cap RU_{\delta}$ and there is $x \in C \cap RU_{\delta}$ such that $(V \cap C \cap RU_{\delta})^x = R \cap C$. Moreover V normalizes $V \cap C \cap RU_{\delta}$ and we obtain $V^x \leq M$, so V^x is a Sylow π -subgroup of M. Now V^x and R are conjugate in M and R is an \mathfrak{X}_{π} -sn-injector of RU_{β} , contradicting the choice of R.

Corollary 1.8. Let G be a locally finite group. We assume that for $\mathfrak{X} = \mathscr{S}$, the set of subsoluble subgroups of G, and $\mathfrak{X} = \mathfrak{X}_{\pi}$ for any set π of primes, any subgroup H of G satisfies:

- *H* has exactly one conjugacy class of \mathfrak{X} -n-injectors;
- for every normal subgroup A of H and every X-n-injector V of H, the subgroup V ∩ A is an X-n-injector of A;
- any \mathfrak{X} -n-injector of H contained in $K \leq H$ is an \mathfrak{X} -n-injector of K,

Then G is a subsoluble \mathfrak{U} -group.

Proof. By our hypotheses, we may apply Proposition 1.2 with $\mathfrak{X} = \mathscr{S}$, so G is subsoluble. Now Theorem 1.7 says that G is a \mathfrak{U} -group.

Remark 1.9. By [1, Theorem 1.4, Proposition 1.14 and Corollary 1.15], for any subsoluble \mathfrak{U} -group G, the hypotheses of Corollary 1.8 are satisfied for any normal Fitting set \mathfrak{X} of G.

Conclusion 1.10. The largest subgroup-closed class of locally finite groups G such that, for any normal Fitting set \mathfrak{X} of G,

- G has exactly one conjugacy class of \mathfrak{X} -n-injectors;
- for every normal subgroup A of G and every X-n-injector V of G, the subgroup V ∩ A is an X-n-injector of G;
- any \mathfrak{X} -n-injector of H contained in $K \leq H$ is an \mathfrak{X} -n-injector of K,

is the class of subsoluble \mathfrak{U} -groups.

Equivalently:

Conclusion 1.11. The largest subgroup-closed class of locally finite groups G such that, for any normal Fitting set \mathfrak{X} of G,

- G has exactly one conjugacy class of \mathfrak{X} -sn-injectors;
- any \mathfrak{X} -sn-injector of H contained in $K \leq H$ is an \mathfrak{X} -sn-injector of K,

is the class of subsoluble \mathfrak{U} -groups.

If we apply Proposition 1.2 with \mathfrak{X} the class of locally finite SN^* -groups, we obtain:

Conclusion 1.12. The largest subgroup-closed class of locally finite groups G such that, for any ascendant Fitting set \mathfrak{X} of G,

- G has exactly one conjugacy class of \mathfrak{X} -a-injectors;
- any \mathfrak{X} -a-injector of H contained in $K \leq H$ is an \mathfrak{X} -a-injector of K, is the class $SN^* \cap \mathfrak{U}$.

Now if we apply Proposition 1.2 with \mathfrak{X} the class of radical locally finite groups, we obtain:

Conclusion 1.13. The largest subgroup-closed class of locally finite groups G such that, for any serial Fitting set \mathfrak{X} of G,

• G has exactly one conjugacy class of \mathfrak{X} -injectors,

is the class of $\mathfrak{U}\text{-}groups.$

References

- [1] Olivier Frécon. Fitting sets in *U*-groups. Preprint.
- [2] A. D. Gardiner, B. Hartley, and M. J. Tomkinson. Saturated formations and Sylow structure in locally finite groups. J. Algebra, 17:177–211, 1971.
- [3] B. Hartley. Sylow subgroups of locally finite groups. Proc. London Math. Soc. (3), 23:159–192, 1971.
- [4] B. Hartley and M. J. Tomkinson. Carter subgroups and injectors in a class of locally finite groups. Rend. Sem. Mat. Univ. Padova, 79:203–212, 1988.

LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS,, UMR 7348 DU CNRS,, UNIVERSITÉ DE POITIERS,, TÉLÉPORT 2 - BP 30179,, BD MARIE ET PIERRE CURIE,, 86962 FUTUROSCOPE CHASSENEUIL CEDEX,, FRANCE

E-mail address: olivier.frecon@math.univ-poitiers.fr